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We devise a rst-order in time convex splitting scheme for a nonlocal Cahn HilliardOono type equation with a transport term and subject to homogeneous Neumann boundary conditions. The presence of the transport term is not a minor modication, since, for instance, we lose the unconditional unique solvability and stability. However, we prove the stability of our scheme when the time step is suciently small. Furthermore, we prove the consistency of this scheme and the convergence to the exact solution. Finally, we give some numerical simulations which conrm our theoretical results and demonstrate the performance of our scheme not only for phase separation, but also for crystal nucleation, for several choices of the interaction kernel.

Introduction

The authors in [START_REF] Cahn | Free energy of a nonuniform system I. Interfacial free energy[END_REF] proposed the following GinzburgLandau type free energy:

(1.1)

E CH (ϕ) = Ω ε 2 2 |∇ϕ| 2 + F (ϕ) dx
in order to describe the phase separation of a binary mixture, and, more precisely, the so-called spinodal decomposition. Here, Ω ⊂ R N , N 3, is the domain occupied by the mixture components A and B, with respective mass fractions ϕ A and ϕ B , and the order parameter is dened by ϕ = ϕ A -ϕ B ϕ A +ϕ B . Furthermore, ε is the diuse interface thickness and

ε 2
2 |∇ϕ| 2 is a surface tension term which ensures a smooth transition between the two pure states. Finally, F is a double-well potential which favors phase separation.

Once the free energy is dened, the phase separation can be described as a gradient ow (see, for instance, [START_REF] Fife | Models for phase separation and their mathematics[END_REF]),

∂ϕ ∂t = ∆µ, µ := ∂E CH ∂ϕ = f (ϕ) -ε 2 ∆ϕ,
where µ is the chemical potential and f (ϕ) = F (ϕ). This corresponds to the well-known CahnHilliard equation which plays an important role in Materials Science. In particular, phase separation phenomena play an essential role in the mechanical properties of an alloy (for instance, its strength). We refer the reader to, e.g., [START_REF] Cahn | On spinodal decomposition[END_REF], [START_REF] Cahn | Free energy of a nonuniform system I. Interfacial free energy[END_REF], [START_REF] Cherls | The CahnHilliard equation with logarithmic potentials[END_REF], [START_REF] Elliott | The CahnHilliard model for the kinetics of phase separation[END_REF], [START_REF] Kohn | Upper bounds for coarsening rates[END_REF], [START_REF] Langer | Theory of spinodal decomposition in alloys[END_REF], [START_REF] Maier-Paape | Spinodal decomposition for the CahnHilliard equation in higher dimensions. Part I: Probability and wavelength estimate[END_REF], [START_REF] Maier-Paape | Spinodal decomposition for the CahnHilliard equation in higher dimensions: Nonlinear dynamics[END_REF], [START_REF] Miranville | The CahnHilliard equation with singular potentials and dynamic boundary conditions[END_REF], [START_REF] Novick-Cohen | The CahnHilliard equation: Mathematical and modeling perspectives[END_REF], and [START_REF] Novick-Cohen | The CahnHilliard equation[END_REF] for more details.

It is worth recalling that CahnHilliard type equations are also relevant in other contexts, namely, the ones in which phase separation and coarsening/clustering processes can be observed or come into play. We can mention, for instance, population dynamics [START_REF] Cohen | A generalized diusion model for growth and dispersion in a population[END_REF], bacterial lms [START_REF] Klapper | Role of cohesion in the material description of biolms[END_REF], wound healing and tumor growth [START_REF] Cherls | On a generalized CahnHilliard equation with biological applications[END_REF], [START_REF] Fakih | A CahnHilliard equation with a proliferation term for biological and chemical applications[END_REF], [START_REF] Fakih | Asymptotic behavior of a generalized CahnHilliard equation with a mass source[END_REF], [START_REF] Khain | A generalized CahnHilliard equation for biological applications[END_REF], [START_REF] Miranville | Asymptotic behavior of a generalized CahnHilliard equation with a proliferation term[END_REF], and [START_REF] Miranville | A generalized CahnHilliard equation with logarithmic potentials[END_REF], thin lms [START_REF] Oron | Long-scale evolution of thin liquid lms[END_REF] and [START_REF] Thiele | Thin liquid lms on a slightly inclined heated plate[END_REF], image processing and inpainting [START_REF] Bertozzi | Analysis of a two-scale CahnHilliard model for binary image inpainting[END_REF], [START_REF] Chalupeckí | Numerical studies of CahnHilliard equations and applications in image processing[END_REF], [START_REF] Cherls | Finite-dimensional attractors for the BertozziEsedoglu GilletteCahnHilliard equation in image inpainting[END_REF], [START_REF] Cherls | On the BertozziEsedogluGilletteCahnHilliard equation with logarithmic nonlinear terms[END_REF], [START_REF] Cherls | A CahnHilliard system with a delity term for color image inpainting[END_REF], [START_REF] Cherls | A complex version of the CahnHilliard equation for grayscale image inpainting[END_REF], [START_REF] Dolcetta | Area-preserving curve-shortening ows: from phase separation to image processing[END_REF], and [START_REF] Schönlieb | Unconditionally stable schemes for higher order inpainting[END_REF], and even the rings of Saturn [START_REF] Tremaine | On the origin of irregular structure in Saturn's rings[END_REF] and the clustering of mussels [START_REF] Liu | Phase separation explains a new class of self-organized spatial patterns in ecological systems[END_REF].

