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Abstract

Aim

To assess the degree of overlap between the environmental niches of marine planktonic
copepods and test if the distribution of copepod functional groups differs across environmental
gradients.

Location
The Mediterranean Sea.

Methods

Functional groups were defined based on clustering of functional traits in 106 marine copepod
species using a multivariate ordination analysis. Functional traits included maximum body
length, feeding mode, spawning strategy and trophic group. Simultaneously, the global
distribution of the species was used to model their environmental niches with six environmental
variables. For each of these predictors, four niche parameters were derived from the univariate
response curve of each species, to summarise their environmental preferences and ordinate the
species in niche space through a PCA. Finally the differences in the position in niche space of
functional groups were tested with variance analysis.

Results

We identified seven copepod functional groups with different distributions along the
environmental gradients covered by our study. While carnivorous functional groups were
affiliated with oligotrophic and tropical conditions, large and small current-feeding herbivores
are associated with colder, more seasonally-varying and productive conditions. Small cruising
detritivores and other small current-feeding herbivores were not affiliated with specific
conditions as their constituting species were scattered in niche space.

Main conclusions

Since copepod functional groups occupy distinct ecological niches, ecosystem processes related
to these groups are expected to vary across environmental gradients. Conditions favouring large
current-feeding herbivores should allow for enhanced fluxes of energy and nutrients through
Mediterranean Sea ecosystems, while such fluxes should be weakened where large carnivores
and small passive ambush feeding copepods dominate. Our study supports the development of
trait-based zooplankton functional groups in marine ecosystem models.
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Introduction

Zooplankton play a key role in the functioning of marine ecosystems. They actively transport
particles to the deeper ocean through vertical migration (Jonasdottir, Visser, Richardson &
Heath, 2015), and produce rapidly sinking fecal pellets after grazing on primary producers in the
euphotic layer (Turner, 2002). They participate in the remineralisation of organic matter by
feeding on particle aggregates (Alldredge, 1972; Nishibe et al., 2015), and are thus involved in
nutrient cycling and in the biological carbon pump (Turner, 2015). Additionally, they represent a
pivotal link between the basis of the food web and the upper trophic levels (Beaugrand, Brander,
Lindley, Souissi & Reid, 2003; Beaugrand & Kirby, 2010). Zooplankton are subdivided into
different size classes, among which the mesozooplankton (organisms ranging between 200 um
and 2 mm; Sieburth, Smetacek & Lenz, 1978) have received most attention because of their high
biomass (Verity & Smetacek, 1996). In terms of both abundance and diversity, mesozooplankton
are dominated by copepods in many regions of the global ocean (Kierboe, 2011a). Changes in
copepod diversity can be indicative of climate variability impacts on ecosystem functioning
(Hooff & Peterson, 2006).

To assess the vulnerability of marine ecosystems to climate change, global biogeochemical
models have been developed to describe the processes controlling ocean biogeochemistry and
ecosystem functioning. At first, such models summarized pelagic ecosystems using only a few
compartments but they have evolved towards capturing greater ecological complexity, and
therefore improved the quantification of ecosystems responses and biogeochemical fluxes (e.g.
Le Quér¢ et al., 2016). However, to depict variations in zooplankton biomass, most ecosystem
models still rely on a limited number of size classes from micro-, and meso- to
macrozooplankton (Kishi et al., 2007; Le Quére et al., 2016) so they still only poorly capture the
variety of zooplankton life-histories and traits (Kierboe, 2011a; Litchman, Ohman & Kierboe,
2013).

An alternative trait-based approach for describing pelagic ecosystem dynamics is to define
plankton functional types based on groups of species with similar functional traits (Pomerleau,
Sastri & Beisner, 2015; Benedetti, Gasparini & Ayata 2016). Functional traits are phenotypic
attributes that impact the fitness of a species and its contribution to ecosystem functioning
(Violle et al., 2007). The appearance of functional traits is governed by the expression of genes
within organisms, and trait expression, in turn, governs the organisms’ fitness under different
biotic and abiotic conditions (Barton et al., 2013). A functional trait can also emerge from the
interactions between other traits (trade-offs; Kierboe, 2011b) and environmental conditions,
leading to certain trait combinations being favoured under certain conditions. For zooplankton,
Litchman et al. (2013) proposed a comprehensive set of traits, encompassing multiple types (i.e.
life-history, morphological, physiological and behavioural) and life missions (i.e. feeding,
survival, growth and reproduction). However, zooplankton traits have been described
exhaustively for a few taxa only, and are mostly the results of laboratory experiments (Hébert,
Beisner & Maranger, 2016). Consequently, depicting zooplankton functional diversity at the
community level often requires information about many species and remains possible only for
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few well-studied regions and/or a limited number of groups. For instance, Pomerleau et al.
(2015) described the temporal evolution of zooplankton functional diversity in the north-eastern
Pacific using time series data, and Benedetti et al. (2016) identified functional groups of
copepods in the Mediterranean Sea. Brun, Payne & Kierboe (2016) identified strong spatial and
seasonal variations of body and offspring sizes, myelination rates and feeding modes for
planktonic copepods in the North Atlantic. Copepods have therefore emerged as an interesting
model to study marine functional biogeography (Barton et al., 2013).

