
HAL Id: hal-01826656
https://hal.science/hal-01826656

Submitted on 29 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enhancement of the AltaRica 3.0 stepwise simulator by
introducing an abstract notion of time
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy

To cite this version:
Michel Batteux, Tatiana Prosvirnova, Antoine Rauzy. Enhancement of the AltaRica 3.0 stepwise
simulator by introducing an abstract notion of time. 28th European Safety and Reliability Conference,
ESREL 2018, Jun 2018, Trondheim, Norway. �hal-01826656�

https://hal.science/hal-01826656
https://hal.archives-ouvertes.fr


Enhancement of the AltaRica 3.0 stepwise simulator by introducing an
abstract notion of time

M. Batteux
IRT SystemX
Palaiseau, France

T. Prosvirnova
LGI
CentraleSupélec, Gif-sur-Yvette, France

A. Rauzy
MTP
Norwegian University of Science and Technology, Trondheim, Norway.

ABSTRACT: AltaRica 3.0 is an event-based, object-oriented modeling language dedicated to (probabilistic)
safety analyses of complex systems. It makes it possible to design models at higher level than done with for-
malisms traditionally used for safety analyses (fault trees, Markov Chains, stochastic Petri nets, etc.), without
increasing the complexity of calculations of risk indicators. Several assessment tools have been developed for
AltaRica 3.0, including a stepwise simulator. This tool is of a great help for the design and the validation of
AltaRica 3.0 models. It is the analog for modeling of debuggers for programming.
In this article, we show how the AltaRica 3.0 stepwise simulator has been greatly enhanced by the introduction
of an abstract notion of time. The key mathematical property is that abstract and concrete simulation are bisim-
ilar: any concrete (timed, stochastic) execution can be simulated by an abstract execution and reciprocally any
abstract execution corresponds to at least one concrete execution. This important result paves the way to the
design of efficient model-checking algorithms, e.g. generators of sequences of events leading to a failure state.

1 INTRODUCTION

AltaRica 3.0 is an event-based, object-oriented mod-
eling language dedicated to (probabilistic) safety
analyses of complex systems (Prosvirnova, Batteux,
Brameret, Cherfi, Friedlhuber, Roussel, & Rauzy
2013). It makes it possible to design models at higher
level than done with formalisms traditionally used for
safety analyses (fault trees, Markov Chains, stochas-
tic Petri nets, etc.), without increasing the complexity
of calculations of risk indicators.

The semantics of AltaRica 3.0 is defined in terms of
stochastic guarded transition systems (Rauzy 2008).
AltaRica 3.0 executions are similar to those of other
discrete event modeling formulisms: each time a tran-
sition gets fireable, it is scheduled and possibly fired
after a certain real-valued delay, see e.g. (Cassandras
& Lafortune 2008, Zimmermann 1976) for introduc-
tions to (stochastic) discrete event systems. Events
labeling transitions may be either deterministic or
stochastic. In the later case, AltaRica 3.0 provides

both built-in distributions (exponential, Weibull, . . . )
and empirical distributions.

Several assessment tools have been developed for
AltaRica 3.0, see e.g. (Prosvirnova & Rauzy 2015,
Brameret, Rauzy, & Roussel 2015, Aupetit, Batteux,
Rauzy, & Roussel 2015), including a stepwise simu-
lator. This tool is of a great help for the design and the
validation of AltaRica 3.0 models. It makes it possi-
ble to perform interactive step by step simulations, i.e.
to go forth and back in sequences of events, enabling
in this way to track modeling errors, unexpected be-
haviors and so on. With that respect, stepwise simu-
lators play a similar role for discrete event modeling
as debuggers like GDB or DDD for programming, see
e.g. (Matloff & Salzman 2008) for an introduction to
the latter.

In this article, we show how the AltaRica 3.0 step-
wise simulator has been greatly enhanced by the in-
troduction of an abstract notion of time. So far, it did
not consider the time at all. The reason was that it
would have been much too tedious for the analyst to



enter by hand the delay associated with a stochas-
tic transition each time this transition gets fireable.
Moreover, infinitely many real-valued delays can be
chosen, letting the analyst pondering which one is the
most suitable for her or his purpose. However, ignor-
ing delays had a major drawback: the stepwise simu-
lator allowed the firing of sequences of events with no
counterpart in stochastic simulation and more gener-
ally that did not obey the timed semantics of AltaRica
3.0.