However, the purely phenomenological derivation of the CahnHilliard equation is somehow unsatisfactory from a physical point of view. This led G. Giacomin and J.L. Lebowitz to consider the problem of phase separation from a microscopic point of view, using a statistical mechanics approach (see [START_REF] Giacomin | Exact macroscopic description of phase segregation in model alloys with long range interactions[END_REF] and also [START_REF] Giacomin | Phase segregation dynamics in particle systems with long range interactions. I. Macroscopic limits[END_REF] and [START_REF] Giacomin | Phase segregation dynamics in particle systems with long range interaction II. Interface motion[END_REF]). Performing the hydrodynamic limit, they deduced a continuum model which is a nonlocal version of the CahnHilliard equation. This model is characterized by the following Helmholtz free energy functional

(1.2) E nCH1 (ϕ) = - 1 2 Ω Ω J(x -y)ϕ(x)ϕ(y)dxdy + Ω F (ϕ(x))dx,
where J : R N → R is a smooth convolution kernel such that J(x) = J(-x). Furthermore, the convex potential F here is dened as follows:

F (s) = s ln(s) + (1 -s) ln(1 -s), 0 < s < 1.
This potential can be approximated by a convex polynomial. In that case, the nonlocal version of the CahnHilliard system reads

(1.3) ∂ϕ ∂t = ∆µ, µ := ∂E nCH1 ∂ϕ = f (ϕ) -J ϕ.
We refer the reader to the recent paper by [START_REF] Gal | The nonlocal CahnHilliard equation with singular potential: well-posedness, regularity and strict separation property[END_REF] (see addition in the references) for a rather complete theoretical picture.

On the other hand, P.W. Bates and J. Han in [START_REF] Bates | The Neumann boundary problem for a nonlocal CahnHilliard equation[END_REF] and [START_REF] Bates | The Dirichlet boundary problem for a nonlocal CahnHilliard equation[END_REF] proposed the following nonlocal version of the CahnHilliard energy (1.4)

E nCH2 (ϕ) = 1 4 Ω Ω J(x -y)(ϕ(x) -ϕ(y)) 2 dxdy + Ω F (ϕ(x))dx,
where F is the double-well potential as in the classical CahnHilliard model. On account of (1.2) and (1.4), we introduce the following energy, for α 0,

(1.5) E nCH (ϕ) = 1 4 Ω Ω J(x -y)(ϕ(x) -ϕ(y)) 2 dxdy + α -1 2 
where, for α = 0, we recover the GiacominLebowitz model (1.2) while for α = 1, we recover the BatesHan model (1.4). Therefore, we consider

(1.6) ∂ϕ ∂t = ∆µ, µ := ∂E nCH ∂ϕ = α(J 1)ϕ + f (ϕ) -J ϕ
which can be rewritten as the following convective nonlocal and nonlinear diusion equation:

(1.7)

∂ϕ ∂t = ∇ • ((f (ϕ) + α(J 1))∇ϕ) + α∇ • ((∇J 1)ϕ) -∇ • (∇J ϕ).
The term [f (ϕ) + αJ 1] is referred to as the diusive mobility, or just the diusivity. We assume that (1.6) is strictly non-degenerate,

(1.8) f (ϕ) + α(J 1)(x) β > 0, a.a. x ∈ Ω, α ∈ R + .
Note that, when α = 0, we do not need assumption (1.8) owing to the fact that F is already strictly convex in that case.

A further example of a nonlocal CahnHilliard equation is obtained by considering the following Ohta-Kawasaki free energy (1.9)

E CHO (ϕ) = ε 2 2 Ω |∇ϕ| 2 dx + Ω F (ϕ)dx + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ )(ϕ(y) -ϕ )dxdy,
where G describes the long-range interactions and σ > 0. In particular, in Oono's model (see [START_REF] Oono | Computationally ecient modeling of ordering of quenched phases[END_REF], cf. also [START_REF] Villain-Guillot | Phases modulées et dynamique de CahnHilliard[END_REF]), G is the Green function associated with the Laplace operator (up to a multiplicative constant). If ϕ is equal to the spatial average of ϕ, that is,

ϕ = 1 meas(Ω) Ω ϕdx,
and no-ux boundary conditions are considered, the gradient ow for this energy can be derived exactly as for the CahnHilliard equation, namely,

∂ϕ ∂t = ∆ ∂E CHO ∂ϕ , which is equivalent to ∂ϕ ∂t + σ(ϕ -m) = ∆µ, µ = -ε 2 ∆ϕ + f (ϕ).
In that case, m = ϕ so the mass is still conserved. However, more generally, m can be a constant which is not necessarily equal to the spatial average of the initial datum. This is the so-called o-critical case and the total mass is conserved only asymptotically. Indeed, in that case we have, for all t ∈ [0, T ],

