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Combining six genome scan methods to
detect candidate genes to salinity in the
Mediterranean striped red mullet (Mullus
surmuletus)
Alicia Dalongeville1,2*† , Laura Benestan3†, David Mouillot2, Stephane Lobreaux4

and Stéphanie Manel1

Abstract

Background: Adaptive genomics may help predicting how a species will respond to future environmental changes.
Genomic signatures of local adaptation in marine organisms are often driven by environmental selective agents impacting
the physiology of organisms. With one of the highest salinity level, the Mediterranean Sea provides an excellent model to
investigate adaptive genomic divergence underlying salinity adaptation. In the present study, we combined six genome
scan methods to detect potential genomic signal of selection in the striped red mullet (Mullus surmuletus) populations
distributed across a wide salinity gradient. We then blasted these outlier sequences on published fish genomic resources in
order to identify relevant potential candidate genes for salinity adaptation in this species.

Results: Altogether, the six genome scan methods found 173 outliers out of 1153 SNPs. Using a blast approach, we
discovered four candidate SNPs belonging to three genes potentially implicated in adaptation of M. surmuletus to salinity.
The allele frequency at one of these SNPs significantly increases with salinity independently from the effect of longitude.
The gene associated to this SNP, SOCS2, encodes for an inhibitor of cytokine and has previously been shown to be
expressed under osmotic pressure in other marine organisms. Additionally, our results showed that genome scan methods
not correcting for spatial structure can still be an efficient strategy to detect potential footprints of selection, when the
spatial and environmental variation are confounded, and then, correcting for spatial structure in a second step represents a
conservative method.

Conclusion: The present outcomes bring evidences of potential genomic footprint of selection, which suggest an adaptive
response of M. surmuletus to salinity conditions in the Mediterranean Sea. Additional genomic data such as sequencing of a
full-genome and transcriptome analyses of gene expression would provide new insights regarding the possibility that
some striped red mullet populations are locally adapted to their saline environment.
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Background
Adaptive genomics aims to understand the molecular basis
of local adaptation in species experiencing a wide range of
environmental gradients. This emerging research field may
help predicting how a species will respond to future envir-
onmental changes [1] as well as delineating sustainable
management units [2–4]. This important area of research
has taken advantage of the arrival of next generation
sequencing (NGS) with reduced sequencing costs, allowing
thousands of markers, both potentially neutral and adap-
tive, to be sequenced in hundreds of individuals [5]. These
genome-scale sets of markers open the door to identify
potential targets of natural selection (i.e., loci showing
divergent patterns of allele distribution linked to selective
pressures) in model and non-model species [6, 7], and a
large variety of genome scan tools are now available [8].
The field of adaptive genomics has extensively studied

terrestrial organisms comparatively to marine ones, po-
tentially owing to the lack of available reference genomes
for marine species [9]. Yet, marine habitats are rapidly
changing and understanding how species will face these
environmental modifications in the coming years is a
major concern [10]. In this context of improving gen-
omic information to help better predict species response
to global warming, adaptive genomic studies has already
investigated in the marine realm considering different
environmental features such as temperature [11, 12],
salinity [13, 14] or even bathymetry [15]. More particu-
larly, salinity is expected to be a selective agent driving
local adaptation of several teleost fishes [16, 17] since
adaptation to specific osmotic conditions involves mo-
lecular, physiological or behavioral changes. Recent work
on European bass [14], Atlantic cod [18] and three-spine
stickleback [19, 20] have already reported a suite of
single nucleotide polymorphism (SNP) within or closely
located to genes involved in osmoregulation, altogether
leading to a wide list of targeted salinity and osmoregu-
lation genes known for teleost fishes (reviewed in
Dennenmoser et al. [17]).
Detecting signals of selection linked to salinity variation

may benefit the recent advances in the field. Indeed, adap-
tive genomics is still a fast evolving study field, with the
recent development of numerous analytical methods [8].
These methods are based on different statistical models
and assumptions regarding neutral population structure,
and then may give results that are not congruent [21, 22].
The majority of the adaptive genomic studies in wild pop-
ulations usually focuses on few of them [17, 23–25], and
comparisons of various methods on empirical datasets are
still lacking [8], whereas there were evidences of such
need [12, 26].
In the present study, we investigated the potential for

local adaptation to salinity in an exploited marine fish
species, the striped red mullet (Mullus surmuletus) along

the Mediterranean Sea, using 1153 SNP markers on 47
locations. Due to its enclosed geography and high evap-
oration rate, the Eastern Mediterranean basin displays
high levels of salinity compared to the Western basin
and the Northeastern Atlantic [27] (Fig. 1). In this par-
ticular area, we tested the hypothesis that salinity may
act as a selective agent for M. surmuletus populations. A
previous seascape genetics study using the same exten-
sive marine spatial database showed no genetic differen-
tiation in separated populations, but a longitudinal
pattern of isolation by distance [28]. In this study, part
of the wide neutral genetic variation was explained by
the sea surface salinity variable, suggesting that M. sur-
muletus populations are locally adapted to this environ-
mental variable. In the view of increasing our capacity to
detect genomic signatures of selection, we combined six
commonly used genome scan methods. Unsurprisingly,
we observed inconsistency among the six genome scan
methods and we further interpreted their outcomes
regarding the algorithms and statistical model behind
each of them. Then, we blasted the totality of outlier
sequences found (i.e., those detected by at least one
genome scan method) on published available fish
genomic resources. We were then able to identify four
candidate genes potentially involved in salinity tolerance
of the striped red mullet.