The idea is therefore to abstract away the time in
stepwise simulation: each transition is now associated
with a time interval. Firing a transition may modify
the time intervals associated with already scheduled
transitions. This idea is by no means new: it enters
into the general framework of Cousot’s abstract in-
terpretation (Cousot & Cousot 1977). The problem at
stake was to make it work for the particular case of
stochastic discrete event simulations. The key math-
ematical property here is that abstract and concrete
simulations are bisimilar, see e.g. (Milner 1989) for
an introduction to this important notion: any concrete
(timed, stochastic) execution can be simulated by an
abstract execution and reciprocally any abstract exe-
cution corresponds to at least one concrete execution.
In a word, abstract executions are in agreement with
AltaRica 3.0 semantics.

This important result paves the way to the design of
efficient model-checking algorithms, see e.g. (Clarke,
Grumberg, & Peled 2000) for an introduction. In par-
ticular, it makes it possible the design of generators of
sequences of events leading to a failure state.

The remainder of this article is organized as fol-
lows. Section 2 presents an illustrative example. Sec-
tion 3 recalls fundamental notions about timed and
stochastic guarded transition systems. Section 4 intro-
duces the abstract notion of time. Section 5 concludes
this article and gives some perspectives.

2 ILLUSTRATIVE EXAMPLE

As an illustrative example, we shall consider a sys-
tem made of two identical, periodically tested, com-
ponents that evolve independently one another.

The behavior of such a component is represented
by the state diagram pictured Figure 1.

The component alternates operation and test
phases. It is initially working and starts with a first
operation phase that lasts a constant time θ. All sub-
sequent operation phases last a constant time π.

The component may fail when in operation, with a
failure rate λ.

If the component is working when it enters a main-
tenance phase, this maintenance phase lasts a constant
time τ . If, on the contrary, it is failed when it enters
a maintenance phase, the duration of its repair is uni-
formly distributed between two values µ and ν.

Finally, the component is as-good-as-new after a
repair.

WORKING FAILED
failure(l)

OPERATION1

TEST WORKING FAILED

startTest1(q)

WORKING FAILEDOPERATION

startTest1(q)

startTest(p) startTest(p)

completeTest(t)

repair(m,n)

failure(l)

Figure 1: State diagram for a periodically tested component.

In the state diagram of Figure 1, transitions
failure and repair are thus stochastic while tran-
sitions startTest1, startTest and completeTest
are deterministic.

Table 1 shows a possible evolution of such a com-
ponent.

Table 1: A possible evolution of component for a periodically
tested component.
Transition Firing date
startTest1 d1 = θ
completeTest d2 = d1 + τ
failure d3 = d2 + δ1, 0 < δ1 ≤ π
startTest d4 = d2 + π
repair d5 = d4 + δ2, µ ≤ δ2 ≤ ν
startTest d6 = d5 + π
completeTest d7 = d6 + τ
...

...

We can assume that θ and π are relatively big com-
pared to τ , µ and ν and that τ is smaller than µ (itself
smaller than µ).

In order not to have the two components A and
B out of service due to test or maintenance at the
same time, it is reasonable to take different values
of θ for A and for B (the values of the other pa-
rameters being identical for the two components).
For instance, if an operation phase lasts normally six
months (π = 4380h), the component A can be tested
after three months (A.θ = 2190h) while the compo-
nent B is tested after six months (B.θ = 4380h). It this
way, tests/maintenances of A and B are shifted by three
months which improves the overall availability of the
system. Table 2 gives some typical values of the pa-
rameters for components A and B that we shall use
throughout the article.

Table 2: Typical values of the parameters
parameter A B

θ 2190 4380
π 4380 4380
τ 0 0
µ 12 12
ν 24 24



With this values of parameters in mind, the reader
sees immediately the problem of using a stepwise
simulator that does not consider delays associated to
transitions. Many executions that would be impossi-
ble with a timed semantics become possible with a
non-timed semantics, e.g.

.
B.startTest1−−−−−−−→ . . .

.
A.startTest1−−−−−−−→ .