ϕ = m + e -σt ( ϕ 0 -m).
This equation is known as the CahnHilliardOono equation and was introduced to model long-range (nonlocal) interactions; actually, this equation was also proposed in order to simplify numerical simulations (see [START_REF] Oono | Computationally ecient modeling of ordering of quenched phases[END_REF]). Short-range interactions tend to homogenize the system, whereas long-range ones forbid the formation of too large structures; the competition between these two eects translates into the formation of a micro-separated state (also called super-crystal) with a spatially modulated order parameter, dening structures with a uniform size (see [START_REF] Villain-Guillot | Phases modulées et dynamique de CahnHilliard[END_REF] for more details and references). Note that the long-range interactions are repulsive when ϕ(x) and ϕ(y) have opposite signs and thus favor the formation of interfaces (see [START_REF] Villain-Guillot | Phases modulées et dynamique de CahnHilliard[END_REF] and the references therein). For theoretical results see [START_REF] Giorgini | The CahnHilliardOono equation with singular potential[END_REF], [START_REF] Miranville | Asymptotic behavior of the CahnHilliard-Oono equation[END_REF] and the references therein (see also [START_REF] Aristotelous | A mixed discontinuous Galerkin, convex splitting scheme for a modied Cahn-Hilliard equation and an ecient nonliniear multigrid solver[END_REF] for numerical results in the conserved case).

In this article, on account of the previous considerations, we consider a Cahn-Hilliard-Oono type equation which accounts for both the nonlocal eects. More precisely we want to analyse numerically the following initial and boundary value problem:

(1.10)

                 ∂ϕ ∂t + ∇ • (uϕ) + σ(ϕ -m) = ∆µ + g, in Ω × (0, T ), µ = α(J 1)ϕ -J ϕ + f (ϕ), in Ω × (0, T ), ∂µ ∂n = 0, on ∂Ω × (0, T ), ϕ(0) = ϕ 0 , in Ω.
More precisely, here we shall analyze the case α = 1 while the case α = 0 will be studied elsewhere. Therefore our initial and boundary value problem can be written as follows (1.11)

                 ∂ϕ ∂t + ∇ • (uϕ) + σ( ϕ -m) = ∆µ + g, in Ω × (0, T ), µ = (J 1)ϕ -J ϕ + f (ϕ) + σG (ϕ -ϕ ), in Ω × (0, T ), ∂µ ∂n = 0, on ∂Ω × (0, T ), ϕ(0) = ϕ 0 , in Ω,
where G is the Green function dened in (1.9). This equation is the fully nonlocal version of the CahnHilliardOono equation with a transport term which accounts for a possible ow of the mixture at a certain given velocity eld u and an external source g. Furthermore, m is a real constant, that is the o-critical case is included. This equation was studied in [START_REF] Porta | Convective nonlocal CahnHilliard equations with reaction terms[END_REF] (see also its references). In particular, well-posedness and the existence of the global attractor were established. Furthermore, well-posedness results for (1.10) with singular potential and a degenerate mobility were obtained in [START_REF] Melchionna | On a nonlocal CahnHilliard equation with a reaction term[END_REF]. As far as the classical nonlocal CahnHilliard equation is concerned (i.e. u = 0, g = 0 and σ = 0), very few results dedicated to numerical simulations, or numerical methods, are available. The authors in [START_REF] Abukhdeir | Long-time integration methods for mesoscopic models of pattern-forming systems[END_REF] consider an implicit-explicit time stepping framework for a nonlocal system modeling turbulence, where, as in the present article, the nonlocal term is treated explicitly. Furthermore, the nite element approximation (in space) of nonlocal peridynamic equations with various boundary conditions is addressed in [START_REF] Zhou | Mathematical and numerical analysis of linear peridynamic models with nonlocal boundary conditions[END_REF] (cf. [START_REF] Du | Analysis and approximation of nonlocal diusion problems with volume constraints[END_REF] for a review). In addition, a nite dierence method for the nonlocal AllenCahn equation with non-periodic boundary conditions is applied and analyzed in [START_REF] Bates | Numerical analysis for a nonlocal AllenCahn equation[END_REF]. The work in [START_REF] Hartley | A semi-implicit spectral method for stochastic nonlocal phase-eld models[END_REF] uses a spectral-Galerkin method to solve a nonlocal AllenCahn equation, but with a stochastic noise term and an equation modeling heat ow. For other articles dealing with approximating solutions to the nonlocal CahnHilliard equation, see [START_REF] Abukhdeir | Long-time integration methods for mesoscopic models of pattern-forming systems[END_REF], [START_REF] Gajewski | On a nonlocal model of image segmentation[END_REF], [START_REF] Hornthrop | Spectral methods for mesoscopic models of pattern formation[END_REF], and [START_REF] Sachs | Ecient solution of a partial integro-dierential equation in nance[END_REF]. Finally, the authors in [START_REF] Guan | A Convergent convex splitting scheme for the periodic nonlocal CahnHilliard equation[END_REF] and [START_REF] Guan | Second-order convex splitting schemes for periodic nonlocal CahnHilliard and Allen-Cahn equations[END_REF] study the nonlocal CahnHilliard equation with periodic boundary conditions and nite dierence discretizations in space. Recently, stronger convergence results of convex splitting schemes for the periodic nonlocal Allen Cahn and CahnHilliard equations have been obtained in [START_REF] Guan | Convergence analysis for second order accurate convex splitting schemes for the periodic nonlocal Allen-Cahn and CahnHilliard equations[END_REF].