Understanding and quantifying the distribution of zooplankton functional groups along
environmental gradients is critical to (i) develop more realistic marine ecosystem models, (ii)
better understand the underlying environmental drivers of community structure, (iii) unravel how
climate impacts the rate and amplitude of processes mediated by functional types, and (iv)
predict how the three above-mentioned aspects may evolve in a global change context.

Modelling the environmental niche of each species, and then assessing differences between
functional groups, on the basis of their constituent species, enables to explore the biogeography
of functional groups (Brun et al., 2015). Field observations of species occurrences can be
combined with environmental predictors to build environmental niche models (ENMs) that
enable the characterization of the environmental preferences of a species (Colwell & Rangel,
2009). In spite of the recent development of global open access plankton occurrence databases
(O’Brien, 2005; Buitenhuis et al., 2013), relatively few studies have used ENMs to investigate
plankton biogeography (Robinson et al., 2011). For mesozooplankton, most studies have mined
the Continuous Plankton Recorder (CPR) data to model past and future range variations of
copepod species, and changes in ocean surface layer community composition (Reygondeau &
Beaugrand, 2011; Chust et al., 2014; Villarino et al., 2015; Brun, Kierboe, Licandro & Payne,
2016; Benedetti, Guilhaumon, Adloff & Ayata, 2017) but they ignored functional aspects of
biodiversity. Hence, the link between trait and species biogeography is currently underexplored.
In particular, it remains to be tested how different combinations of morphological traits (e.g.
body length) and life history traits (e.g. feeding mode, spawning strategy) are distributed along
environmental gradients. Are scanning-current feeders restricted to more productive regions
where larger phytoplankton cells emerge (Kierboe, 2011b; Benedetti et al., 2016)? Are passive
ambush-feeding species more tightly affiliated to stable and oligotrophic environments where
food availability is limited and mortality rates high (Paffenhofer, 1993; Kierboe, 2011b)? Do
large herbivorous species thrive in the same conditions as large carnivorous predators, or are
they affiliated to very different niches? As ecosystem processes are mediated by such functional
traits (sensu Hébert, Beisner et al., 2016), assessing how the latter are expressed under varying
conditions is a prerequisite for understanding ecosystem functioning under climatic changes.

In this study, we attempt to bridge this gap through an investigation of the level of congruence
between the environmental niches of species belonging to different copepod functional groups
(FGs). We aim to (1) model the environmental niches of copepod species, (2) define relevant
FGs based on species functional traits, and (3) test whether species with similar combinations of
functional traits inhabit similar environmental niches.
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Material and Methods

Species selection and data.

Copepod species most commonly found in the Mediterranean Sea and their trait values were
taken from Benedetti et al. (2016). Multiple regional datasets were combined to obtain the
geographical distribution of the copepod species. As none of the species is endemic to the
Mediterranean Sea (Razouls, de Bovée, Kouwenberg & Desreumaux, 2005-2017), species niches
must be calibrated at the global scale in order to avoid truncated response curves, and therefore
biased niche estimates (Thuiller, Brotons, Araujo & Lavorel, 2004). Among the 193 species
initially described by Benedetti et al. (2016), only those with more than 50 observations at the
regional scale, and with at least 15 additional occurrences at the global scale (OBIS;
http://www.iobis.org/; accessed on December 11, 2014) were retained. Our final list
encompasses 106 copepod species. Our list of 106 species gathers the most commonly observed
ones in the epipelagic layer, including those representing most of the mesozooplankton biomass
in the Mediterranean Sea (Siokou-Frangou et al., 2010; Razouls et al., 2005-2017). The average
sampling depth of the presence data (for the 99.94% of the records for which sampling depth was
available) was 58 & 119 m. The presence data was resampled at a resolution of 1x1° grid cells, to
match the resolution of the environmental layers (see below). The final data set contained 76 366
gridded presence points.

Functional groups from species functional traits.

Four functional traits were extracted from Benedetti (2015): maximum body length (mm),
trophic group (carnivore, omnivore, omnivore-carnivore, omnivore-herbivore, omnivore-
detritivore), feeding mode (ambush, cruise, scanning current, or mixed), and egg-spawning
strategy (broadcast-spawner, sac-spawner).

These traits were selected because of their ready availability in the literature (Brun, Payne &
Kierboe, 2017). Other important traits such as resting stages and physiological rates are still
lacking for the majority of the taxa studied. However, the present traits cover different important
ecological functions and can influence ecosystem processes (Hébert, Beisner et al., 2016). Body
size is a “master trait” that transcends and scales with a variety of traits related to ecosystem
processes such as carbon cycling, secondary productivity or nutrient transfer (Hébert, Beisner et
al., 2016). Trophic group describes the primary food source of a species and therefore its role in
food-web dynamics (Pomerleau et al., 2015). Though nearly all copepods are omnivorous, many
species are known to have preferential food sources (Benedetti, 2016). While omnivores target
phytoplankton, detritus or smaller zooplankton, carnivores prey upon earlier life stages, smaller
adult copepods or microzooplankton and thus contribute to the top-down control on zooplankton.
Omnivore-herbivorous copepods are known to primarily graze upon phytoplankton when
available and are therefore involved in the energy transfer from the autotrophs to fishes.
Omnivore-detritivores are associated with marine snow or carcasses, so they contribute to the
recycling of organic matter. Feeding mode has strong implications for prey selection, energy
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allocation or nutrient cycling (Litchman et al., 2013; Hébert, Beisner et al., 2016). For instance,
ambush feeders that target motile preys are characterized by lower energy expenditure than
active feeders, resulting in lower mortality but also a lower feeding efficiency. Similarly,
spawning strategy shapes energy allocations. Species developing sacs to place their eggs in
invest less energy in growth and survival (Litchman et al., 2013).

