\

Multi-hop Byzantine Reliable Broadcast Made Practical

Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil

» To cite this version:

Silvia Bonomi, Giovanni Farina, Sébastien Tixeuil. Multi-hop Byzantine Reliable Broadcast Made
Practical. [Technical Report] Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6,
LIP6, F-75005 Paris, France; Dipartimento di Ingegneria Informatica Automatica e Gestionale ”An-
tonio Ruberti”, Sapienza Universita di Roma, Rome, Italy. 2018. hal-01826865v1

HAL Id: hal-01826865
https://hal.science/hal-01826865v1
Submitted on 29 Jun 2018 (v1), last revised 4 Sep 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01826865v1
https://hal.archives-ouvertes.fr

Multi-hop Byzantine Reliable Broadcast
Made Practical

Silvia Bonomi*, Giovanni Farina'*, Sébastien Tixeuil®

*Dipartimento di Ingegneria Informatica Automatica e Gestionale
“Antonio Ruberti”,
Sapienza Universita di Roma, Rome, Italy
bonomi@diag.uniromal.it

fSorbonne Université,
CNRS, Laboratoire d’Informatique de Paris 6, LIP6,
F-75005 Paris, France
Giovanni.Farina@lip6.fr, Sebastien.Tixeuil@lip6.fr

Abstract

In this paper, we revisit Byzantine-tolerant reliable broadcast al-
gorithms in multi-hop networks. To tolerate up to f Byzantine nodes,
previous solutions require an exponential number of messages to be
sent over the network. We propose optimizations that preserve the
safety and liveness properties of the original algorithms, while highly
decreasing their observed message complexity when simulated on two
families of random graphs with suitable connectivity.

1 Introduction

Designing dependable and secure distributed systems and networks, that are
able to cope with various types of adversaries (ranging from simple errors
to internal or external attackers), requires to integrate those risks from the
very early design stages. The most general attack model in a distributed
setting is the Byzantine model, where a subset of system participants may
behave arbitrarily (including in a malicious manner), while the rest of the
participants remain correct. Also, reliable communication primitives are a
core building block of any distributed system.

In this paper, we consider the reliable broadcast problem in presence

of Byzantine failures i.e., the problem of distributing informations from a
source to every other process considering that a subset of nodes may act ar-
bitrarily. The reliable broadcast primitive is expected to provide two guar-
antees: (i) safety i.e., every message m delivered by a correct node has been
previously sent by the source and (ii) liveness i.e., every message m sent by
the source is eventually delivered by every correct node.
Related Works. A solution to the reliable broadcast problem with Byzan-
tine failures has been initially provided for complete networks (8], assuming
that no more than one third of the nodes are Byzantine (i.e., n > 3f, where
n denotes the size of the network ad f the maximum number of Byzantine
nodes). Afterwards, necessary and sufficient conditions have been identified
for general static networks [3], demonstrating that reliable broadcast can be
solved if and only if the network is 2 f + 1-connected, where f the maximum
number of Byzantine nodes.

Subsequently, research efforts followed three paths: (i) replacing global
conditions with local conditions, (7i) employing cryptographic primitives, or
(i4i) considering weaker broadcast specifications.

The Certified Propagation Algorithm (CPA) [7,/16] is a protocol that
solves reliable broadcast in static networks where the number of Byzantine
nodes is locally bounded, i.e., in any given neighborhood, at most f processes
can be Byzantine. The original algorithm has been later extended in [15]
along several directions: (i) considering different thresholds for each neigh-
borhood, (ii) considering additional knowledge about the network topology,
and (iii) considering the general adversary model.

Byzantine tolerant Reliable broadcast can also be solved by employing
cryptography (e.g., digital signatures) [1,4] that enable all nodes to exchange
messages guaranteeing authentication and integrity. The main advantage of
cryptographic protocols is that they allow to solve problem with simpler
solutions and weaker conditions (in terms of connectivity requirements).
However, on the negative side, the safety of the protocols is bounded to the
crypto-system.

Last, the broadcast problem has been considered weakening safety
and/or liveness property e.g., allowing to a (small) part of correct processes
to either deliver fake messages, or to never deliver a valid message [9-11].