Here we study the nite element discretization in space for homogenous Neumann boundary conditions. In that case, contrary to periodic boundary conditions, we lose the symmetry property on the convolution kernel, i.e., the convolution product between the interaction kernel and a constant is not a constant.

Our main aim is to propose a numerical approach for the continuous problem (1.10) with a stable nite element scheme. We use the convex splitting method proposed by Eyre in [START_REF] Eyre | An unconditionally stable one-step scheme for gradient systems[END_REF] and [START_REF] Eyre | Unconditionally gradient stable time marching the CahnHilliard equation[END_REF] for gradient ow-derived equations which results in an unconditionally gradient stable time discretization scheme. In particular, the scheme is stable for any arbitrarily large time step. The idea consists in dividing the energy functional into two parts, a convex one and a concave one. Then, the convex part is treated implicitly, while the concave one is treated explicitly. Unfortunately, in our scheme, we lose the unconditionally gradient stable time discretization, due of the presence of the transport term. Using the a priori stability, we then prove the time convergence of our scheme to the exact solution.

We are also able, based on the structure of our implicit-explicit method and owing to the fact that we can separate the nonlinear and nonlocal terms, to implement an ecient nonlinear solver (see Section 4).

It should be noted here that the numerical computations of the nonlocal terms are particularly heavy: computing the nonlocal terms at every iteration thus becomes very dicult when the mesh discretization is small. To overcome this, we consider, in the numerical simulations, a periodic domain Ω (e.g., Ω has a rectangular form in R 2 ) and we use the DFFT (Discrete Fast Fourier Transformation) function to compute the nonlocal terms.

In particular, we give numerical simulations which conrm our theoretical results and demonstrate the eciency of our scheme.

Preliminaries

2.1. Notation. We denote by ((•, •)) the usual L 2 -scalar product, with associated norm

• . We further set • * = (-∆) -1 2 •
, where (-∆) -1 denotes the inverse minus Laplace operator associated with Neumann boundary conditions and acting on functions with null spatial average. More generally, • X denotes the norm of the real Banach space X.

We further denote by v the spatial average of a function u

∈ L 1 (Ω), v = 1 meas(Ω) v, 1 (H 1 (Ω)) * ,H 1 (Ω) .
Therefore, the norm

v -v 2 * + v 2 1 2
is equivalent to the usual norm of (H 1 (Ω)) * .

2.2. Assumptions. We make the following assumptions:

(A1) Ω ⊂ R N , N ≤ 3, is a bounded domain with a smooth boundary. (A2) J : R N → R satises J = J 1 -J 2 , where J 1 , J 2 are nonnegative functions in W 1,1 (R N ). (A3) J 1 and J 2 are even, i.e., J i (-x) = J i (x), ∀x ∈ R N , i = 1, 2. (A4) f (ϕ) + (J 1)(x) β > 0, a.a. x ∈ Ω. (A5) F (s) = 1 4 s 4 + γ 1 -γ 2 2 s 2 , where γ i , i = 1, 2, are nonnegative constants. (A6) G : R N → R is the Green function (cf. (1.9)). (A7) σ is a nonnegative constant. (A8) m is a given constant. (A9) u ∈ (L ∞ (Ω) ∩ H 1 0 (Ω)) N . (A10) g ∈ (H 1 (Ω)) * .
We now state the existence and uniqueness of a weak solution (see [START_REF] Porta | Convective nonlocal CahnHilliard equations with reaction terms[END_REF]). Proposition 2.1. Let ϕ 0 ∈ L 2 (Ω) be such that F (ϕ 0 ) ∈ L 1 (Ω) and assume that (A1)-(A10) are satised. Then, for every T > 0, there exists a unique weak solution

ϕ to problem (1.10) on [0, T ] such that ϕ ∈ L ∞ (0, T ; L 2 (Ω)) ∩ L 2 (0, T ; H 1 (Ω)).
Remark 2.2. In the sequel for some results, we will require a higher regularity of the solution. To achieve that, the initial datum should be more regular as well as the interaction kernel J. For details the reader is referred to [START_REF] Bates | The Neumann boundary problem for a nonlocal CahnHilliard equation[END_REF] where the existence of a classical solution is established (see also [START_REF] Gal | The nonlocal CahnHilliard equation with singular potential: well-posedness, regularity and strict separation property[END_REF] for the singular potential case). The presence of an additional linear reaction term does not aect the regularity results.