FGs for the 106 selected species were defined by performing a Multiple Correspondence
Analysis (MCA; Husson, Lé & Pages, 2010; Fig. 2) on the four functional traits to represent
underlying structures in the species characteristics in a reduced functional space (Benedetti et al.,
2016). MCA is an ordination method for the multivariate analysis of categorical variables.
Maximum body length was thus transformed into four size classes (SC1: 0.5-1.2 mm; SC2: 1.3-
1.8 mm; SC3: 1.9-3.0 mm; SC4: 3.4-8.2 mm) using hierarchical agglomerative clustering based
on the Euclidean distance and a synoptic aggregation link (Husson et al.,, 2010; Legendre &
Legendre, 2012). Trophic groups were also transformed into binary data because this allows the
optimization of their description in functional space. For example, omnivore-herbivores were
considered as both “omnivores” and “herbivores” and not just “omnivore-herbivore” as if it was
an independent trophic group. Kaiser-Guttman’s criterion (Guttman, 1954) was used to select the
significant MCA axes that constitute the functional space. The species are positioned along each
MCA axis according to their combination of trait values. The coordinates of the species along the
retained MCA axes were used to compute the inter-species Euclidean distance matrix.
Hierarchical agglomerative clustering using Ward’s aggregation method (Legendre & Legendre,
2012) was performed on this matrix to produce a functional dendrogram. Several cutting-levels
along this dendrogram were examined, and the one leading to FGs that are ecologically relevant
was kept. The final cutting-level was chosen to ensure groups were functionally homogeneous
(i.e. not too large) while also attempting to avoid functional redundancies between the groups
(i.e. not too small and numerous).

The sensitivity of our FGs to the choice of trait definition and clustering method was tested in
additional analyses. Our analysis was repeated using Gower’s distance with the UGPMA linkage
method to draw the functional dendrogram (Mouchet et al., 2008). The absolute values of
maximum body size were kept, since Gower’s distance can mix quantitative and qualitative data.
The FGs defined using this method were very similar to those found with the initial methodology
(cophenetic correlation coefficient between the original and the alternative dendrogram was
equal to 0.80; Rohlf & Fisher, 1968).

Choice of the environmental predictors for niche modelling.

Monthly data on 27 environmental predictors thought to be ecologically and physiologically
relevant for copepods were considered (Helaouét & Beaugrand, 2007; Beaugrand, Mackas &
Goberville, 2013). These variables comprised sea surface temperature (SST), sea surface salinity
(SSS), mixed layer depth (MLD, defined according to three different criteria), surface
chlorophyll-a concentration (Chla), bathymetric depth, surface photosynthetically active
radiation (PAR) and PAR integrated over the MLD (MLPAR; Brun et al., 2015), surface



224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

254

255
256

257
258
259
260
261

dissolved oxygen concentration, sea surface wind speed and sea level anomalies (Appendix S1).
To avoid the use of variables that are too highly correlated, when two predictors showed an
absolute Spearman’s rank correlation coefficient (|p|) > 0.7, one of them was removed (Dormann
et al., 2012). The final set of variables consisted of SST, the seasonal range of SST values
(ASST), SSS, MLD based the temperature criterion (de Boyer Montégut, Madec, Fischer, Lazar
& Tudicone 2004), MLPAR (based on the same MLD product), and the logarithm of surface
chlorophyll-a concentration (logChla). Subsequently, multivariate and univariate ENMs were
fitted for each species using the six selected predictors (Fig. 1).

Species niche characteristics.

Various types of algorithm exist to model environmental niches from species observations
matched with environmental predictors (Merow et al., 2014). Here, General Additive Models
(GAMs) were chosen because they can be tuned to produce unimodal response curves, while
allowing skewed response curves (Fig. 1). This type of response to environmental gradients is
expected for copepods (Bonnet et al., 2005; Helaouét & Beaugrand, 2007).

Since GAMs require absence data that are not available at the global scale, pseudo-absences
were simulated for each species. The method employed for drawing pseudo-absences impacts
ENMs quality, and should be chosen in light of the ecological characteristics of the species
studied (Chefaoui & Lobo, 2008; Barbet-Massin, Jiguet, Albert & Thuiller, 2012).
Mesozooplankton are ectotherms whose population dynamics are tightly coupled to climate
(Hays, Richardson & Robinson, 2005), and whose individuals are passively dispersed over very
large spatial scales during relatively short time periods (Jonsson & Watson, 2016). Therefore,
pseudo-absences were generated using an environmental and geographical weighting method
(Hengl, Sierdsema, Radovi¢ & Dilo, 2009; Hattab et al., 2013; Fig. 1). This method locates the -
absences in regions of low habitat suitability for the species (i.e. in environments that are the
most dissimilar to the ones where presences are located) and that are relatively far from the
observed presences. The weighting procedure is based on a presence-only envelope niche model,
the Ecological Niche Factor Analysis (Hirzel, Hausser, Chessel & Perrin, 2002), which provides
a Habitat Suitability Index (HSI) from 0 to 1 for each species as a function of the six chosen
environmental predictors. Together with the presences, the HSI is then used to produce a

probability distribution 7 for locating the pseudo-absence following Hengl et al. (2009):