A.completeTest−−−−−−−−−→ .
A.startTest−−−−−−−→ .

A.completeTest−−−−−−−−−→ . . .

On other hand, asking the analyst to introduce inter-
actively delays of stochastic transitions is not a practi-
cal solution. Not only it would be tedious, but it would
let the analyst facing the choice of suitable delays,
which gets quickly puzzling. Hence the need of an ab-
stract notion of time which makes it possible to take
into account delays of transitions without asking the
analyst to enter them interactively.

To fulfill this need, the idea is to reason in terms of
time intervals rather than in terms of dates. To explain
how this idea works, we shall first recall the regular
semantics of AltaRica in the next section. Then, we
shall introduce its abstract semantics (in terms of time
intervals) in Section 4.

3 TIMED/STOCHASTIC GUARDED
TRANSITIONS SYSTEMS

The semantics of AltaRica 3.0 is defined in terms of
stochastic guarded transitions systems (Rauzy 2008),
(Batteux, Prosvirnova, & Rauzy 2017). We shall re-
call here only the notions that are important for the
purpose of this article. The reader should refer to the
cited articles for in depth presentations.

3.1 Definition

A guarded transitions system is a quintuple
〈V,E,T,A, ι〉, where:

– V is a set of variables. V is the disjoint union of
the set S of state variables and the set F of flow
variables: V = S ]F . Each variable v of V takes
its value into a finite or infinite set of constants
called the domain of v and denoted as dom(v).
The global state of the system is thus a variable
valuation, i.e. a member of the Cartesian product∏

v∈V dom(v).

– E is a set of events. Each event e of E is as-
sociated with a function delay(e) that returns a
non-negative real number. delay(e) may be de-
terministic, in which case it returns always the
same value, or stochastic, in which case it returns
a value according to a certain cumulative proba-
bility distribution.

– T is a set of transitions, i.e. of triples 〈e,G,P 〉,
where e is an event of E, G is a Boolean expres-
sion built on variables of V (called the guard of
the transition) and P is an instruction that modi-
fies the value of state variables (called the action
of the transition). For the sake of the clarity, we
shall write a transition 〈e,G,P 〉 as G e−→ P .

– A is an assertion, i.e. an instruction that modifies
the values of flow variables.

– ι is a valuation of the variables of V , called the
initial state.

Example The GTS encoding the periodically tested
components described in the previous section is as
follows.

The state of the component is represented by means
of two state variables: state that takes its value in
{WORKING,FAILED} and phase that takes its value in
{OPERATION1,TEST,OPERATION}.

The events are startTest1, startTest,
completeTest, failure and repair. They are
associated with the delays described in the previous
section.

The transitions are as follows.

state = WORKING∧ phase 6= TEST
failure−−−−→

state← FAILED

phase = OPERATION1
startTest1−−−−−−→

phase← TEST

phase = OPERATION
startTest−−−−−→

phase← TEST

state = WORKING∧ phase = TEST
completeTest−−−−−−−→

phase← OPERATION

state = FAILED∧ phase = TEST
repair−−−−→

state← WORKING,phase← OPERATION

Finally, the initial state is defined by the variable
valuation: state = WORKING, phase = OPERATION1.

3.2 Composition

One of the advantages of guarded transitions systems
over some other similar formalisms is that they are
highly compositional.

Formally, let M1 : 〈V1,E1, T1,A1, ι1〉 and M2 :
〈V2,E2, T2,A2, ι2〉 be two guarded transitions sys-
tems. Then the composition of M1 and M2, denoted
as M1⊗M2, is simply the guarded transitions system
〈V,E,T,A, ι〉 such that V = V1 ∪ V2, E = E1 ∪ E2,
T = T1 ∪ T2, A = A2 ◦A1 and ι = ι2 ◦ ι1.

The above principle extends to any number of
guarded transitions systems.



Example To represent the system of discussed ex-
ample in the previous section, it suffices to create two
copies of the above guarded transitions system and to
compose them (which is done automatically by the
AltaRica compiler).

In our example, it may be worth to introduce a flow
Boolean variable failed to tell when the system is
failed. The assertion defining this variable could be as
follows.
failed← A.state = FAILED∧ B.state = FAILED

3.3 Semantics

The semantics of a guarded transitions system S :
〈V,E,T,A, ι〉 is defined as the set of its possible exe-
cutions.