Methods
Species, area and sampling design
The striped red mullet (Mullus surmuletus) is a demersal
fish species distributed in the Northeastern Atlantic
Ocean, from the British Isles in the North to Senegal in
the South. This species inhabits coastal areas from 0 to
100 m depth, and has high commercial value in the
Mediterranean Sea. The study area covers the whole
Mediterranean coastline, including islands. Our sam-
pling design consisted of 47 sites distributed along the
whole range of this species across the Mediterranean
Sea (Fig. 1). A total of 727 adults of M. surmuletus were
sampled between April and November 2014. Specimens
were obtained from small-scale fisheries landings at each
site. Fish samples consisted of fin clips of pectoral and
caudal fins conserved in 96% ethanol prior to storage at
4 °C.

Genetic data and SNP calling
Extraction of genomic DNA was undertaken using the
DNeasy Blood & Tissue Kit (Qiagen) according to the
manufacturer’s protocol. DNA quality was assessed by
running 3 μL of each DNA sample on 1% agarose gels.
DNA concentration was determined using NanoDrop
8000. We individually genotyped 541 fish samples from
these 47 sites using a genotyping by sequencing ap-
proach [28]. Six 96-plex GBS libraries were constructed
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using restriction enzyme ApeKI (recognition site:
GCWGC) following a protocol modified from Elshire et
al. [29], and sequenced at the Institute of Genomic
Diversity at Cornell University using the Illumina HiSeq
2500 (100 bp, single-end reads). Each library was se-
quenced on a separate HiSeq flowcell lane.
Raw read sequences were filtered according to quality

base calling, removing sequences with average Phred
quality below 25. Trimming was performed to remove
low quality bases at the extremities of the reads (Phred
quality below 20). Sequences shorter than 60 bp were
discarded from the dataset. For each sequenced library,
the number of raw reads and filtered data are provided
in Additional file 1: Table S1 in Supporting Information.
SNP calling was performed using the Tassel 3.0 Univer-
sal Network Enabled Analysis Kit (UNEAK [30]). The
GBS procedure produced individual sequences with a
very low coverage, which lead to a high number of miss-
ing genotypes in the dataset at the individual level. The
Stacks software [31] has also been used and showed
similarly prohibitive missing data for individual genotype
calling. To overcome this bias, we considered pooling
together the individual samples belonging to the same
site, in order to accurately estimate allele frequency. In-
deed, pooled and individually determined allele frequen-
cies are expected to be similar [32]. This ‘pooling
strategy’ allowed us to produce a dataset of 47 ‘pools’
(i.e., sampling sites) containing between nine and eight-
een individuals, and whose sequence coverage was >10X
and showing a minor allele frequency > 0.05 in all the
dataset. The final dataset contained the allele frequencies

of 47 pools at 1153 SNPs. The parameters used in both
UNEAK and Stacks are detailed in Additional file 1:
Appendix S1.

Population structure
Genetic differentiation between the pairs of 47 sites was
quantified by the Wright’s pairwise FST, calculated using the
R package ‘polysat’ [33]. To test for Isolation-by-Distance
(IBD), we performed a Mantel test between pairwise FST,
computed from allele frequencies and marine geographical
distances, computed as least-cost path distances with infinite
resistance values assigned to landmasses. We also performed
a Principal coordinates analysis (PCoA) of the 47 sites using
the Nei genetic distance calculated from SNPs allele fre-
quencies to analyse the population structure. In order to test
for isolation by resistance, we used Mantel tests between
genetic differentiation (pairwise FST) and environmental dis-
tances (maximum Sea Surface Temperature and Salinity).
For both environmental variables separately, we calculated
pairwise environmental distances as the difference in
temperature/salinity between every pair of locations.

Sea surface salinity
The Mediterranean Sea is an evaporation basin where
the evaporation rate exceeds the precipitations [34]. The
inflow through the Strait of Gibraltar balances the fresh-
water loss, which result in a gradient of increasing salin-
ity from west to east [35, 36]. In this study, we aimed to
test whether the maximum daily Sea Surface Salinity
(SSSmax) may be a potential agent of divergent selection
in M. surmuletus. This environmental variable has been

Fig. 1 Map of the mean annual Sea Surface Salinity (SSSmax), averaged from 1990 to 2013, in the Mediterranean Sea. The black dots indicate the
position of the 47 study sites
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identified as a driver of the wide neutral genetic vari-
ation of M. surmuletus suggesting isolation by adapta-
tion [28]. In the Mediterranean Sea, salinity and
temperature are strongly correlated (Pearson’s r2 = 0.55;
pvalue < 0.001), which makes it difficult to disentangle
the adaptive effect of one or the other. Because M.
surmuletus has a wide distribution in the North-East
Atlantic, which encompasses a large temperature gradi-
ent compared to the gradient within the Mediterranean
Sea, we expect salinity to be the main driver of adapta-
tion here. Hence, we focused our analyses on salinity.
SSSmax was computed by NEMOMED8 [37], which

has a resolution of 1/8° [38] from the period 1990–2013.
The daily data were averaged over the whole period to
infer the mean SSSmax.