2
e [a’(x) + (Jog = HS](x))]

with d being the distance between the geographic cell and the presence points normalized by the
maximum distance, so that d varies between 0 and 100. Thus, 7 is used as a probability density
function to select pseudo-absences at random away from known presences and in regions of
unsuitable conditions (according to the actual presences). For each species, pseudo-absences
were drawn from the monthly subsets of occurrence data to ensure they follow the same
temporal variability as the presences. Repeating the pseudo-absence generation procedure
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(leading to a different set of randomly chosen pseudo-absences), or increasing the number of
pseudo-absences, had very little impact on model quality and predictions (Benedetti et al., 2017),
so only one set of monthly pseudo-absences was generated per species.

Multivariate and univariate GAMs were fitted using the logit link function (binomial response),
and the parameter controlling the degree of smoothness was reduced (k = 5). ENMs were
evaluated by cross-validating 80% of the presence and pseudo-absence data against the
remaining 20%. A threshold-dependent metric of the overall performance of each model was
computed: the true skill statistic (TSS; Allouche, Tsoar & Kadmon, 2006). TSS ranges from -1 to
+1, with 0 indicating that an ENM does not perform better than random. For each species and
predictor variable, five cross-validation runs were performed and the mean TSS was calculated
to evaluate the predictive power of the selected variables. The five univariate response curves
derived from each cross-evaluation run were averaged to provide the univariate response curve
of each species.

Following Brun et al. (2015), niche characteristics were summarized by four statistics derived
from the mean univariate response curve (Fig. 1). The median of the mean curve was used to
estimate the univariate niche centers, and quantile ranges between the 10" and the 90™
percentiles were computed to estimate niche breadths (i.e. relative species tolerance ranges). The
predictor values at the 10" and 90™ percentiles served as estimates of lower and upper niche
boundaries. These four niche parameters were used to test the differences in the environmental
preferences of FGs (next section). Confidence intervals for TSS values and each univariate niche
parameter were obtained by applying a bootstrapping procedure on the species occurrences
(presences and pseudo-absences) which generated 200 replicates of every univariate model and
niche characteristic.

The multivariate models could have been used to derive response curves but this possibility was
discarded because multivariate models generate response curves that are much harder to interpret
(Irwin, Nelles & Finkel, 2012; Brun et al., 2015). The response curve of a multivariate model is
generated through the variation of one predictor, while setting the value of the other predictors to
their average. Even though this corrects for the effect of the other variables in the response, it can
flatten parts of the response due to variable collinearity, even if patterns exist (Brun et al., 2015).
Furthermore, the identity of misrepresented variables varies between species, making it even
harder to compare species niche characteristics. This is why the univariate GAMs were selected
over multivariate ones to depict the species niches.

TSS values for the 106 multivariate GAMs show that the six selected variables lead to a fair
modelling of the species distribution (Appendix S2). The average TSS for all the multivariate
models is 0.82 (+ 0.11), and species mean TSS ranges between 0.46 (Qithona decipiens) and
0.97 (Labidocera wollastoni). The univariate models differ greatly in their performance
(Appendix S2): the best performing variables are SST (mean TSS = 0.57), SSS (mean TSS =
0.64) and ASST (mean TSS = 0.63), while the other three variables obtained significantly lower
average TSS values (pairwise Wilcoxon tests, p-value < 0.05). MLD (mean TSS = 0.39)
performs slightly better than logChla (mean TSS = 0.34) and MLPAR which displays the lowest
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average performance score (mean TSS =0.291).

Functional groups and functional traits in niche space.

The niche characteristics of each species were used in a scaled Principal Component Analysis
(PCA; Legendre & Legendre, 2012) to ordinate them according to their environmental
preferences in a reduced space (hereafter “niche space”; Fig. 1). We assess the similarity
between the niche characteristics of species by comparing their coordinates along the retained
Principal Components (i.e. their position in niche space). To create a parsimonious niche
space, Spearman’s rank correlation coefficients were used to examine the correlation
between the univariate niche characteristics. When two niche parameters displayed |p|
= 0.7, one of them was removed. From the correlation matrix (Appendix S3), the
following eleven niche characteristics were kept to create the niche space: SST center
and breadth (as center is correlated to both lower and upper boundaries), SSS niche
center (negatively correlated to breadth and lower boundary), upper and lower
boundaries of ASST (as SST breadth is highly correlated to ASST breadth), MLD center
(which summarizes all other 3 MLD characteristics), all MLPAR parameters but the
lower boundary (highly correlated to SST and MLPAR centers), and both logChla center
and breadth (logChla niche center summarises the two boundaries). Kaiser-Guttman’s
criterion was used to select the number of significant PCs that will generate the niche
space (Fig. 1).