Let us note that a common assumptions to Byzantine tolerant reliable
broadcast protocols is to use authenticated point-to-point channels, which
prevent a process from impersonating several ones (Sybil attack). The real
difference between cryptographic and non-cryptographic protocols for re-
liable broadcast is how the cryptography is employed: non-cryptographic

protocols, in fact, may use digital signatures just within neighbours for au-
thentication purposes, whereas the cryptographic protocols employs cryp-
tographic primitives to enable the message verification even between non-
directly connected nodes. Let us remark that an authenticated channel not
necessarily requires the use of cryptography [17].

Although the Byzantine tolerant reliable broadcast problem has been ex-

tensively studied considering different settings, the solution provided in [3]
is the only one for general settings and it has never been revisited from
a performance perspective. Indeed, this solution hints at poor scalability
since it requires an exponential number of copies of the same message to be
spread and verified in order to be accepted by a correct node and let think
that solving reliable broadcast in the weakest system model (i.e., the one
in [3]) is practically infeasible.
Contributions. We review and improve previous solutions for reliable
broadcast in static multi-hop networks, where at most f nodes can be Byzan-
tine faulty, making no further assumption with respect to the original set-
ting [3]. More in details, we propose and implement two optimizations that
preserve both safety and liveness properties of the original algorithms. By
extensive simulations for variously shaped random networks, we show that
our optimizations enable to keep the message complexity close to quadratic
(in the size of the network). Our work thus paves the way for the prac-
tical use of Byzantine tolerant reliable broadcast solution in realistic-size
networks.

2 System Model and Problem Statement

System Model. We consider a distributed system composed by a set of
n processes II = {p1,p2,...pn}, each one having a unique integer identi-
fier. Processes are arranged in a multi-hop communication network. The
network can be seen as an undirected graph where each node represents a
process p; € II, and each edge represents a communication channel between
two elements p;,p; € Il such that p; and p; can communicate. The commu-
nication network is static. In the following, we interchangeably use terms
process and node and we will refer to edges and communication channels
interchangeably.

The processes communicate through message exchanges. Every message
has a source, which is the id of the process that has created the message,
and a sender, that is the id of the process that is relaying the message. The
source and the sender may coincide. The sender is always a neighbor in the

communication network.

The passage of time is measured according to a fictional global clock
spanning over natural numbers N. The computation evolves in rounds. In
each round, a process sends messages, it receives messages and then executes
the computations required by the specific protocol to check if the message
can be delivered or not and to prepare messages that should be sent in the
next round.

We assume that the computation time is negligible with respect to com-
munication and we consider it equal to 0. Let us notice that the timing
assumptions we are considering here model a synchronous system.

We assume an omniscient adversary able to control up to f processes
of the network allowing them to behave arbitrarily (including corrupting/
dropping messages or simply crashing). We call them Byzantine processes.
Processes that are not Byzantine faulty are said to be correct. Correct
processes do not a priori know the subset of Byzantine processes.

We assume reliable and authenticated communication channels, i.e. the
exchanged messages are never altered or created by the channels and they
are always delivered. Furthermore, the channels guarantee no forgery of the
sender.

Processes have no global knowledge about the system (i.e. the size or the
topology of the network) with the exception of the value of f.

Problem Statement. We consider the problem of reliable broadcast on a
static distributed system from a correct E| source s, assuming f Byzantine
failures arbitrary spread in the network.

A protocol solves the Byzantine tolerant reliable broadcast problem if
the following conditions are met:

e (Safety) if a correct process delivers a message m then it has been
previously sent by the correct source;

e (Liveness) if a correct source broadcast a message m, then m will be
eventually delivered by every correct process.

!The different assumption of a possibly faulty source leads to a more general problem,
the Byzantine Agreement (3.

3 Background

In this section, we provide a review of the available solutions to the reliable
broadcast problem highlighting the following metrics:

e message complexity i.e., the total number of messages exchanged by
the protocol in a single execution.

o delivery complexity the complexity of the procedure executed by a
process to decide whether or not a message has to be accepted.

Dolev in [3] identified the necessary and sufficient condition enabling
reliable broadcast on general static networks.

Remark 1 (Condition for Reliable Broadcast). The reliable broadcast can
be achieved in a static network G composed of n processes considering at

most f Byzantine processes if and only if the vertex connectivity of G is at
least 2f 4+ 1.