Genome scan methods for detecting the signal of selection
Environmental association (EA) approaches detect SNPs
that are significantly correlated to environmental vari-
ables. The null hypothesis (H0) is that genetic variation
is only due to limited dispersal and genetic drift [39],
thus there is no correlation between SNP allele frequen-
cies and the environmental variable (e.g., SSSmax). We
describe below the five EA methods that we used to
detect candidate SNPs (Table 1).

Linear regression (LR)
Linear regression (LM) is the simplest way to test for
significant correlations among SNP allele frequencies
and environmental variables assuming that allele fre-
quencies follow a normal error model, and vary linearly
with the environmental variables [40]. Here significance
of correlations among allele frequencies in each pool
(=site) and SSSmax was considered when both the chi-
squared test and the t-test (H0, no correlation among
allele frequencies and SSSmax) were significant as recom-
mended by Joost et al. [41].

Redundancy analysis (RDA)
RDA is an ordination method extending linear regres-
sion to multivariate response data (i.e., allele frequencies
of multiple SNPs). First, linear regressions are computed
between allele frequencies in each site and explanatory
environmental variables at each SNP. Then fitted values
of those regressions are analysed simultaneously using a
principal component analysis (PCA) to produce ordin-
ation axes that are linear combinations of the original
explanatory variables. This allows accounting for the
multivariate properties of SNPs. We performed RDA to
test the effect of SSSmax on allele frequencies in each
pool (site). We also used latitude and longitude of the
sampling sites as explanatory variables to control for the
effect of potential neutral spatial structure. Outlier SNPs
were identified on each of the first three ordination axes
as SNPs with a ‘locus score’ that was ±3 SD from the
mean score for that axis [22]. We then calculated the
correlation between the allele frequency at each outlier
and SSSmax. We considered the correlation to be signifi-
cant at a p-value lower than 0.05. The RDA was
performed using the R package ‘vegan’ [42].

Moran spectral outlier detection (MSOD)
MSOD uses Moran eigenvector maps (MEM) to quan-
tify the distribution of allele frequencies across a range
of spatial scales represented by MEM spatial eigenvec-
tors [43]. This procedure follows two steps: i) First, the
power spectrum of each SNP is compared to the average
power spectrum of all of the SNPs in order to identify
outliers that show an unusual power spectrum. The
power spectrum of a SNP is the squared correlation
coefficient of that SNP with the MEM eigenvectors. ii)
The second step uses Moran spectral randomization
[44] to test the association between the outlier SNPs
detected at the first step and an environmental variable
(here SSSmax), while accounting for spatial autocor-
relation between sites.

Table 1 Description of the genome scan methods used to detect candidate outlier SNPs

Method R package Categories Correction for spatial
or population structure

Data # outliers detected
(# unique)

Reference

Linear regression (LM) LM Linear model No Allele frequencies 129 (78) R development
Core Team

Redundancy Analysis
(RDA)

vegan Multivariate method Yes Allele frequencies 11 (0) Legendre & Legendre
2012 [73]

Generalized linear spatial
mixed models (gINLAnd)

gINLAnd Mixed model Yes Read counts 7 (0) Guillot et al. 2013 [49]

Latent factor mixed
models (LFMMs)

LEA Mixed model Yes Read counts 0
-

Frichot et al. 2013 [50]

Moran spectral outlier
detection (MSOD)

PCNM and
adespatial Multivariate method

Yes Allele frequencies 7 (1) Wagner et al. 2017
[43]

Principal Component
Analysis (PCadapt)

pcadapt
Multivariate method

No Allele frequencies 88 (43) Duforet-Frebourg et al.
2015 [74]
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MEM provides a spectral decomposition of the spatial
relationships among the study sites [45]. A set of 46
MEM axes were computed from the geographic coordi-
nates of our 47 sampling sites using the R package
‘PCNM’ version 2.1–4 [46]. The power spectrum of each
SNP corresponds to the vector of squared correlations
between its allele frequencies in each site and every
MEM axes. Deviation of SNPs from the average power
spectrum was measured using z-scored, and a list of
candidates was obtained with a cut-off of 0.05.
At step 2, Moran Spectral Randomization (MSR) uses

a randomization approach to build a null hypothesis of
no correlation between SSSmax and allele frequencies at
each SNP detected as an outlier at step 1, given the
power spectra of the candidate outliers. We performed
MSR using the R package ‘adepsatial’ version 0.0–7 with
199 permutations [47]. The final set of candidate outliers
was obtained as the SNPs significantly correlated to
SSSmax under a threshold p-value of 0.05.