To define formally the executions, we need to in-
troduce the notion of schedule. A schedule of S :
〈V,E,T,A, ι〉 is a function from T to R+ ∪ {+∞}.

A schedule Γ is compatible with a state σ of the
guarded transitions system and a date d if the follow-
ing conditions hold for all transitions t : G

e−→ P of
T .

– d ≤ Γ(t) < +∞ if G(σ) = true.

– Γ(t) = +∞ if G(σ) = false.

Intuitively, an execution of S is a sequence:

〈σ0, d0,Γ0〉
t1−→ 〈σ1, d1,Γ1〉

t2−→ . . .
tn−→ 〈σn, dn,Γn〉

where n≥ 0, the σi’s are states of S, the di’s are dates
i.e. non negative real numbers verifying 0 = d0 ≤
d1 ≤ . . . ≤ dn, each Γi is a schedule compatible with
σi and di and finally the ti’s are transitions of S.

The set of valid executions is defined recursively as
follows.

The empty execution 〈ι,0,Γ0〉 is a valid execution
if the schedule Γ0 is such that for all transitions t :
G

e−→ P of T :

– Γ0(t) = delay(e) if G(ι) = true.

– Γ0(t) = +∞ if G(ι) = false.

Now, if Λ = 〈σ0, d0,Γ0〉
t1−→ . . .

tn−→ 〈σn, dn,Γn〉,
n ≥ 0, is a valid execution, then so is the execution
Λ

tn+1−−→ 〈σn+1, dn+1,Γn+1〉 if the following conditions
hold, assuming tn+1 = Gn+1

en+1−−→ Pn+1.

– Gn+1(σn) = true.

– σn+1 = A(Pn+1(σn)), i.e. the firing of the transi-
tion tn+1 is performed in two steps: first, state
variables are updated by means of the action
Pn+1 of the transition, then flow variables are up-
dated by means of the assertion A.

– dn+1 = Γn(tn+1) and there is no transition t of T
such that Γn(t) < Γn(tn+1).

– Γn+1 is obtained from Γn by applying the follow-
ing rules to all transitions t : G

e−→ P of T .

– If G(σn+1) = true, then:
– If G(σn) = true and t 6= tn+1, then

Γn+1(t) = Γn(t)

– Otherwise,

Γn+1(t) = dn+1 + delay(e)

– If G(σn+1) = false, then:

Γn+1(t) = +∞

Example Consider again our system of two compo-
nents.

At time 0, 4 transitions are fireable:
Transition Firing date
A.startTest1 2190
A.failure 5617
B.startTest1 4380
B.failure 4111
As A.startTest has the earliest firing date, it is

fired (at 2190). After its firing, 3 transitions are fire-
able:
Transition Firing date
A.completeTest 2190 + 0 = 2190
B.startTest1 4380
B.failure 4111
As A.completeTest has the earliest firing date, it

is fired (at 2190). After its firing, 4 transitions are fire-
able:
Transition Firing date
A.startTest 2190 + 4380 = 6570
A.failure 2190 + 6020 = 8210
B.startTest1 4380
B.failure 4111
As B.failure has the earliest firing date, it is fired

(at 4111). After its firing, 3 transitions are fireable:
Transition Firing date
A.startTest 6570
A.failure 8210
B.startTest1 4380
As B.startTest1 has the earliest firing date, it is

fired (at 4380). After its firing, 3 transitions are fire-
able:
Transition Firing date
A.startTest 6570
A.failure 8210
B.repair 4400
As B.repair has the earliest firing date, it is fired

(at 4400). After its firing, 4 transitions are fireable:
Transition Firing date
A.startTest 6570
A.failure 8210
B.startTest 4400 + 4380 = 8780
B.failure 4400 + 5201 = 9601
And so on. . .



This sequence shows how deterministic and
stochastic transitions can be intricated. In particular,
dates of tests are not decided once for all. They de-
pend on times to failure and to repair of the compo-
nent.