All of the available solutions that we are going to review rely on the
Menger Theorems [2], remarked in the following:

Remark 2 (Global Menger Theorem). A graph is k-connected if and only
if it contains k independent paths E| between any two vertices.

This, in turns, requires to remark the difference between Disjoint Paths
and Vertex Cut:

Remark 3 (Vertex Cut VS Disjoint Paths). Let G = (V, E) be a graph and
a,b C V. Then the minimum number of vertices separating a from b in G
is equal to the maximum number of disjoint a — b paths in G.

The following protocols are defined by a propagation algorithm, which
rules how the message are spread over the network, and a verification algo-
rithm, that decides if a message mg can be accepted by a process guaran-
teeing the safety of reliable broadcast.

2Two paths are independent (or disjoint) if they do not have any internal vertex in
common.

3.1 Dolev’s Reliable Broadcast Protocol

This protocol assume that no global knowledge is given to the processes, with
the exception of the value of f. The messages exchanged by the protocol
have the format msg := (mg, path), where mg encapsulates the content and
the source id s and path represents a sequence of nodes.

Dolev Propagation Algorithm

e The source process s sends the message mg to all of its neighbors,
namely it multicasts msg := (ms, 0);

e a correct process p saves and relays a message msg; := (ms, path;)
sent by a neighbor ¢ to all of other neighbors not included in path;
appending to path; the id of the sender ¢, namely it multicasts
msg := (msg, path; U{q}).

The messages carrying not valid path;, path; with loops or path; in-
cluding p are discarded.

Dolev Verification Algorithm

e If a node receives copies of msg carrying the same mg where it is
possible to identify f+ 1 disjoint paths among the relative path;, then
my is delivered by the process.

The message complexity of the algorithm is exponential in the size of
the network. This results in an exponential number of path; to elaborate in
order to deliver a single message. Furthermore, to the best of our knowledge,
the best method available to identify f + 1 disjoint path; is the reduction
to a NP-Complete problem, Set Packing. We refer to this method as DP
(disjoint paths).

The safety is guaranteed by the fact that Byzantine processes by, ba, ... by
cannot propagate a fake message 1 through no more than f disjoint paths.
The liveness is guaranteed by the Menger theorem. Indeed assuming a
vertex cut of size f, f+ 1 disjoint paths are still available between any pairs
of nodes.

3.2 Maurer et al.

Maurer et al. [12] addressed the reliable communication problem on dynamic
networks (i.e. the network where the topology changes over the time) where
at most f processes are Byzantine and no global knowledge is given to the

processes, defining necessary and sufficient conditions to solve the problem,
and providing a solution. Considering that a static network can be seen as a
particular dynamic network where the topology never changes, the solution
they proposed can also be employed on static networks.

They started by the fact that the Menger theorem reported in Remark
B]is not valid on dynamic networks. In particular, the Maximum number of
Disjoint Paths (MDP) among those ones interconnecting two endpoints is
less than or equal to the Minimum Vertex Cut (MVC) over the same paths.
Thus, they defined the necessary and sufficient condition and a solution to
the problem based on MVC.

The Maurer et al. protocol shares the basic idea behind Dolev algorithm
for unknown topology: leverage the authenticated channels to collect the ids
of the processes traversed by the messages.

Due to the fact that the order of traversing a set of nodes does not
impact neither MVC or MDP, the message format has been changed from
msg := (msg, path) to msg := (msg, pathset), namely carrying just the infor-
mation about the ids of traversed nodes and discarding their order. Assum-
ing that every node checks for duplicates and avoids to retransmit several
copy of the same msg; := (ms, pathset;), this message format reduces the
message complexity and its effectiveness will be shown through simulation in
a following section. As a matter of fact, this modification retains exponential
message complexity.

Maurer et al. Propagation Algorithm

e The source process s sends the message mg to all of its actual neigh-
bors, namely it multicasts msg := (ms, 0).
This action is iterated every time the network topology changes;

e a correct process p saves and relays a message msg; := (ms, pathset;)
sent by a neighbor ¢ to all other of its actual neighbors not included
in pathset; appending to pathset; the id of the sender g, namely it
multicasts msg := (msg, pathset; U {q}).

A correct process multicasts any saved message msg; every time the
network topology changes E| The messages carrying not valid pathset;
or pathset; where p is included are discarded.