In order to test for the differences between the niches of species pertaining to different FG, the
central positions of the groups in niche space were computed as the average coordinates of the
constituting species. Kruskal-Wallis variance analysis (Kruskal & Wallis, 1952) was performed
to test whether FGs differed significantly in their positions in niche space. Similarly, variations
between the positions in niche space of each functional trait were tested (for instance, between
the different trophic groups) in order to explore whether some are more closely linked to certain
environmental conditions. All statistical analyses were conducted with R v.3.4.0 (R Core Team
2017). The biomod?2 package (Thuiller, Georges & Engler, 2013) was used to develop the niche
models and extract the response curves. The FactoMineR package (Husson, Josse, Lé & Mazet,
2017) was used for the multivariate analyses.

Results

Copepod functional groups.

The first separation in the functional dendrogram (Fig. 2) distinguishes carnivorous species (FG
1 and 2) from the non-carnivorous ones (FG 3 to 7). Among the latter, the next cutting level
distinguishes egg-broadcasters (FG 3 and 4) from sac-spawners (FG 5, 6 and 7). Further down on
the dendrogram, trophic groups and size classes drive the composition of the FGs. Hence, all
traits contribute to the structure of the functional space, with carnivorous diet being the primary
discriminative trait.
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Given that the 106 species were classed into different FGs on the basis of a dendrogram resulting
from a cluster analysis of four different traits, some species were assigned to a FG when they
differ in one particular trait with respect to other species because they present similar values of
the other traits considered. FG 1 is composed of large sac-spawning carnivores that either feed
by cruising or through a scanning current, but five of the ten species constituting this FG lack
information on their feeding strategy. FG 2 is defined by 15 smaller and strictly carnivorous
species that mainly feed through ambush tactics. The spawning strategy is equally divided
between broadcasters and sac-spawners. Most of them inhabit the epi- and mesopelagos, and are
thought to exhibit weak to no diel vertical migration (DVM) behaviour. FG 3 is defined by eight
scanning current-feeding species belonging to the largest size class. All but two species
(Eucalanus hyalinus and Pleuromamma abdominalis) are usually considered herbivores. The
group’s main spawning strategy is broadcasting. Some of them are established as strong migrants
in the Mediterranean Sea (Calanus helgolandicus, P. abdominalis and Neocalanus gracilis),
while the remainder have rarely exhibited any DVM behaviour. FG 4 is the largest group (n =
27) and gathers smaller (compared to FG 3) scanning current-feeding herbivores and omnivores
displaying mixed feeding strategies. Like FG 3, the copepod species are all broadcasters, thus
size class was the factor dividing these two FG. Most of the species in FG 4 preferentially inhabit
the epipelagos and are known to exhibit weak to no DVM behaviour. FG 5 is the second largest
group (n = 21) and clusters the small sac-spawning detritivorous species together. The dominant
feeding strategy is cruising, as only 4 species rely on a scanning current to capture their food.
Additionally, 4 species of this group are small cruise-feeders. Most of these species are known to
occur within a broad depth range. Small ambush-feeding omnivores belonging to the Oithona
genus constitute FG 6, together with three species (Haloptilus longicornis, Isias clavipes and
Lubbockia squillimana) for which information about feeding strategy was lacking, but that are
characterized by similar sizes and trophic groups. FG 7 gathers small herbivores that feed either
by cruising or a scanning current. They are separated from the herbivores of FG 4 because they
are sac-spawners and not broadcasters. The corresponding species are known to mainly occur in
the epipelagos.

Species position in niche space based on the niche characteristics.

A PCA based on individual species niche parameters was used to summarize the species’ relative
position in environmental space. The first three PCs were retained, accounting for 72.27% of the
total variance. The first PC (PC1, 35.68%; Fig. 3) separates species affiliated with oligotrophic
conditions (warm SST, higher SSS and low seasonality) from those affiliated with more
productive conditions (colder and less saline waters, often characterized by higher seasonality).
The species with higher values of SST centers, SSS centers, MLPAR centers and upper MLPAR
boundaries have positive coordinates on PCl. Meanwhile, species displaying
higher logChla centers and upper ASST boundaries are located on the negative
side of PC1. The second PC (PC2, 21.74%; Fig. 3) distinguishes species with

broader tolerance to variations in SST and in chlorophyll-a concentrations
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(positive coordinates) from species affiliated to habitats of lesser seasonal
variability (i.e. characterized by higher values of lower ASST boundaries). So,
copepod species with positive PC2 coordinates can endure colder temperatures
and seasonally varying environments. Meanwhile, species that present positive
coordinates on PC1 and negative coordinates along PC2 are specialized in more
oligotrophic conditions. The PCA reveals that species show distinct co-
variations between their niche characteristics, thus demonstrating that they have
different environmental preferences. The values of the species niche parameters
are given in the Appendix S2.

Do functional groups occupy distinct environmental niches?