Spatial generalized linear mixed models (gINLAnd)
The software gINLAnd aims to quantify the correlation
between allele counts at each site and the environmental
variation using a logistic regression accounting for
spatial autocorrelation between samples sites due to
population history. For each SNP, gINLAnd fits a gener-
alized linear spatial mixed model using an estimation of
spatial covariance between sites as random factor, and
the environmental variable as fixed explanatory variable.
Spatial covariance is estimated according to the Inte-
grated Nested Laplace Approximation (INLA) method
proposed by Rue et al. [48].
For computational optimization, the parameters of the

spatial covariance, τ and κ, were calculated on a random
subset of 500 SNPs and then taking the average values.
For each SNP, we then fitted a full model including the
environmental (SSSmax) and the random (τ and κ)
variables, and a reduced model including the random
variables only. Analyses were performed using the func-
tion ginland.inferences of the gINLAnd R package [49].
The SNP-environment association was deemed signifi-
cant when the full model had a higher likelihood than
the reduced model, evaluated with Bayes factor (BF). We
used a conservative threshold of BF > 3 (log(BF) > 1.1) to
consider the association as significant.

Latent factor mixed model (LFMM)
Latent factor mixed models (LFMM) are mixed linear
models that test for the correlations between allele
counts and one environmental variable (here SSSmax),
accounting for the neutral structure through latent fac-
tors [50]. Parameters are estimated in a Bayesian con-
text. LFMM was run with 10,000 burning sweeps and
20,000 effective sweeps of the Gibbs sampling algorithm.

We ran ten replicates of the analysis and combined the
z-scores over replicates following the recommendations
described in [51]. First, we took the median z-score over
the ten replicates, and calculated the genomic inflation
factor, λ. Then, we calculated the adjusted p-values using
λ. These adjusted p-values were used to decide on the
significance of the association. We obtained lists of can-
didate SNPs using the Benjamini–Hochberg procedure
under false discovery rates ranging from 0.05 to 0.2.
The number of latent factors (unobserved variables)

has to be specified by the user for the analysis. Here, we
used K = 1 and K = 2 to correct for population structure
since multivariate analyses showed no clustering but
isolation by distance (IBD; Additional file 1: Figure S1).
We used the implementation of LFMM in the R
software using the ‘LEA’ package version 1.6.0 [51] to
conduct the analysis.

Principal component analysis (PCA) with PCAdapt
In addition to these five EA methods, we used a population
differentiation (PD) method, which investigates the existence
of highly differentiated SNPs across the genome without
assuming the effect of a particular environmental variable.
PCAdapt estimates population differentiation at each SNP
and compares the value with an expected estimation, calcu-
lated from the genome wide background. The null assump-
tion tested is that each SNP is not under selection.
When using pooled data, PCAdapt first generates indi-

vidual genotypes at every SNPs based on the allele fre-
quencies of the pools, using a binomial model. For each
pool, one hundred individuals were generated, as advised
in the tutorial. We checked the adequacy between allele
frequencies estimated from these individuals and the
allele frequencies of the pools, and as expected, both
were strongly correlated (mean Pearson’s correlation
coefficient overall SNPs = 0.96).
PCAdapt uses a PCA, a multivariate analysis able to

detect population structure from the genetic data. The
software constructs a set of axes from the previously
generated individual genotypes, which are linear com-
bination of the initial variables (Principal Components,
PCs). The PCs are produced on a criterion of maximal
variance. PCAdapt extends this analysis by calculating
correlations between SNPs and a set of retained PCs
[52]. Candidate SNPs are detected as the ones that cor-
relate significantly to this set of PCs under a specified
False Discovery Rate (FDR). The analysis was performed
using the version 3.0.4 of the R package ‘PCAdapt’ [52].
We first assessed the optimal K value (i.e., optimal num-
ber of genetic groups), from 1 to 20, using a screen plot
of the proportion of variance explained by each PC using
the PCAdapt function. We then retained K = 2 and calcu-
lated the FDR of the pvalues associated with Mahalanobis
distance estimated by PCAdapt, using the qvalue function
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of the R package ‘qvalue’ [53]. Finally, we obtained a list of
candidate SNPs under an expected FDR α = 0.05, meaning
that 5% of the candidate SNPs are expected to be false
positives.

Blasting outlier sequences
We assessed whether any of the 173 candidate SNPs
identified by the six EA and PD approaches belong to
known annotated genes in the NCBI’s nr database [54].
We blasted all candidate sequences of 80 bp length
against the available NCBI genomic resources for teleost,
cartilaginous and bony fishes. We retained only the se-
quences showing a minimal homology of at least 90%
and a minimal alignment length of 15 bp, with a E-value
of 10− 4. We then investigated the function of these
genes according to the UNIPROT database (http://
www.uniprot.org). To ascertain whether a given muta-
tion was synonymous or non-synonymous, the codon
containing the SNP variants was translated into an
amino acid according to the location of the start codon.
From the subset of candidate genes found in the NCBI’s
nr database, we selected the genes that were already
known to have an influence in salinity adaptation in
other organisms.