2.3. Convex energy splitting. We consider the following nonlocal energy:

(2.1)

E(ϕ) = 1 4 Ω Ω J(x -y)((ϕ(x) -ϕ(y)) 2 dxdy + Ω F (ϕ)dx + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ )(ϕ(y) -ϕ )dxdy.
For σ = 0 in (2.1), we obtain energy (1.5) which can be related to the (local) Ginzburg Landau energy (1.1). This relationship between the local and nonlocal energies can formally be obtained by using a Taylor expansion. In particular, noting that (ϕ(x)-ϕ(y)) ≈ (x -y) • ∇ϕ(x), we nd, for J 2 = 0 (J = J 1 ),

1 4 Ω Ω J(x -y)((ϕ(x) -ϕ(y)) 2 dxdy ≈ 1 4 Ω Ω J(x -y)|x -y| 2 |∇ϕ| 2 dxdy = ε 2 2 Ω |∇ϕ| 2 dx,
for a suitable choice of J. Furthermore, the energy (1.5) can also be related to the phase eld crystal (PFC) energy (see, e.g. [START_REF] Grasselli | Well-posedness and longtime behavior for the modied phase-eld crystal equation[END_REF] and references therein)

(2.

2)

E P F C (ϕ) = Ω 1 2 (∆ϕ) 2 -|∇ϕ| 2 + 1 4 ϕ 4 + 1 -ε 2 ϕ 2 dx.
To obtain this relationship, we use once more the Taylor expansion. In particular, since

(ϕ(x) -ϕ(y)) ≈ (x -y) • ∇ϕ(x) + |x -y| 2 2 ∆ϕ,
we get

1 4 Ω Ω J(x -y)((ϕ(x) -ϕ(y)) 2 dxdy = 1 4 Ω Ω J 1 (x -y)((ϕ(x) -ϕ(y)) 2 dxdy - 1 4 Ω Ω J 2 (x -y)((ϕ(x) -ϕ(y)) 2 dxdy ≈ 1 4 Ω Ω J 1 (x -y) (x -y) • ∇ϕ(x) + |x -y| 2 2 ∆ϕ 2 dxdy - 1 4 Ω Ω J 2 (x -y) (x -y) • ∇ϕ(x) 2 dxdy = 1 2 Ω (∆ϕ) 2 -|∇ϕ| 2 dx,
for suitable choices of J 1 and J 2 and for γ 1 = 1 and γ 2 = ε. Thus we recover energy (2.2).

From assumptions (A3) and (A6), we can rewrite (2.1) in the following form:

(2.

3)

E(ϕ) = 1 2 (((J 1)ϕ, ϕ)) + ((F (ϕ), 1)) - 1 2 ((J ϕ, ϕ)) + σ 2 ((G (ϕ -ϕ ), (ϕ -ϕ ))).
We further have, also owing to assumptions (A3) and (A6),

1 4 Ω Ω J(x -y)(ϕ(x) -ϕ(y)) 2 dxdy + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ )(ϕ(y) -ϕ )dxdy = 1 2 Ω Ω J 1 (x -y)(ϕ(x)) 2 dxdy - 1 2 Ω Ω J 1 (x -y)ϕ(x)ϕ(y)dxdy - 1 4 Ω Ω J 2 (x -y)(ϕ(x) -ϕ(y)) 2 dxdy - σ 4 Ω Ω G(x -y)(ϕ(x) -ϕ(y)) 2 dxdy + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ ) 2 dxdy = - 1 4 Ω Ω J 1 (x -y)(ϕ(x) + ϕ(y)) 2 dxdy - 1 4 Ω Ω J 2 (x -y)(ϕ(x) -ϕ(y)) 2 dxdy + Ω Ω J 1 (x -y)(ϕ(x)) 2 dxdy - σ 4 Ω Ω G(x -y)(ϕ(x) -ϕ(y)) 2 dxdy + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ ) 2 dxdy = - 1 4 Ω Ω J 1 (x -y)(ϕ(x) + ϕ(y)) 2 + (J 2 (x -y) + σG(x -y))(ϕ(x) -ϕ(y)) 2 dxdy + Ω Ω J 1 (x -y)(ϕ(x)) 2 dxdy + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ ) 2 dxdy.
Consequently, the convex splitting of E is given by

E(ϕ) = E 1 (ϕ) -E 2 (ϕ), where (2.4 
)

E 1 (ϕ) = Ω Ω J 1 (x -y)(ϕ(x)) 2 dxdy + σ 2 Ω Ω G(x -y)(ϕ(x) -ϕ ) 2 dxdy + c 1 2 Ω (ϕ(x)) 2 dx and (2.5) E 2 (ϕ) = 1 4 Ω Ω J 1 (x -y)(ϕ(x) + ϕ(y)) 2 +(J 2 (x -y) + σG(x -y))(ϕ(x) -ϕ(y)) 2 dxdy + c 1 2 Ω (ϕ(x)) 2 dx - Ω F (ϕ(x))dx.
Remark 2.3. If c 1 is large enough, it is easy to show that E 1 and E 2 are convex (for more details, see [START_REF] Guan | Numerical analysis of the rst and second order unconditional energy stable schemes for nonlocal CahnHilliard and AllenCahn equations[END_REF]).