3this is due to the fact that a process does not known if a transmitted message is
delivered or not by the channel.

Maurer et al. Verification Algorithm

e If a node receives copies of msg carrying the same mg where it is not
possible to identify a vertex cut of size less than or equal to f among
all the relative pathset, then mg is delivered by the process.

The message complexity of the algorithm is exponential in the size of
the network (even discarding multiple retransmissions). This results in an
exponential number of pathset; to elaborate in order to deliver a single mes-
sage. Furthermore, to the best of our knowledge, the best method available
to identify a vertex cut of size less than or equal to f is the reduction to a
NP-Complete problem, Hitting Set. We refer to this method as VC' (Vertex
Cut).

The safety is guaranteed by the fact that Byzantine processes by, ba, ... by
cannot propagate a fake message mg through paths with a vertex cut greater
than f.

4 Analysis and Contributions

To the best of our knowledge, there does not exists further solutions to the
problem we are targeting that do not make extra or different assumptions
(e.g. digital signatures, higher density networks, weaker versions of safety or
liveness, etc.). We saw in Sections and that available solutions may
not scale to larger networks, making them not practically employable. In
this section, we further analyze some details of aforementioned solutions and
propose simple optimizations that result in drastically reducing the message
complexity.

4.1 Paths VS Pathsets, MDP VS MVC

The best method currently available to identify f 4+ 1 disjoint paths gen-
erated in a Byzantine affected distributed system is the reduction to Set
Packing, a NP-Complete problem Set Packing [6]. The best method cur-
rently available to check whether no vertex cut of size f exists over a set of
path generated in a Byzantine affected distributed system is the reduction
to Hitting Set, a NP-Complete problem [6].

A priori, there is no reason to prefer path over pathset as message format,
unless another way to identify disjoint paths or vertex cut that preserves
safety is identified. Indeed: (i) due to the reduction to a set problem, paths
are converted to sets to be analyzed; (i) two paths over the same set of nodes

are not disjoint and have a cut of size 1, and (74i) the pathset interconnecting
two endpoints are lower size than the paths.

It follows from Menger’s theorem in Remark [3| that, from a theoretical
point of view, it is the same for a node to identify f+ 1 disjoint paths (DP)
or to verify that no vertex cut (VC) of size lower or equal than f exists to
deliver a message. Furthermore both problems are addressed by solving an
NP-Complete problem.

4.2 Limiting message transmissions

From the previous discussion, we saw that a message travels unconditionally
over the network collecting the ids of visited nodes before being delivered.
Note that, even in the scenario where all the processes are correct, this
leads to an exponential message complexity protocol. Also, every process
eventually receives the visited sets of any pathset interconnecting the source
with itself, resulting in an exponential input for the verification.

A process should attempt to verify the received messages continuously,
because the number of messages to be verified only increases over time, until
all possible pathsets are received by all processes. As a matter of fact, not
all pathsets are required for the delivery.

For this reason, we propose a technique to let a process’ neighbors know
that a particular message ms has been delivered, and argue that avoiding
to forward a message carrying ms to nodes that already delivered mgs does
not hinder safety nor liveness of reliable broadcast.

Theorem 1. [t is safe for a correct process p that executes either Dolev or
Maurer et al. algorithm to relay a message ms with an empty path/pathset
if ms has already been delivered by p.

Proof. The aim of the information about the nodes traversed by a message
ms is to enable a process p to decide whether m, can be safely accepted.
Once mg is delivered, the information about the node traversed before reach-
ing p is not useful, because my is already verified as safe by p. O

This modification has already been employed [14] for the purpose of
topology reconstruction.

Theorem 2. Let p be a process executing either Dolev or Maurer et al.
algorithm to broadcast a message ms. Fven if p does not relay messages
carrying ms to its neighbors that already delivered mg then liveness property
1s still satisfied.

Proof. Let us assume that there exists three processes p, ¢, such that only
q has already delivered message ms and that, among others, the following
communication channels are available: (p,q), (¢,7). From Theorem [1| we
know that process g can relay m, with an empty path/pathset. Thus, any
further path/pathset containing p and ¢, after the delivery of ¢, does not
affect the results of DP and VC about mg computed on r. Thus, any further
transmission from p to ¢ can be avoided after the delivery of ms by ¢ without
compromising liveness. O

4.3 Practical Reliable Broadcast Algorithm

Given the previous observations we revised the verification and propagation
algorithms taking into account that: (i) if a process p receives a message
msg := (mg, #) from a neighbor ¢, it can conclude that ¢ has delivered m,
and (i7) if a neighbors ¢ has delivered mg, no further msg need to be for-
warded to q.