The FGs were represented in niche space after the mean position of each group was computed to
assess if different FGs occupy distinct environmental niches (Fig. 4). The PC1 coordinates of the
species differ significantly between FGs (Kruskal-Wallis test, p-value = 0.007, H-value = 17.52),
which indicates that species between FGs present distinct environmental niches. No significant
differences were found between the FG coordinates along PC2: the niche characteristics
structuring this PC do not differ between FGs. The groups gathering carnivorous species (FG 1
and 2) were on average located on the positive side of PC1 while FG 3 (large scanning current-
feeding herbivores), FG 6 (small ambush-feeding omnivores), and FG 7 (small sac-spawning
herbivores) were on the negative side. This supports the hypothesis that there are differences in
the environmental niches between groups: FG 1 and 2 are affiliated to warmer, saltier, more
stable and less productive conditions in the open ocean; meanwhile, FG 3, 6 and 7 are associated
with conditions of stronger seasonal variations, colder temperatures, lower salinities and higher
chlorophyll-a concentrations. The mean positions of FG 4 (small broadcasting scanning current-
feeding herbivores) and FG 5 (detritivores) were predominantly central in the environmental
niche space. Therefore, these two FGs are composed of species that are spread out in niche
space. With regard to the distribution of functional traits in niche space, only the mean position
of each trophic group (Carnivores vs. Omnivores vs. Herbivores vs. Detritivores) showed
significant differences along PC1 (Kruskal-Wallis test, p-value = 0.023, H-value = 11.38).

Discussion

Mediterranean copepod functional groups differ in their niches.

The main finding of our study is that, on average, the environmental niches of the species within
a FG differ from those of species constituting another FG (Fig. 4). Under the more tropical
conditions where FGs 1 and 2 are favoured, we expect the Mediterranean zooplankton food-web
dynamics to be dominated by top-down processes. The small passive ambush-feeding taxa
(Corycaids and some Oithona species) benefit from a metabolism that is well adapted to food-
depleted conditions where competition and predation are high (Landry, 1985; Kierboe, 2011a).
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When these small species dominate, we also expect size-related ecosystem fluxes (e.g. secondary
productivity, nutrient recycling, excretion or carbon transfer etc.) to be weakened (Hébert,
Beisner et al., 2016), which is the case in the ultra-oligotrophic eastern Mediterranean Sea
(Siokou-Frangou et al., 2010; The MerMex Group, 2011). Larger predatory copepods (FG 1)
may also occur, as they are able to feed on smaller copepods but also larger gelatinous
zooplankton like Doliolids or Appendicularia (Ohtsuka & Onbé, 1989; Takahashi et al., 2013).
Under the colder, more variable and more productive conditions where FGs 3 and 7 are
favoured, we expect Mediterranean zooplankton food-web dynamics to be dominated by bottom-
up processes, as these functional entities thrive on phytoplankton of different size classes. The
larger current-feeding taxa (FG 3) are able to feed on the larger phytoplankton and we expect
those species to mediate stronger energy fluxes from the surface to the deeper ocean (Jonasdottir
et al., 2015; Visser, Gronning & Jonasdottir, 2017). Rates of secondary productivity, nutrient
recycling and carbon transfer should be enhanced in the communities where such species
dominate (Hébert, Beisner et al., 2016). These FGs are known to be more abundant in the coldest
and most productive regions of the Mediterranean Sea: the northwestern regions (Gulf of Lion
and Ligurian Sea), the northern Adriatic and Aegean Sea (Siokou-Frangou et al., 2010; The
MerMex Group, 2011). Regarding small ambush-feeding generalists (FG 5), the positioning of
O. similis at the extreme negative end of the niche space (Fig. 3) skews the average position of
FG 5, whereas most of the species constituting this group are located at the opposite side of the
niche space. O. similis is known to reach high abundances and biomass in colder environments
(Gallienne & Robins, 2001; Castellani, Licandro, Fileman, Di Capua & Mazzocchi, 2016), but it
has been frequently misidentified with O. helgolandica and is sometimes even considered as a
conglomerate of cryptic species (Razouls et al., 2005-2017). Based on the present results, we do
not expect cruise-feeding detritivorous species to be favoured under any particular conditions in
the Mediterranean Sea.

The extent to which our findings apply to the global scale remains to be tested and depends on
the representativeness of the Mediterranean copepod fauna relative to the global one. Yet it
should be noted that the occurrence data we used here already covers a nearly global latitudinal
and environmental range (Appendices S4 and S5). The geographical range of the data used to
model the copepod niches is comparable across FGs, with data mainly located in the
Mediterranean Sea and its surrounding basins: the North Atlantic and Indian Oceans. A notable
exception is FG 6 because of the wider distribution of Oithona similis in polar oceans. Similarly,
the distribution of the environmental predictors associated with the monthly presence of species
largely overlaps between FGs (Appendix S5), suggesting that the differences observed in niche
space (Fig. 4) result from the differential segregation of the FG presence data in geographical
and/or environmental space.