Numerical scheme: definitions and properties

As far as the Euler time discretization for this problem is concerned, the time step δt > 0 is xed. The resulting time-stepping scheme reads

ϕ n+1 -ϕ n δt = ∆µ n+1 , µ n+1 := ∂E 1 ∂ϕ (ϕ n+1 ) - ∂E 2 ∂ϕ (ϕ n ).
This translates into a numerical scheme of the form ((1.11

) 1 -(1.11) 2 ) 1 δt (ϕ n+1 -ϕ n ) = ∆µ n+1 , µ n+1 = 2(J 1 1)ϕ n+1 + c 1 (ϕ n+1 -ϕ n ) + f (ϕ n ) -(J 1 1 + J 2 1)ϕ n + σ(G 1)(ϕ n+1 -ϕ n ) + σG (ϕ n -ϕ n ) -J ϕ n . where f (ϕ n ) = F (ϕ n ).
Using the properties of the Green function G when the problem is endowed with no-ux boundary conditions, the scheme can be rewritten as follows

1 δt (ϕ n+1 -ϕ n ) + σ(ϕ n -ϕ n ) = ∆µ n+1 , µ n+1 = 2(J 1 1)ϕ n+1 + c 1 (ϕ n+1 -ϕ n ) + f (ϕ n ) -(J 1 1 + J 2 1)ϕ n + σ(G 1)(ϕ n+1 -ϕ n ) -J ϕ n .
More generally, we replace ϕ by a real constant m which is not necessarily equal to the spatial average of the initial datum since we are interested to take the o-critical case into account. So we have the following numerical scheme:

1 δt (ϕ n+1 -ϕ n ) + σ(ϕ n -m) = ∆µ n+1 , µ n+1 = 2(J 1 1)ϕ n+1 + c 1 (ϕ n+1 -ϕ n ) + f (ϕ n ) -(J 1 1 + J 2 1)ϕ n + σ(G 1)(ϕ n+1 -ϕ n ) -J ϕ n ,
where we have used that -∆G(x, y) = δ(x -y), and δ is the Dirac mass at 0.

Finally, we add a transport term which models a possible ow of the mixture at a certain given velocity eld u, that is, the scheme reads

(3.1) 1 δt (ϕ n+1 -ϕ n ) + σ(ϕ n -m) + ∇ • (uϕ n+1 ) = ∆µ n+1 + g, (3.2) 
µ n+1 = 2(J 1 1)ϕ n+1 + c 1 (ϕ n+1 -ϕ n ) + f (ϕ n ) -(J 1 1 + J 2 1)ϕ n + σ(G 1)(ϕ n+1 -ϕ n ) -J ϕ n .
for a given external source g.

3.

1. Consistency of the scheme. Let ϕ n = ϕ(x, nδt) be the exact solution of (1.10) at time nδt, where ϕ is the exact solution. Then we have the following. Proposition 3.1. Let ϕ(x, 0) ∈ H 3 (Ω) be an initial datum for (1.10) which satises the compatibility condition ∂µ ∂ν = 0 a.e. on ∂Ω. We assume that ∂ 2 ϕ ∂t 2 (•) and ∂ϕ ∂t (•) H 1 (Ω) are continuous with respect to time. Then, the numerical scheme (3.1)(3.2) is consistent with the continuous equation (1.10) and is of order one in time. This yields that the local truncation error of the scheme, dened as (see [START_REF] Schönlieb | Unconditionally stable schemes for higher order inpainting[END_REF] for instance):

(3.3) τ n (δt) = 1 δt (ϕ n+1 -ϕ n ) -c 1 ∆(ϕ n+1 -ϕ n ) -2∆((J 1 1)ϕ n+1 ) -σ∆((G 1)(ϕ n+1 -ϕ n )) -∆(f (ϕ n )) + σ(ϕ n -m) + ∆((J 1 1 + J 2 1)ϕ n ) + ∆(J ϕ n ) + ∇ • (uϕ n+1 ) -g, satises τ n (H 1 (Ω)) * = O(δt)
, as δt → 0. Furthermore, the global truncation error of the scheme satises

τ (δt) = max n τ n (H 1 (Ω)) * = O(δt), as δt → 0.
Proof. First, observe (from (1.10), α = 1) that

- ∂ϕ ∂t (nδt) + 2∆((J 1 1)ϕ n ) -∇ • (uϕ n ) = σ(ϕ n -m) -∆((J 1)ϕ n ) + ∆(J ϕ n ) -∆f (ϕ n ) + 2∆((J 1 1)ϕ n ) -g = σ(ϕ n -m) + ∆(J ϕ n ) + ∆((J 1 1 + J 2 1)ϕ n ) -∆f (ϕ n ) -g.
Therefore, the local truncation error τ n (δt) is given by

(3.4) τ n (δt) = 1 δt (ϕ n+1 -ϕ n ) -c 1 ∆(ϕ n+1 -ϕ n ) -2∆((J 1 1)(ϕ n+1 -ϕ n )) -σ∆((G 1)(ϕ n+1 -ϕ n )) + ∇ • (u(ϕ n+1 -ϕ n )) - ∂ϕ ∂t (nδt).
Integrating (3.4) over Ω, we obtain

τ n (δt) = 1 δt (ϕ n+1 -ϕ n ) - ∂ϕ ∂t (nδt) 
and by using standard Taylor expansion arguments and the boundedness of ∂ 2 ϕ ∂t 2 (•) , it is easy to show that (3.5) τ n (δt) = O(δt).