The protocol we propose:

e employs pathset as message format;
e employs VC as verification algorithm;

e does not forward copies of a message to nodes that have already de-
livered it.

The pseudo code of our protocol is presented in Figure Initially,
every node is not aware about its neighborhood but it can easily retrieve it
due to the authenticated channels. Every node keeps for every not delivered
message m the list of neighbors that have already delivered such a message.

When a new msg is received from a process ¢, if the contained my is
not yet delivered, it is enqueued for forwarding. If the contained pathset is
empty, the process concludes that the neighbors ¢ has delivered the message.

When there is a message msg to forward, it is relayed to all the neighbors
that have not yet accepted the contained m.

When a node delivers a message mg, it discards the relative enqueued
msg for forwarding and it enqueues the message mg with an empty pathset.

The forwarding policy picks randomly one message per time among the
ones to relay. It is shown through simulations that this approach slightly
reduce the message complexity with respect to a FIFO policy.

Notice that all the information about the visited sets of a message m;
and the neighbors that have delivered it can be dropped after the delivery.

10

Neigh = [pl, pP2,...p]J]
Neigh del[ms] = []
Delivered = []

To Forward[ms] = []

Pathset[ms] = []

When RECEIVED msg FROM q:
If msg.ms not in Delivered:
To_Forward[ms].append(< msg.ms, msg.pathset + {g} >)
Pathset([ms] .append(msg.pathset)
If msg.pathset == {}
Neigth del[ms] = g
When |To Forward[ms]| > 0
msg = To_Forward[ms].random pop ()
ForAll neight not in Neight - Neigh del[ms]:
If neigth not in msg.pathset:

SEND (neight, msg)

When |Pathset[ms]| > 0:
If {s} in Pathset[ms] or not VC(Pathset([ms], f):
Delivered. append(ms)
To_Forward[ms].clear()

To_Forward[ms].append(< msg.ms, {} >)

Figure 1: Practical Byzantine Tolerant Reliable Broadcast (pseudo-code)

11

4.4 Preventing Flooding

The verification complexity depends on the amount of pathsets that has been
received by a process, and we highlighted that such a number is exponential
in the size of the network even without considering the Byzantine processes.
Indeed, a Byzantine process can potentially flood the network with fake
messages (i.e., msg := (ms, pathset) where mg and/or pathset is invented
by the Byzantine) that are spread also by the correct processes (because
they cannot distinguish between a message generated by the propagation
algorithm from one made by a Byzantine). Thus a countermeasure must be
adopted. Dolev’s solution further assumes that every node knowns the id
of the member of the system to prevent a Byzantine process to send misg
containing patﬁset with fake ids. Nevertheless a Byzantine process can still
diffuse a considerable amount of fake pathset with valid ids.

A way to limit the flooding capability of Byzantine processes is to con-
straint the channel capacity of every process. Thus, we assume that every
process can only multicast (i.e. send to all of its neighbors) one message per
round.

5 Simulations

In this section, we present the simulation results we obtained in order to
evaluate the effectiveness of the optimizations described by the previous
section.

For the purpose of evaluation, we assume a synchronous setting that
evolves in rounds identified by natural numbers (for every round r, r €
N). In each round, a process sends messages, receives messages and then
elaborates the next messages to be sent. The channel latency is assumed
equal to 1 time unit with any load. We assume that the local computation
time is negligible and equal to 0. We simulate a single broadcast that start
at time 0. Every process attempts to deliver the message in every round
until it succeeds to do so. We employed pathset as message format, and we
used VC as delivery policy. Furthermore, we made use of implementation
provided by Gainer-Dewar and Vera-Licona [5] for the algorithm defined by
Murakami and Uno [13] to solve the reduction to the hitting set problem.