4 ABSTRACT SEMANTICS

4.1 Principle

The first idea to abstract the executions consists in as-
sociating an abstract delay delay? with each event of
the model. delay?(e) is simply the image of the func-
tion delay, i.e. an interval of non-negative real num-
bers.

We have to be a bit careful because some inter-
vals that are the images of distributions are closed
while some others are open (to the left and/or to the
right) and that we have to consider infinite bounds. A
solution consists in working only with closed inter-
vals, but in a non-standard arithmetic built over the
set R+

= R+ ∪ {ε,∞}, where ε and ∞ are respec-
tively infinitely small and infinitely big numbers ver-
ifying: ε+ ε = ε and ∞+ x =∞ for all x ∈ R+

. In
this way, the interval ]a, b[, a, b,∈ R+, can be encoded
as [a+ ε, b− ε]. Table 3 gives the abstract delays asso-
ciated with the most widely used distributions in Al-
taRica 3.0. Moreover, a transition whose guard is not
satisfied in the current state is scheduled in the inter-
val [∞,∞].

Table 3: Intervals associated with delay functions
Concrete delay Abstract delay
Dirac(t) [t, t]
UniformDeviate(l, h) [l, h]
Exponential(λ) [0 + ε,∞]
Weibull(α,β) [0 + ε,∞]
Empirical distribution [0 + ε,∞]

The second idea is to consider not the date at which
transitions are fired, but an interval of time within
which they are fired.

Assume that we are building the sequence under
study step by step and that the last transition we con-
sidered must be fired in the time interval [l, h]. As-
sume moreover that transitions t1, t2, . . . tn are sched-
uled in time intervals [l1, h1], [l2, h2], . . . , [ln, hn].
Then, we can make the following remarks.

1. We must have l ≤ li for all i = 1, . . . , n, because
the next transition cannot be scheduled in the
past.

2. We must have also h ≤ hi for all i = 1, . . . , n,
because if hi < h for some i, it means that the
transition ti must be fired before hi, therefore the
last transition must also be fired before hi.

3. For the same reason, we can choose ti as the next
transition to be fired only if there is no other tran-
sition tj such that hj < li.

4. Again for the same reason, if the transition ti
is fired, it is necessarily fired in the interval
[li, hmin], where hmin is the smallest of the hj’s.

5. If the transition ti is fired and the transition tj is
such that lj < li, then lj must be changed to li so
to obey our first remark.

6. Finally, if the transition ti is fired and a transi-
tion t associated with the interval [lt, ht] becomes
fireable (t can be the transition ti itself), then
t must be scheduled in the interval [li, hmin] +
[lt, ht] = [li + lt, hmin + ht].

We are now able to define formally the abstract se-
mantics of guarded transitions systems (and therefore
for AltaRica 3.0).

4.2 Formal Definition

The abstract semantics of a guarded transitions sys-
tem S : 〈V,E,T,A, ι〉 is defined as the set of its pos-
sible abstract executions.

To define formally the abstract executions, we need
to introduce the notion of abstract schedule. An ab-
stract schedule of S : 〈V,E,T,A, ι〉 is a function from
T to closed intervals over R+

.
A schedule Γ? is compatible with a state σ of the

guarded transitions system and the abstract date [l, h]
if the following conditions hold for all transitions t :

G
e−→ P of T , with Γ?(t) = [lt, ht].

– l ≤ lt <∞ and h ≤ ht if G(σ) = true.

– lt = ht =∞ if G(σ) = false.

An abstract execution of S is a sequence:

〈σ0, d
?
0,Γ

?
0〉

t1−→ 〈σ1, d
?
1,Γ

?
1〉

t2−→ . . .
tn−→ 〈σn, d?n,Γ?

n〉

where n ≥ 0, the σi’s are states of S, the d?i ’s are ab-
stract dates, i.e. time intervals, each Γ?

i is an abstract
schedule compatible with σi and d?i and finally the ti’s
are transitions of S.

The set of valid executions is defined recursively as
follows.

The empty abstract execution 〈σ0, [0,0],Γ?
0〉 is a

valid abstract execution if the abstract schedule Γ?
0 is

such that for all transitions t : G
e−→ P of T :

– Γ?
0(t) = delay?(e) if G(ι) = true.

– Γ?
0(t) = [∞,∞] if G(ι) = false.