On the other hand, we can rewrite the local truncation error τ n (δt) as follows:

τ n = τ 1 n (δt) + τ 2 n (δt),
where

τ 1 n (δt) = 1 δt (ϕ n+1 -ϕ n ) - ∂ϕ ∂t (nδt)
and

τ 2 n (δt) = -2∆((J 1 1)(ϕ n+1 -ϕ n )) + ∇ • (u(ϕ n+1 -ϕ n )) -c 1 ∆(ϕ n+1 -ϕ n ) -σ∆((G 1)(ϕ n+1 -ϕ n )).
By using standard Taylor expansion arguments and the boundedness of

∂ 2 ϕ ∂t 2 (•) , it is easy to show that τ 1 n = O(δt).
Owing to the last equality, (3.5), and the continuous embedding from (H 1 (Ω)) * to L 2 (Ω), we then have

τ 1 n (H 1 (Ω)) * = O(δt).

Moreover, writing

ϕ n+1 = ϕ n + δt ∂ϕ ∂t (t * ), t ∈ (nδt, (n + 1)δt),
we have

τ 2 n = -δt ∆ 2(J 1 1) ∂ϕ ∂t (t * ) + σ∆ (G 1) ∂ϕ ∂t (t * ) +δt∇. u ∂ϕ ∂t (t * ) -c 1 δt∆ ∂ϕ ∂t (t * )
and

(-∆) -1 2 τ 2 n = -δt(-∆) 1 2 2(J 1 1) ∂ϕ ∂t (t * ) + σ(G 1) ∂ϕ ∂t (t * ) -δt u ∂ϕ ∂t (t * ) -c 1 δt(-∆) 1 2 ∂ϕ ∂t (t * ).
Thus, we get

τ 2 n * c δt ∇ (J 1 1) ∂ϕ ∂t (t * ) + ∇ (G 1) ∂ϕ ∂t (t * ) + u ∂ϕ ∂t (t * ) + c 1 ∇ ∂ϕ ∂t (t * ) .
Hence we have 3.2. Solvability and stability of the scheme. Assume that u ≡ g ≡ 0 and σ = 0. Then, it can be shown that the convex splitting framework automatically confers unconditional solvability and stability properties to our scheme (see [START_REF] Eyre | An unconditionally stable one-step scheme for gradient systems[END_REF] and [START_REF] Eyre | Unconditionally gradient stable time marching the CahnHilliard equation[END_REF]). We now assume that u, g ≡ 0 and σ > 0. The solvability follows immediately from the fact that E 2 is convex, see [START_REF] Aristotelous | A mixed discontinuous Galerkin, convex splitting scheme for a modied Cahn-Hilliard equation and an ecient nonliniear multigrid solver[END_REF], [START_REF] Eyre | An unconditionally stable one-step scheme for gradient systems[END_REF], [START_REF] Eyre | Unconditionally gradient stable time marching the CahnHilliard equation[END_REF], [START_REF] Wang | An energy-stable and convergent nite-dierence scheme for the phase eld crystal equation[END_REF], and [START_REF] Wise | Unconditionally stable nite dierence, nonlinear multigrid simulation of the Cahn HilliardHeleShaw system of equations[END_REF].

τ 2 n (δt) * c δt ∂ϕ ∂t (t * ) 2 + ∇ ∂ϕ ∂t (t * ) 2 + ∂ϕ ∂t (t * ) 2 H 1 (Ω) ,
Stability is given by the following Theorem 3.2. Let ϕ n be the n-th iterate of (3.1)(3.2). We assume that there exists a constant β such that (3.6) 0 < β < J 1, a.e. in Ω, and

(3.7) |f (ϕ k )| β, for all k l -1, ∀l ∈ N.
Then, provided that δt is suciently small, for all positive integers l, the sequence ϕ l is bounded in L 2 (Ω) on a nite interval [0, T ], for lδt T , T > 0 xed, i.e., ϕ l 2 + δt ∇ϕ l 2 C, where C is a nonnegative constant.

Proof. We have, owing to Young's inequality and multiplying (3.1) by ψ = 2δtϕ n+1 , (3.8)

ϕ n+1 2 -ϕ n 2 + 2δt((∇µ n+1 , ∇ϕ n+1 )) 2δt((uϕ n+1 , ∇ϕ n+1 )) + 2δt((g, ϕ n+1 )) -2σδt((ϕ n -m, ϕ n+1 )). Now, multiply (3.2) by -2δt∆ϕ n+1 to obtain (3.9) 2δt((∇µ n+1 , ∇ϕ n+1 )) = 4δt((∇[(J 1 1)ϕ n+1 ], ∇ϕ n+1 )) +2σδt((∇[(G 1)(ϕ n+1 -ϕ n )], ∇ϕ n+1 )) + 2c 1 δt((∇ϕ n+1 -∇ϕ n , ∇ϕ n+1 )) +2δt((f (ϕ n )∇ϕ n , ∇ϕ n+1 )) -2δt((∇[(J 1 1 + J 2 1)ϕ n ], ∇ϕ n+1 )) -2δt((∇(J ϕ n ), ∇ϕ n+1 )).
Collecting (3.9), on account of (3.8), we infer