Using partial linear regression to correct for spatial
genetic patterns in SNP candidates
Longitude was previously suggested to have a wide influ-
ence on all the genomic variation of this species [28],
and is strongly correlated to salinity. In order to test
whether salinity was still significantly correlated to MAF
variation independently of the effect of longitude, we
performed a partial linear regression between the minor
allele frequencies (MAF) at each location and the salinity
gradient observed, for each candidate SNP retained by
genome scans methods that do not correct for spatial
structure (LM and PCAdapt). To perform this partial
linear regression framework, we used the rda function
available in the ‘vegan’ package and we tested the signifi-
cance of the relationship using 1000 permutations.

Results
SNP dataset
Individual genotyping produced 626,867 SNPs. Filter-
ing for an individual average minimal coverage of 5X
and an average maximal coverage of 10× kept 1491
SNPs. Thirteen individuals with less than 3000 reads
were discarded. Pooling individuals sampled in the
same site allowed producing 1153 SNPs for 47 sites,
with coverage of 10X and 100% of the sites genotyped
at each marker (i.e. no missing data). On average over
every loci, 11 individuals contribute to each pool,
with a median of 10 and standard deviation of 2.91.

The distribution of the MAF per SNPs was computed
to verify the validity of SNPs calling and filtering.
This distribution is shown in Additional file 1: Figure
S2. The number of individuals for each site is shown
in details in Additional file 1: Table S3.

Genetic structure
Pairwise FST ranged from 0.018 to 0.065, with a mean of
0.033, showing weak genetic differentiation between
sites, as expected for a mobile marine species. The
PCoA showed differentiation between Gibraltar (site 20)
and all the other sites (Additional file 1: Figure S1). The
Alboran Sea (sites 3, 4, and 5) also appeared slightly
differentiated from the rest of the Mediterranean Sea
(Additional file 1: Figure S1). The Mantel test between
pairwise FST and marine geographical least-cost distances
was significant (rM = 0.30, p-value < 0.001), suggesting a
pattern of isolation-by-distance in the data. Concerning
isolation by resistance, the Mantel test between FST and
pairwise distances in salinity was significant (rM = 0.28,
pval < 0.001), whereas it was not significant for
temperature (p-value = 0.09). This suggests that salinity
may influence M. surmuletus genetic structure in the
Mediterranean Sea.

Detection of candidate outliers
Overall, the five EA and one PD approaches detected a
total of 173 SNPs (15%) putatively under divergent selec-
tion across all locations, whereas the intersection of all
methods did not found any. To identify SNPs detected
as outliers by several methods, we delineated subsets of
unique and shared number of candidate SNPs (hereafter
outliers) detected by this set of approaches (Fig. 2).
Results were highly variable in terms of number and
identity of the outliers, which were drastically different
depending on the method used. Overall, LM and PCA-
dapt detected the largest sets of outliers, with respect-
ively 129 and 88 candidate SNPs. Other methods such
as gINLAnd, MSOD and RDA detected widely smaller
sets, ranging from seven (gINLAnd and MSOD) to
eleven (RDA). LFMM found no outlier under any of the
thresholds and the latent factors tested (K = 1 or K = 2).
Among the methods detecting the largest sets of out-

liers, LM and PCAdapt, shared 45 common SNPs (35%
and 51% of their respective sets), and they both also
identified large unique subsets of outliers, with respect-
ively 78 (60%) and 43 (49%) outliers that were not un-
covered in any other methods (Fig. 2). Except one
outlier that was only detected using MSOD approach,
100% and 70% of the outliers found by gINLAnd, MSOD
and RDA were also pinpointed by LM and PCAdapt re-
spectively (Fig. 2).
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Gene ontology of candidate genes
The BLAST search of these 173 outlier sequences
against the NCBI’nr yielded to a set of 131 outlier
sequences successfully identified as belonging to known
genes in all NR database, using permissive criteria. Yet,
only 30 outlier sequences were kept according to their
homology, alignment length and their E-value (see cri-
terion described in Methods). Among these 30 se-
quences, all were found in teleost and bony fishes, and
11 in cartilaginous fishes, as expected. From these 30
successfully annotated genes, four were already known
to potentially play a role in adaptation to salinity. The
sequences of the SNP TP106031, TP221669, TP346795
and TP61263 were located into these four genes
(Table 2). Out of these four candidate SNPs, only the
SNP TP106031, detected by PCAdapt, was non-
synonymous. This SNP belongs to MSRA gene, which

encodes the methionine sulfoxide reductase, a protein
already known to be involved in salt tolerance processes
in barley Hordeum vulgare [55]. The location of the mu-
tation tends to increase the rate of reaction of MSRA
when the variant attaches a lipid [56]. This may provide
an advantage in correcting the oxidation state of cells
due to the increase in salinity, but also maybe due to an
increase in temperature or oxygen levels. The SNP
TP221669, also identified as outlier by PCAdapt, is lo-
cated in the CYP7A1 gene, which encodes cholesterol 7-
alpha-monooxygenase, a protein involved in bile acid
and bile salt metabolism [57]. Finally, we found the SNPs
TP346795, identified by LM, and the SNP TP61263, de-
tected by both LM and PCAdapt, which belong to the
same gene: SOCS2. This gene produces proteins that are
inhibitors of cytokine signaling pathways and key physio-
logical regulators of immune system in vertebrates [58].