If Λ = 〈σ0, [0,0],Γ?
0〉

t1−→ . . .
tn−→ 〈σn, [ln, hn],Γ?

n〉,
n ≥ 0, is a valid abstract execution, then so is the
abstract execution Λ

tn+1−−→ 〈σn+1, [ln+1, hn+1],Γ?
n+1〉

if the following conditions hold, assuming tn+1 =

Gn+1
en+1−−→ Pn+1, Γ∗n(tn+1) = [l?, h?] and

hmin = min
[l,h]=Γ?

n(t),t∈T
h.

– Gn+1(σn) = true.

– σn+1 = A(Pn+1(σn)).

– There is no transition t of T such that Γ?
n(t) =

[l, h] and h < l?.

– [ln+1, hn+1] = [l?, hmin].

– Γ?
n+1 is obtained from Γ?

n by applying the fol-
lowing rules to all transitions t : G

e−→ P of T
and Γ?

n(t) = [l, h].

– If G(σn+1) = true, then:
– If G(σn) = true and t 6= tn+1, then

Γ?
n+1(t) = [max(ln+1, l), h]

– Otherwise,

Γ?
n+1(t) = [ln+1, hn+1] + delay?(e)

– If G(σn+1) = false, then:

Γ?
n+1(t) = [∞,∞]

Example We shall consider the abstract version of
the execution given in the previous section.

At time 0, 4 transitions are fireable:
Transition Abstract date
A.startTest1 [2190,2190]
A.failure [0 + ε,∞]
B.startTest1 [4380,4380]
B.failure [0 + ε,∞]
A.startTest1 is fired at the abstract date

[2190,2190]. After its firing, 3 transitions are fireable:
Transition Abstract date
A.completeTest [2190,2190] + [0,0] =

[2190,2190]
B.startTest1 [4380,4380]
B.failure [2190 + ε,∞]
A.completeTest is fired at the abstract date

[2190,2190]. After its firing, 4 transitions are fireable:
Transition Abstract date
A.startTest [2190,2190] + [4380,4380] =

[6570,6570]
A.failure [2190,2190] + [0 + ε,∞] =

[2190 + ε,∞]
B.startTest1 [4380,4380]
B.failure [2190 + ε,∞]
B.failure is fired at the abstract date [2190 +

ε,4380]. After its firing, 3 transitions are fireable:

Transition Abstract date
A.startTest [6570,6570]
A.failure [2190 + ε,∞]
B.startTest1 [4380,4380]
B.startTest1 is fired at the abstract date

[4380,4380]. After its firing, 3 transitions are fireable:
Transition Abstract date
A.startTest [6570,6570]
A.failure [4380 + ε,∞]
B.repair [4380,4380] + [12,24] =

[4392,4404]
B.repair is fired at the abstract date [4392,4404].

After its firing, 4 transitions are fireable:
Transition Abstract date
A.startTest [6570,6570]
A.failure [4392 + ε,∞]
B.startTest [4392,4404] + [4380,4380] =

[8872,8884]
B.failure [4392,4404] + [0 + ε,∞] =

[4392 + ε,∞]
And so on. . .

4.3 Bisimulation

The key mathematical property is that abstract
and concrete executions are bisimilar: any concrete
(timed, stochastic) execution can be simulated by an
abstract execution and reciprocally any abstract exe-
cution corresponds to at least one concrete execution.

Theorem 1. For any concrete execution Λ =

〈σ0, d0,Γ0〉
t1−→ . . .

tn−→ 〈σn, dn,Γn〉, of the Timed
GTS = 〈V,E,T, ι,A, delay〉 it exists an abstract ex-
ecution Λa = 〈σ0, d

?
0,Γ

?
0〉

t1−→ 〈σ1, d
?
1,Γ

?
1〉

t2−→ . . .
tn−→

〈σn, d?n,Γ?
n〉, such that the following properties hold:

– ∀n ≥ 0 dn ∈ d?n;

– ∀n ≥ 0 ∀t ∈ T Γn(t) ∈ Γ?
n(t).