We considered two kinds of networks:

1. k-regular k-connected random graphs;

2. Erdés - Rényi random graphs, G(n, p);

12

. 3-connected regular network, unbounded channel capacity . 5-connected regular network, unbounded channel capacity
o 10

= Dolev - Paths = Dolev - Paths
W= Maurer et al. - Pathset] W= Maurer et al. - Pathset
W Practical - Pathset W Practical - Pathset

107

message complexity
message complexity

n=10 n=14 n=18 n=22 n=10 n=14 n=18 n=22

Figure 2: Original algorithms VS our algorithm, message complexity, un-
bounded channel capacity

The former one models managed systems where the communication links
are minimized, the latter one is representative of self-organized environment
(e.g P2P).

We also consider two settings for the channel capacity: (i) unbounded,
namely a process can send an indefinite number of messages per round and
they are all delivered within 1 time instant; (i) bounded, in which a single
message per round can be sent on any communication channel.

We refer with k to the network node connectivity. For all the sim-
ulations we consider the maximum number of f Byzantine tolerable, i.e.
f=1(k—=1)/2] and we assume all processes correct. This setting models
the worst case scenario, indeed:

e the message complexity decrease assuming a lower value of f;

e in case the channel capacity is bounded, a Byzantine process can
spread the same amount of messages as a correct one;

e assuming Byzantine processes that simply block the message retrans-
mission reduces the message complexity, because the message are ex-
changed between a lower number of nodes.

For all results, we present 95% confidence intervals. The simulation code
is available at https://www-npa.lip6.fr/~farina/rbcode

5.1 A Simple Setup

We start by comparing the message complexity while using: (i) paths as mes-
sage format, (i) pathset as message format, and (iii) our protocol. The re-
sults are presented in Figure[2] We consider k-regulars graph for small values

13

https://www-npa.lip6.fr/~farina/rbcode

n=50, regular network n=50, G(n,p)
3500 3500

+ unbounded synchronous + unbounded synchronous

[# bounded synchronous + bounded synchronous
3000 .t 3000 4

2500 f--mmmmm oo mm oo A - 2500 === =mmmmmm s smmmmsooo oo
2000 2000

1500 4 1500 4

message complexity
message complexity

1000 4 Lottt e 1000 4

500 - .. 500 4 s

10 20 30 40 50 0.2 0.4 0.6 0.8 10
network connectivity probability

Figure 3: Message complexity, bounded vs. unbounded channel capacity

of k (respectively, k = 3 and k = 5) and n (respectively, n € [10, 14, 18, 22]).
For simulation purposes, all processes are supposed correct, and the param-
eter f of the protocol is assumed to be maximal, i.e. f = [(k—1)/2]. We
also assume unbounded capacity channels. We can see, as expected, that
even in regular graphs the message complexity explodes even with small
graph instances with small values of k. Nevertheless, the message complex-
ity of our protocol is at least one order of magnitude smaller that previous
approaches in this simple setting.

5.2 Bounded vs. Unbounded Capacity Channels

Figure 3| plots the message complexity of our protocol for a network of n = 50
nodes. Both unbounded and bounded channel capacity cases are considered.
A regular network (on the left) and a G(n, p) network (on the right) are con-
sidered. The constant function y = n?, for n = 50 is also plotted (in dashed
green). We can see that our protocol exhibits a message complexity below
n? in a synchronous system with channels of bounded capacity. Further-
more, when channels have unbounded capacity, the message complexity is
drastically reduced with respect to the state of the art protocols. Remind
that the over message complexity we consider is the sum of all messages
exchanged in the system thoughout execution, so any given process only
verifies a small portion of those.

Figure [plots the message complexity of our protocol considering net-
works of various sizes, respectively 150, 200 and 250 nodes. The channel
capacity is assumed bounded. It results that the message complexity of our
protocol continues to follow a defined behavior, always upper bounded by
n? (in green dashed line for both cases).