Fig. 2 UpSet diagram: matrix layout for all intersections of five genome scan methods (i.e., LM, PCAdapt, RDA, MSOD, gINLand) sorted by their
number of outliers detected and the uniqueness of the method. LFMM is not represented since it did not identify any outlier (SNP) Dark circles in the
matrix indicate the methods that are part of the intersection. Vertical bars show the size of the intersection (i.e., number of shared outliers).
Intersections of a single method (the first three vertical bars) represent the set of unique outliers detected only by that method and no other one. The
size of each set (i.e., the total number of outlier detected by each method) is displayed by the horizontal bars on the left, and provided in Table 1

Table 2 Characterization of high-quality BLAST matches obtained in comparison of striped red mullet genotype by sequencing SNP
against NCBI database. We only retained SNPs located in genes with putative functions that are compatible with the hypothesis of
salinity adaptive selection acting on encoded protein. R2 and P-value referred to the linear regression between SSSmax and minor
allele frequencies of each SNP

SNP Detection method Uniprot Gene Protein General function R2 P-value

TP221669 PCadapt AIT82984 CYP7A1 Cholesterol 7-alpha-monooxygenase Bile acid and bile salt metabolism,
bile salt export pump

0.045 0.079

TP106031 PCadapt ACO09386 MSRA Peptide methionine sulfoxide
reductase

Enzymatic restriction of methionine
sulfoxyde to methionine

0.043 0.081

TP346795 LM ACV85622 SOCS2 Suppressor of cytokine signaling 2 Involved in JAK-STAT signaling cascades 0.009 0.218

TP61263 PCadapt, LM ACV85622 0.17 0.002

Dalongeville et al. BMC Genomics  (2018) 19:217 Page 7 of 13



The transcription of this gene was suggested to be
tightly linked to salinity variation in marine species, as
previously demonstrated by De Zoysa et al. [59] in the
disk abalone (Haliotis discus discus) and by Komoroske
et al. [60] in the delta smelt (Hypomesus transpacificus).
When analyzing each candidate SNP separately, we

demonstrated that only one SNP, TP61263, was still sig-
nificantly correlated to SSSmax when spatial distribution
was taken into account (partial linear regression). In-
deed, we found that longitude and SSSmax were both sig-
nificant but the variance explained by SSSmax (17.1%)
was twice the one explained by longitude (8.9%). In
addition, SSSmax still explained 6.8% of the variation at
this SNP after longitude influence was removed (Fig. 3b).
Revealing correlation between the minor allele frequency
of this candidate SNP along with the salinity gradient
(SSSmax) confirmed that the SNP TP61263, may be a po-
tential candidate for the local adaptation of the striped
red mullet to salinity in the Mediterranean Sea (Fig. 3a
and b).
Considering that salinity and temperature are corre-

lated in the Mediterranean Sea, we assumed that the
candidate SNPs we identified could also be associated
with variations in temperature. So, we tested the correl-
ation between the allele frequencies of candidate SNPs
(173 SNPs identified as outliers) and maximum
temperature computed by NEMOMED8 [37]. The abso-
lute value of Pearson’s correlation coefficient varied be-
tween 0.005 and 0.438 (mean = 0.178). The correlation
was significant for four SNPs (p-value < 0.005), but none
of the previous ones identified as belonging to known

genes by the BLAST. We can then conclude that salinity
seems to be the main driver influencing genetic variation
observed at the candidate SNP detected.

Discussion
The most salient findings of this study are that, combin-
ing the six genome scan methods and the blast of the se-
quences containing the candidate SNPs against fish
genomes, lead to the identification of four potential can-
didate genes. Those four genes harbor metabolism func-
tions that may be involved in adaptation to salinity in
the striped red mullet populations, and other marine
species since there were also previously described as po-
tential gene candidates. Additionally, we underlined that
using a various set of genome scan methods may facili-
tate uncovering potential genomic footprints of selec-
tion, since this strategy help to reduce the number of
false negatives. In the following, we described how our
work might enhance our understanding of salinity adap-
tation processes in marine species and its importance
for evolution of such species facing climate change. Fur-
thermore, we discussed methodological issues when en-
vironment is correlated to spatial variation.

Functional genomics: Uncovering potential gene
candidates for adaptation to salinity
Spatial variations in salinity are expected to induce local
adaptation of marine populations [61, 62], and genes
implicated in salinity tolerance have been identified in
various marine organisms by both experimental and
empirical studies. For example, local adaptation to

Fig. 3 a Map showing the minor allele frequency of the SNP TP61263 at each of our 47 study sites. b Correlation between minor allele frequency
of SNP TP61263 and maximum annual sea surface salinity (SSSmax), including loess smoothing function and confidence interval (grey area). Partial
linear regression showed that SSSmax still explained 6.8% of the variation at this SNP after longitude influence was removed