Based on these findings, we anticipate that carnivorous FGs should dominate community
composition in tropical conditions, whilst small ambush-feeding omnivores (Qithona spp.), large
current-feeding herbivores and some smaller current-feeding herbivores should prevail in
temperate, subpolar and polar oceans. Our results are in line with those of Woodd-Walker, Ward
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& Clarke (2002) who found a higher proportion of carnivorous copepods at lower latitudes,
relative to herbivorous and omnivorous copepods. Primary production is low in warmer seas, so
there is a clear ecological advantage in specializing on food sources other than phytoplankton.
Alternatively, species that primarily graze on phytoplankton and store lipids, such as many large
Calanoida (Barton et al., 2013) are disadvantaged under tropical conditions. Our results are also
in agreement with Atkinson (1998), who observed that the strong seasonality in food availability
at high latitudes favours two types of life history strategies: (i) small generalists (typified by
Oithona spp.) that present extended feeding periods thanks to a wide range of feeding
mechanisms and preys (Castellani, Irigoien, Harris & Lampitt, 2005); and (ii) larger herbivorous
lipid-storing species (typified by Calanus and other large Calanoida) that are able to enter
diapause at greater depth for overwintering. This is in line with the association of large current-
feeders with colder and more productive conditions.

Implications for ecosystem functions and modelling.

Based on our analyses we recommend the integration of selected, observation-based zooplankton
functional groups in regional to global marine ecosystem models to better represent the diversity
of plankton and their functional roles in ecosystems (Le Quéré et al., 2016). At present, copepods
are represented by the mesozooplankton compartment in most models, a size class that was
included due to its important role in the carbon cycle via the formation of particulate organic
matter, and its link between phytoplankton and higher trophic levels (Le Quéré et al., 2005). In
current models, the mesozooplankton group has a fixed trophic level and comprises groups with
different trophic levels and distinct traits. Such a simplistic representation prevents an accounting
of food-web dynamics involving multi-trophic interactions and energy transfer from the first
trophic level upwards through multiple channels, with potentially different time scales and
transfer rates. A recent study demonstrates the importance of zooplankton food web interactions
for ecosystem characteristics in a model with higher heterotroph complexity (Le Quéré et al.,
2016). The authors suggest that the inclusion of multiple zooplankton taxa at different trophic
levels, and with different physiological and behavioral characteristics, may be a promising
avenue in order to improve the representation of marine ecosystem dynamics in a more realistic
way. Our results confirm these findings and show that even within a single size class, the
available functional trait data is now ample enough to inform the observation-based definition of
functional groups based on physiological and behavioural characteristics.

The delineation of FGs presented here is relevant for Mediterranean and global ecosystem
models because FGs (i) play different roles in food webs, (ii) are characterized by different,
though overlapping, environmental and physiological requirements, and (iii) impact the
abundance of other PFTs and energy and matter transfer patterns within marine food-webs
(Hood et al., 2006; Le Quér¢ et al., 2016). Current-feeding herbivores primarily graze upon the
phytoplankton and the protozooplankton and then are preyed upon by predators (i.e. carnivorous
copepods or fishes; Lynam et al., 2017). Carnivorous FGs contribute to the top-down control of
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other FGs. The detritivores graze upon particulate organic matter, therefore affecting its re-
mineralization and attenuation at depth (Nishibe et al., 2015).

Caveats and robustness of our study.

In this study, all niche characteristics were derived from GAMs, one of the many existing ENMs
(Merow et al., 2014). ENM choice is the primary cause of uncertainty in niche model projections
(Diniz-Filho et al., 2009; Garcia, Burgess, Cabeza, Rahbek, Aratjo & 2012; Benedetti et al.,
2017) and is therefore likely to be the largest uncertainty factor in our niche parameters. We
visually compared the response curves with those obtained from generalized linear models
(GLMs), maximum entropy (MaxEnt; Phillips, Anderson & Schapire, 2006), flexible
discriminant analysis (FDA), multivariate adaptive regression splines (MARS), neural network
analysis (ANN), classification tree analysis (CTA), boosted regression trees (BRT) and random
forest (RF). Most of these models (GLMs, FDA, MARS and MaxEnt) generated response curves
with shapes similar to those obtained from GAMs, while deviations in certain models (CTA,
BRT) were explained by methodological reasons, thus suggesting that our results are robust to
model choice (Appendix S6) and model set-up.

Although our traits span diverse types and functions, many other quantitative and qualitative
functional traits exist for zooplankton (Litchman et al., 2013). Our choice of traits was limited by
the amount of available information for more than 100 species that are representative of
Mediterranean planktonic ecosystems. In spite of the growing literature publishing trait tables for
zooplankton, physiological rates are still only measured for a small pool of calanoid copepods
(Kierboe & Hirst, 2014; Hébert et al., 2016; Brun et al., 2017). Ultimately, the identified FGs
and the covered range of trait values depend on the species pool studied. In the present
framework, missing functional trait values have relatively minor impact on the FGs definition
because species with more than two missing traits are treated as supplementary objects in the
MCA, meaning they are placed in the functional space a posteriori and according to their
similarity with the fully-informed species (Benedetti et al., 2016). A species with only one
informed trait will deviate from the center of the MCA space only along the dimensions that are
scored by this very trait. Ignoring rare species was necessary in our study since those largely lack
both trait information and distribution data. The species with several missing trait values studied
here are also those less frequently sampled in the Mediterranean Sea (Razouls et al., 2005-2017;
Mazzocchi et al., 2014). Apart from the species belonging to the Siphostomatoida order, which
are mostly semi-parasitic, it is unlikely that including rare species would add trait combinations
that are completely novel compared to the ones covered here. As rarer copepod species are much
less abundant in the plankton, it is also unlikely that they play an equally significant role in
Mediterranean ecosystem functioning than the species studied here. However, we acknowledge
that it remains to be tested how accounting for additional species, or clades, would change the
distribution of FGs in niche space.