14

regular network G(n,p)

60000 60000

50000 50000 4

40000 4o 40000 4-+-reeeene

30000 4 30000 4

message complexity
message complexity

20000 4 20000 4

10000 - 10000 -

o 50 100 150 200 250 0.2 04 0.6 08 10
network connectivity probability

Figure 4: Message complexity, bounded channel capacity, network size n =
150, 200 and 250

n=100, regular network n=100, G(n,p)
10 10
© bounded synchronous © bounded synchronous
° ® unbounded synchronous ® unbounded synchronous
8 8
> >
g6 5 6
& © &
%4 °Segoe, % .
g ° g
0000888“00”””””. o e o
2 ®ecoo0e 2 ® o o o
°
o}

o 10 20 30 40 50 60 70 0.2 0.4 0.6 0.8 10
network connectivity probability

Figure 5: Broadcast latency

We mean by broadcast latency the length of the time interval [rg, 7]
where 74 is the round at which the broadcast starts and r. is the first round
at which every correct node delivered the message. Arguably, the unbounded
channel capacity assumptions allows to minimize broadcast latency. Then,
Figure [f| compares broadcast latency for unbounded and bounded channels.
It turns out that a bounded channel capacity impacts broadcast latency in
a negligible way, validating its use as an effective countermeasure against
Byzantine processes.

5.3 Synchronous vs. Asynchronous Executions

One of the reasons that allows our protocol to perform efficiently is the syn-
chrony assumption. Indeed, synchrony permits to avoid sending unnecessary
pathsets. In order to evaluate the impact of asynchrony, we simulated our

15

Nn=100, regular network n=100, G(n,p)
25000 25000

b delay probability 0.25
delay probability 0.50 delay probability 0.50
delay probability 0.75 delay probability 0.75

200004} synchronous system 200004} synchronous system

delay probability 0.25

15000 - 15000 -

10000 Aeresvermses e e 10000 A++errsesemme s e e]

message complexity
message complexity

5000 - Legsnanenttttt e

5000 4 ’

o 10 20 30 40 50 60 70 80 90 0.2 04 0.6 08 10
network connectivity probability

Figure 6: Message Complexity, Synchronous vs. random delays

protocol again introducing random delays. The computation still evolves
in rounds but the channels no longer ensure that transmitted messages are
always delivered within 1 time instant. In particular, whenever a message
is sent, it is delivered by the channel during the same round with a fixed
probability p. In case the message is not delivered during the same round,
a new attempt for delivery is done in the next round. It follows that with
a delay probability p of %, the probability of a timely transmission is %, the
probability of a 1 time instant delay is %, and so on. The results obtained in
this setting are presented in Figure @ for a k-regular network and a G(n, p)
network of size 150. Notice that in our setting, the success of a transmission
attempt is independent of the channel and of the time instant the message
is sent. Our results show that considering random independent delays
of the communication channels, the message complexity grows remaining
constrained within a constant factor to the original quadratic bound.

5.4 FIFO vs. Random Selection when Transmitting

We advocated in the end of Section |4.3|that a random selection among mes-
sages to transmit is preferable with respect a FIFO policy. The comparison
between the two choices is presented in Figure[7] for a k-regular network and
a G(n,p) of size 150. The gain is not huge, but is still visible.

6 Conclusions

We revisited available solutions for the reliable broadcast in general static
network hit by up to f arbitrarily distributed Byzantine failures, and pro-
posed two optimizations following performance related observations. Al-

16

n=150, regular network n=150, G(n,p)

22500 Jrm e

20000 . 20000

17500 -

>
2 15000 4
3 15000 -]
h

8 12500 -
Broo00q T e e

g | e e 10000 -

message complexity

g
£
Ol 7500 + -
5000 K A } by
o
5000 4 »
+ random bounded channel + random bounded channel
A + FIFO bounded channel 25004 ¢ + FIFO bounded channel
o
) 20 40 60 80 100 120 140 0.2 0.4 0.6 0.8 10
network connect tivity probability

Figure 7: Message complexity, Synchronous FIFO vs. Synchronous Random

though the theoretical delivery complexity of our protocol remains un-
changed with respect to previous solutions (that is, an exponential num-
ber of message exchanges is still required for some graph topologies and
Byzantine placement), our experiments show that the message complexity
obtained in simulation on two families of random networks with sufficient
connectivity is considerably reduced (from exponential to polynomial in the
size of the network), practically enabling reliable broadcast in larger systems
and networks with authenticated channels. Our results open to the possi-
bility of identifying a polynomial theoretical bound on message complexity
solving the reliable broadcast problem for a large class of random topology
networks. Another target to address consists in proving (or disproving) the
equivalence between verifying a message in the system model we addressed
and the related NP-Complete problem. Furthermore, the same problem
should be analyzed also on dynamic networks. Even if the protocol we pro-
posed can be directly employed, the achieved gain in message complexity is
not guaranteed due to the weaker synchrony assumptions.