Dalongeville et al. BMC Genomics  (2018) 19:217 Page 8 of 13



salinity has been demonstrated for the Baltic Sea three-
spine sticklebacks (Gasterosteus aculeatus) using com-
mon garden experiments [63]. Genes potentially impli-
cated in osmoregulation have been identified in model
marine species such as the European sea bass [14] and
the three-spine sticklebacks [19, 20] using genome se-
quencing combined with genome scan, transcriptome
analyses and QTL approaches. On the Atlantic cod, a
study of Berg et al. [18] combining genome scan and
landscape genomics detected genomic regions under dir-
ectional selection associated with differences of salinity
in the Baltic and the North Sea.
The Mediterranean mean annual salinity varies be-

tween about 32 to 40 PSU, which makes it one of the
saltiest seas on earth [27]. Thus, adaptation of Mediter-
ranean fish species to these stressing osmotic conditions
is expected. Evidence of adaptive genetic structure in the
eastern part of the Mediterranean Sea has been shown
in the peacock wrasse (Symphodus tinca) using genome
scan, although it was not clearly associated with any en-
vironmental factor [64]. Another recent work from Rug-
geri et al. [65] demonstrated an association between
outliers from microsatellite genetic data and environ-
mental factors (salinity, oxygenation and temperature) in
the European anchovy (Engraulis encrasicolus). This pat-
tern was then further investigated by Catanese et al. [66]
who used genomic and transcriptomic data to reveal that
low salinity associated with river mouths may influence
local adaptation processes equally in the Tyrrhenian Sea
and North Adriatic Sea but they found no outlier loci
with gene function clearly related to salinity variations.
Here, we performed a blast research to accurately iden-
tify known genes underpinning adaptation though a
gene ontology approach [5] on our exhaustive list of po-
tential candidate sequences. As expected, genome scan
analyses detected a vast majority of outlier SNPs that
were not located within any gene since these SNPs could
be linked to a selected gene, or implicated in gene regu-
lation, or simply be false positives [67]. Yet, four outlier
SNPs belonging to three relevant potential candidate
genes were found by our blast search. For instance, we
discovered the candidate gene CYP7A1, which encodes
the cholesterol 7 alpha-monooxygenase, an enzyme initi-
ating the classic and alternative bile salt pathways [57].
More particularly, this gene was 8000-fold more tran-
scriptionally expressed in the liver of mature (i.e., lam-
prey living in a saline environment) male sea lamprey
over immature (i.e., lamprey living in a non-saline envir-
onment) male adults [68]. On the other hand, we also
found the MSRA gene, as being a potential gene candi-
date for salinity adaptation since its repair function has
been shown to protect cells from oxydative damage [69].
Indeed, the MSRA gene produces the methionine sulfox-
ide reductase A, an antioxidant protein that was

upregulated in a salt-sensitive genotype of barley (Hor-
deum vulgare), suggesting that MSRA may be involved
in plant adaptation to salt stress [55]. Yet, the most in-
teresting candidate was the SOCS2 gene that is part of
the suppressors of cytokine signaling (SOCS) gene fam-
ily. SOCS genes are implicated in regulation of a variety
of signal transduction pathways, which are involved in
immunity, growth and development of organisms [58].
Eight SOCS genes have been identified, among which
SOCS2 has been described as a multifunctional protein
that playing roles in signaling pathways and develop-
ment of central nervous system [70, 71]. Komoroske et
al. [60] have shown that SOCS2 was expressed under os-
motic stress conditions in a marine fish species, the delta
smelt; and Martinez Barrio et al. [72] identified it as a
potential gene candidate for euryhaline adaptation in the
Baltic herring (see Supplementary file 3A of their study).
Similarly, De Zoysa et al. [59] highlighted its implication
in osmotic tolerance in a gastropod species, the disk
abalone (Haliotis discus discus).
Detecting outlier markers showing minor allele fre-

quencies linked to environmental variables is a first step
towards the identification of adaptive processes and
demonstrating the existence of such correlation does not
prove that local adaptation occurs in the wild. Then,
outcomes from population genomic studies should be
further investigated at a functional level, to test the func-
tional importance of the candidate SNP in a specific eco-
logical context. For that purpose, additional genomic
data such as sequencing of a full-genome and transcrip-
tome analyses of gene expression would be required to
provide new insights on the possibility that this gene is
really involved in local adaptation process of M. surmu-
letus populations in the Mediterranean Sea. Neverthe-
less, the entire list of candidate genes found here may
serve future studies as a useful database to investigate
local adaptation process in species experiencing changes
in salinity.