Theorem 2. Any abstract execution Λa =

〈σ0, d
?
0,Γ

?
0〉

t1−→ 〈σ1, d
?
1,Γ

?
1〉

t2−→ . . .
tn−→ 〈σn, d?n,Γ?

n〉
of the Timed GTS = 〈V,E,T, ι,A, delay〉 cor-
responds to at least one concrete execution
Λ = 〈σ0, d0,Γ0〉

t1−→ . . .
tn−→ 〈σn, dn,Γn〉, such

that the following properties hold:

– ∀n ≥ 0 dn ∈ d?n;

– ∀n ≥ 0 ∀t ∈ T Γn(t) ∈ Γ?
n(t).

5 CONCLUSION AND PERSPECTIVES

In this article, we show how the AltaRica 3.0 stepwise
simulator has been greatly improved by the introduc-
tion of an abstract notion of time. The abstract notion
of time enables to reconcile both stochastic and step-
wise simulations of AltaRica 3.0 models.

We show that abstract and concrete simulations are
bisimilar: any concrete (timed, stochastic) execution



can be simulated by an abstract execution and recip-
rocally any abstract execution corresponds to at least
one concrete execution.

We illustrate our purpose using a motivating exam-
ple that mix both stochastic and deterministic transi-
tions.

The introduction of the abstract notion of time to
the stepwise simulator paves the way to the design of
efficient model-checking algorithms, and in particu-
lar to the design of generators of sequences of events
leading to a failure state.

The next step of our work is the application of the
presented results for the development of an efficient
sequence generator for AltaRica 3.0 models.

REFERENCES

Aupetit, B., M. Batteux, A. Rauzy, & J.-M. Roussel (2015,
September). Improving performance of the AltaRica 3.0
stochastic simulator. In L. Podofillini, B. Sudret, B. Sto-
jadinovic, E. Zio, and W. Kröger (Eds.), Proceedings of
Safety and Reliability of Complex Engineered Systems: ES-
REL 2015, pp. 1815–1824. CRC Press.

Batteux, M., T. Prosvirnova, & A. Rauzy (2017, September). Al-
tarica 3.0 assertions: the why and the wherefore. Journal of
Risk and Reliability.

Brameret, P.-A., A. Rauzy, & J.-M. Roussel (2015, July). Au-
tomated generation of partial markov chain from high level
descriptions. Reliability Engineering and System Safety 139,
179–187.

Cassandras, C. G. & S. Lafortune (2008). Introduction to Dis-
crete Event Systems. New-York, NY, USA: Springer.

Clarke, E. M., O. Grumberg, & D. A. Peled (2000, February).
Model Checking. Cambridge, MA, USA: MIT Press.

Cousot, P. & R. Cousot (1977). Abstract interpretation: a unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. In Conference Record of the
Fourth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, New York, NY, USA, pp.
238–252. ACM Press. Los Angeles, California.

Matloff, N. & P. J. Salzman (2008). The Art of Debugging
with GDB, DDD, and Eclipse. San Fransisco, CA, USA: No
Starch Press.

Milner, R. (1989). Communication and Concurrency. Prentice-
Hall international series in computer science. Upper Saddle
River, New Jersey, USA: Prentice Hall.

Prosvirnova, T., M. Batteux, P.-A. Brameret, A. Cherfi, T. Friedl-
huber, J.-M. Roussel, & A. Rauzy (2013, September). The al-
tarica 3.0 project for model-based safety assessment. In Pro-
ceedings of 4th IFAC Workshop on Dependable Control of
Discrete Systems, DCDS’2013, York, Great Britain, pp. 127–
132. International Federation of Automatic Control.

Prosvirnova, T. & A. Rauzy (2015). Automated generation of
minimal cutsets from altarica 3.0 models. International Jour-
nal of Critical Computer-Based Systems 6(1), 50–79.

Rauzy, A. (2008). Guarded transition systems: a new
states/events formalism for reliability studies. Journal of Risk
and Reliability 222(4), 495–505.

Zimmermann, A. (1976). Stochastic Discrete Event Systems.
Berlin, Heidelberg, Germany: Springer.


	Introduction
	Illustrative Example
	Timed/Stochastic Guarded Transitions Systems
	Definition
	Composition
	Semantics

	Abstract Semantics
	Principle
	Formal Definition
	Bisimulation

	CONCLUSION AND PERSPECTIVES