Although copepods represent the largest fraction of biomass and diversity in the Mediterranean
zooplankton (Siokou-Frangou et al., 2010), not accounting for other taxa, such as pteropods,
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chaetognaths, salps and appendicularians, may potentially ignore important ecological functions
performed by these other groups. The next step will be to enlarge the species pool to the
dominant taxa of other basins to test whether our findings apply to zooplankton communities

worldwide.
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Figure Legends

Figure 1: Flowchart describing the main steps of the methodology for the present study. From
the top to the bottom, the left-hand side shows how the species functional traits table was used to
define functional groups from a multivariate functional space. The right-hand side shows how
environmental niche modelling was performed to quantify the species’ environmental
preferences (i.e. niche parameters). The niche parameters were selected according to their
correlation in order to perform a parsimonious Principal Component Analysis (PCA) to generate
the niche space. Finally (bottom), the position of the functional group (FG) is niche space was
assessed and variance analysis was performed to test if different FGs present different niches.

Figure 2: Functional dendrogram showing the ordination of the 106 copepod species according
to the combination of functional traits. A Multivariate Correspondence Analysis (MCA) based of
the functional traits was performed to ordinate the species in a reduced functional space. The
coordinates of the species along the four retained axes of the functional space were used to
compute a Euclidean distance matrix. Agglomerative hierarchical clustering was used to draw
the functional dendrogram. The chosen cutting-level is shown and the species are coloured
according to the seven derived functional groups.

Figure 3: Principal Component Analysis (PCA) based on the selected eleven niche
characteristics of the 106 copepod species. The contribution of the eleven niche parameters to the
niche space, as well as their correlation (i.e. the angles between the arrows) are evidenced. The
abbreviations of the environmental predictors are as follows: sea surface temperature (SST), sea
surface salinity (SSS), seasonal range of SST values (ASST), mixed layer depth (MLD), active
radiation (PAR) integrated over the MLD (MLPAR), and logarithm of surface chlorophyll-a
concentration (logChla).

Figure 4: Position of the seven functional groups in niche space. Smaller symbols correspond to
the 106 copepod species with the colors and shapes varying according to the functional group
they belong to. Larger symbols correspond to the average position of the functional groups,
based on the coordinates of the species they comprise. The first principal component (PC1)
represents a gradient characterizing oligotrophic conditions on the positive side (higher centers
of SST, SSS, MLPAR) and more productive conditions on the negative side (broader SST and
SSS niches, and higher MLD and logChla centers). The second principal component (PC2)
distinguishes species with broader tolerance to SST, logChla variations (positive side) from
species affiliated to habitats of lesser seasonal variability (negative side). The standard error of
each FG’ coordinates along PC1 and PC2 are illustrated with the error bars. The abbreviations of
the environmental predictors are as follows: sea surface temperature (SST), sea surface salinity
(SSS), seasonal range of SST values (ASST), mixed layer depth (MLD), active radiation (PAR)
integrated over the MLD (MLPAR), and the logarithm of surface chlorophyll-a concentration
(logChla).
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Supporting Information

Supporting Information S1: Table describing the set of environmental predictors tested in the
present study. The time period covered by the monthly climatologies is given, as well as the
corresponding references.

Supporting Information S2: Table summarising for every 106 copepod species: the number of
observations (presences at the global scale, after re-sampling on the predictors cell grid); the
average TSS value of the multivariate niche models and its standard deviation; the average niche
characteristics derived from the univariate models and their associated standard deviations
computed thanks to the boostrapping procedure.

Supporting Information S3: Pair-wise Spearman’s correlation coefficient (p) values of all the
univariate niche characteristics (n = 24).

Supporting Information S4: Maps of the sampling effort (i.e. number of species presences) for
each of the seven copepod functional group defined in the study. Presences are at a 1°x1° cell
grid resolution after re-sampling the observed occurrences on the cell grid of the environmental
predictors.

Supporting Information S5: Distribution of the latitude and the six environmental predictors’
values for each of the seven copepod functional groups defined in the study. Values correspond
to the environmental monthly data that were fitted on each species monthly occurrence.

Supporting Information S6: Examples of response curves to Sea Surface Temperature (SST)
variations for Calanus helgolandicus, Acartia Acartiura clausi and Clausocalanus
mastigophorus, according to nine different types of environmental niche models (ENMs):
Generalized Additive Models (GAM), Generalized Linear Models (GLM), Multi-Adaptive
Regression Splines (MARS), Flexible Discriminant Analysis (FDA), Maximum Entropy
(MAXENT), Boosted Regression Trees (BRT), Random Forest (RF), Classification Tree
Analysis (CTA), and Neural Network Analysis (ANN). Additionally, the niche spaces (based on
a Principal Component Analysis (PCA) performed on the chosen eleven niche characteristics)
and positions of the seven copepod functional groups according to various parameters of the
niche modelling framework designed for the present study: the choice of the ENM, the choice of
the Generalized Additive Models (GAMs) smoothing parameter value (k), and the percentage of
the species’ monthly occurrence data considered to train (and test) the GAMs.
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