Comparing approaches for detecting genomic signal of
selection
The outcomes from the six genome scan methods varied
widely in term of the number and identity of outliers
detected in this study (Fig. 2). Such inconsistencies between
methods were expected since their algorithms and prior
assumptions considerably differ. All methods, except
gINLAnd and PCAdapt, assume a linear relationship be-
tween SNP allele frequencies and the environmental variable
[43, 50, 73]. gINLAnd uses a logit transformation of the al-
lele frequencies [49], whereas PCAdapt maximizes their var-
iances in a PCA without accounting for any environmental
variable [74].
Correcting for confounding effects, such as spatial

structure or allele surfing, was recently at the heart of
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genome scan methods development [26]. Therefore, one
major difference among the genome scan methods per-
formed in this study was whether this method integrates
population or spatial structure correction or not. Indeed,
as expected, methods that do not account for population
or spatial structure (PCAdapt and LM) detected the lar-
gest sets of outliers, whereas gINLAnd, MSOD and
RDA, which accounts for it, identified fewer candidates
(between seven and eleven). Controlling for spatial
structure or IBD is expected to decrease the number of
false positive, but also to reduce the power to detect true
adaptive SNPs, thus limiting the ability of the methods
to detect genomic signals of selection [75]. Such a con-
trol normally allows reducing the False Discovery Rate
(FDR), by increasing the number of true positives rela-
tive to the total number of positives. This strategy is es-
pecially relevant when demographic patterns such as
isolation by distance or allele surfing [76] may mimic
genomic signals of selection along an environmental gra-
dient, which is the case of our dataset since longitude is
strongly correlated to salinity (i.e., SSSmax; r = 0.85, p-
value = 5.14 × 10− 14; Fig. 3a). Thus, the set of outliers de-
tected by PCAdapt and LM is expected to contain a high
rate of false positives, but probably also includes more
true positives [26]. Therefore, using methods that do not
correct for population or spatial structure may represent
an efficient strategy to uncover potential candidate genes
overall when environmental gradient is confounded with
spatial structure. The function of these genes can then
be verified first using a blast search and in a second step
with a more direct approach such mutagenesis, shedding
light on the adaptation process, from genotype to
phenotype.

Limits of the study
The relatively low number of markers (1153 SNPs) used
in our study is expected to only represent a small frac-
tion of the genome. Thus, our adaptive genomic study
based on these SNPs most likely leaves out genes pos-
sibly involved in salinity adaptation but which do not
contain - or are not linked to - any SNPs in this dataset
[77]. In addition, the union of six genome scans methods
identified 15% of the SNPs as outliers, which is an ex-
tremely high proportion and surely contains a high
number of false positives. However, the aim of this study
is to provide a large set of outliers, and then test their
relevance though the observation of their minor allele
frequency distribution and using blast alignments.
Hence, a high false discovery rate is not prohibitive here,
since the candidate SNPs were not directly considered
as adaptive and as we underlined the need to further in-
vestigate their impact at the phenotype level. In that
case, using the combination of well-calibrated genome
scan methods is an efficient strategy to increase our

ability to detect any potential genomic footprint of selec-
tion as it has also been suggested by François et al. [26].
Candidate SNPs detected by genome scan are not dir-

ect evidence of local adaptation, as explicitly described
in Benestan et al. [12]. Therefore, these candidate SNPs
identified from the combination of these methods with
BLAST and correlative approaches, are only preliminary
evidences comforting the hypothesis of an adaptive re-
sponse of M. surmuletus to the osmotic conditions in
the Mediterranean Sea. Furthermore, confounding envir-
onmental variables such as habitat, pH, water quality or
selective harvesting may have induced selective pressure
similar to salinity and testing the influence of such vari-
ables would also be relevant in order to accurately define
local adaptation to salinity [16]. Yet, the strong correl-
ation between salinity and other environmental features,
such as longitude and temperature makes the identifica-
tion of loci only responding to salinity challenging.

Conclusion
Several studies investigated fish species response to
salinity in the Baltic and North Sea [18, 73–75], and only
few were focusing on the Mediterranean Sea (but see
the studies of Ruggeri et al. [65] and Catenese et al.
[66]). Our results bring evidences in favor of the hypoth-
esis of an adaptive response of the striped red mullet to
Mediterranean salinity, and produced an exhaustive list
of potential candidate genes. We also highlighted the
interest of combining different genome scan methods
since using the intersection of several methods, as ad-
vised in de Villemereuil et al. [78], decreases the amount
of false positives but using the union limits the risk of
missing a true selected locus [12]. Choosing a combin-
ation of genome scan methods obeys to a compromise
between limiting type I and type II errors (i.e., reducing
the FDR while maximizing the power of the analysis).
Hence, this decision will strongly depend on the objec-
tives of the studies, but also on the dataset (e.g., pool-
seq or individual genotypes, number of genotyped
markers) and a priori knowledge (i.e., is there any popu-
lation structure or IBD? is the environmental variable
correlated to space or other variables?).
In the current context of climate changes, adapta-

tion of marine organisms to temperature is of greatest
concern [3]. Yet, salinity is an important variable to
consider, since its level is also expected to increase in
the future due to reduced precipitations and higher
evaporation rates [36, 79]. Identifying genes associated
with key environmental factors, such as salinity and
temperature, will help assessing the relative import-
ance of evolutionary adaptation, and thus provide
insight on species adaptive potential to the environ-
mental modifications predicted to result from global
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change [3]. Conservation strategies could benefit from
this new adaptive genomic knowledge, which could be
used to implant evolutionary thinking in decision
frameworks [80, 81]. Combining evolutionary adapta-
tion with consideration of species and habitat repre-
sentation and connectivity into conservation goals will
support the aim to reduce the impacts of climate
change on biodiversity [3, 82].
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