Acknowledgments

This work has been partially supported by the INOCS Sapienza Ateneo 2017
Project (protocol number RM11715C816CE4CB).

Giovanni Farina thanks the Université Franco-Italienne/Universitd
Italo-Francese (UFI/UIF) for supporting his mobility through the Vinci
grant 2018.

17

References

1]

2]

[10]

Miguel Castro, Barbara Liskov, et al. Practical byzantine fault toler-
ance. In OSDI, volume 99, pages 173-186, 1999.

Reinhard Diestel. Graph theory. Springer Publishing Company, Incor-
porated, 2017.

Danny Dolev. Unanimity in an unknown and unreliable environment. In
Foundations of Computer Science, 1981. SFCS’81. 22nd Annual Sym-
posium on, pages 159-168. IEEE, 1981.

Vadim Drabkin, Roy Friedman, and Marc Segal. Efficient byzantine
broadcast in wireless ad-hoc networks. In Dependable Systems and
Networks, 2005. DSN 2005. Proceedings. International Conference on,
pages 160-169. TEEE, 2005.

Andrew Gainer-Dewar and Paola Vera-Licona. The minimal hitting set
generation problem: algorithms and computation. SIAM Journal on
Discrete Mathematics, 31(1):63-100, 2017.

Michael R. Garey and David S. Johnson. Computers and Intractability;
A Guide to the Theory of NP-Completeness. W. H. Freeman & Co.,
New York, NY, USA, 1990.

Chiu-Yuen Koo. Broadcast in radio networks tolerating byzantine ad-
versarial behavior. In Proceedings of the twenty-third annual ACM sym-
posium on Principles of distributed computing, pages 275-282. ACM,
2004.

Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Transactions on Programming Languages and
Systems (TOPLAS), 4(3):382-401, 1982.

Alexandre Maurer and Sébastien Tixeuil. Byzantine broadcast with
fixed disjoint paths. Journal of Parallel and Distributed Computing,
74(11):3153-3160, 2014.

Alexandre Maurer and Sébastien Tixeuil. Containing byzantine failures
with control zones. IEEE Transactions on Parallel and Distributed
Systems, 26(2):362-370, 2015.

18

[11]

[12]

Alexandre Maurer and Sebastien Tixeuil. Tolerating random byzan-
tine failures in an unbounded network. Parallel Processing Letters,
26(01):1650003, 2016.

Alexandre Maurer, Sébastien Tixeuil, and Xavier Defago. Communi-
cating reliably in multihop dynamic networks despite byzantine failures.
In Reliable Distributed Systems (SRDS), 2015 IEEE 34th Symposium
on, pages 238-245. IEEE, 2015.

Keisuke Murakami and Takeaki Uno. Efficient algorithms for dualiz-
ing large-scale hypergraphs. Discrete Applied Mathematics, 170:83-94,
2014.

Mikhail Nesterenko and Sébastien Tixeuil. Discovering network topol-
ogy in the presence of byzantine faults. IEEE Transactions on Parallel
and Distributed Systems, 20(12):1777-1789, 2009.

Aris Pagourtzis, Giorgos Panagiotakos, and Dimitris Sakavalas. Reli-
able broadcast with respect to topology knowledge. Distributed Com-
puting, 30(2):87-102, 2017.

Andrzej Pelc and David Peleg. Broadcasting with locally bounded
byzantine faults. Information Processing Letters, 93(3):109-115, 2005.

Kai Zeng, Kannan Govindan, and Prasant Mohapatra. Non-
cryptographic authentication and identification in wireless networks
[security and privacy in emerging wireless networks|. [EEE Wireless
Communications, 17(5), 2010.

19

	Introduction
	System Model and Problem Statement
	Background
	Dolev's Reliable Broadcast Protocol
	Maurer et al.

	Analysis and Contributions
	Paths VS Pathsets, MDP VS MVC
	Limiting message transmissions
	Practical Reliable Broadcast Algorithm
	Preventing Flooding

	Simulations
	A Simple Setup
	Bounded vs. Unbounded Capacity Channels
	Synchronous vs. Asynchronous Executions
	FIFO vs. Random Selection when Transmitting

	Conclusions