(3.10) ϕ n+1 2 -ϕ n 2 -2c 1 δt((∇ϕ n+1 -∇ϕ n , ∇ϕ n+1 )) -4δt((∇[(J 1 1)ϕ n+1 ], ∇ϕ n+1 )) -2σδt((∇[(G 1)(ϕ n+1 -ϕ n )], ∇ϕ n+1 )) -2δt((f (ϕ n )∇ϕ n , ∇ϕ n+1 )) + 2δt((∇[(J 1 1 + J 2 1)ϕ n ], ∇ϕ n+1 )) -2σδt(((ϕ n -m), ϕ n+1 )) + 2δt((∇(J ϕ n ), ∇ϕ n+1
)) +2δt(((uϕ n+1 , ∇ϕ n+1 )) + 2δt((g, ϕ n+1 ))) = I + II + III + IV + V + VI + VII + VIII + IX. Applying Young's inequality, we have

(3.11) I -c 1 δt ∇ϕ n+1 2 + c 1 δt ∇ϕ n 2 , (3.12) II = -4δt(((J 1 1)∇ϕ n+1 , ∇ϕ n+1 )) -4δt((∇(J 1 1)ϕ n+1 , ∇ϕ n+1 )) -4δt Ω (J 1 1)|∇ϕ n+1 | 2 dx + 4 κ δt J 1 2 W 1,1 ϕ n+1 2 + κδt ∇ϕ n+1 2
, and (3.13)

III -σδt Ω (G 1)|∇ϕ n+1 | 2 dx + σδt Ω (G 1)|∇ϕ n | 2 dx + 2σ 2 κ δt G 2 W 1,1 ( ϕ n+1 2 + ϕ n 2 ) + κδt ∇ϕ n+1 2 ,
for all κ > 0. Furthermore, owing to assumption (3.7), (3.14) IV βδt( ∇ϕ n+1 2 + ∇ϕ n 2 ).

Observe now that

(3.15) V δt Ω (J 1 1 + J 2 1)|∇ϕ n+1 | 2 dx +δt Ω (J 1 1 + J 2 1)|∇ϕ n | 2 dx + c κ δt( J 1 2 W 1,1 + J 2 2 W 1,1 ) ϕ n 2 + κδt ∇ϕ n+1 2 ,
for all κ > 0. Besides, we further have

(3.16) VI σδt ϕ n 2 + 2σδt ϕ n+1 2 + σm 2 |Ω|δt and (3.17) VII κδt ∇ϕ n+1 2 + J 2 W 1,1 κ δt ϕ n 2 ,
for all κ > 0. Finally, using assumptions (A9) and (A10), we nd

(3.18) VIII κδt ∇ϕ n+1 2 + u 2 L ∞ κ δt ϕ n+1 2 and (3.19) IX κδt ∇ϕ n+1 2 + g -g, 1 (H 1 (Ω)) * ,H 1 (Ω) 2 * κ δt +2cδt g, 1 (H 1 (Ω)) * ,H 1 (Ω) ϕ n+1 κδt ∇ϕ n+1 2 + κδt ϕ n+1 2 +c g -g, 1 (H 1 (Ω)) * ,H 1 (Ω) 2 * + g, 1 2 (H 1 (Ω)) * ,H 1 (Ω) κ δt,
for all κ > 0. Collecting (3.11) (3.19), on account of (3.10), we infer (3.20)

ϕ n+1 2 -ϕ n 2 + δt Ω c 1 + 4(J 1 1) + σ(G 1) -(J 1 1 + J 2 1) -β -6κ |∇ϕ n+1 | 2 dx δt Ω c 1 + σ(G 1) + (J 1 1 + J 2 1) + β |∇ϕ n | 2 dx + δt 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ κ + κ + 2σ ϕ n+1 2 + δt 2σ 2 G 2 W 1,1 κ + c( J 1 2 W 1,1 + J 2 2 W 1,1 ) κ + J 2 W 1,1 κ + σ ϕ n 2 + σm 2 |Ω| + g 2 (H 1 (Ω)) * κ δt.
Summing over n from n = 0 to n = l -1, we have 

(3.21) ϕ l 2 -ϕ 0 2 + δt Ω (2ζ(x) -6κ) l-1 n=1 |∇ϕ n | 2 dx +δt Ω (ζ(x) + 2(J 1 1) + σ(G 1) + c 1 -6κ)|∇ϕ l | 2 dx 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ κ + κ + 2σ δt l-1 n=0 ϕ n+1 2 + 2σ 2 G 2 W 1,1 κ + c( J 1 2 W 1,1 + J 2 2 W 1,1 ) κ + J 2 W 1,1 κ + σ δt l-1 n=0 ϕ n 2 + Ω c 1 + σ(G 1) + (J 1 1 + J 2 1) + β |∇ϕ 0 | 2 dx +σm 2 |Ω| + g 2 (H 1 (Ω)) *
η(x) := c 1 + 4(J 1) + σ(G 1) -(J 1 1 + J 2 1) -β -6κ = ζ(x) + 2(J 1 1) + σ(G 1) + c 1 -6κ = 2ζ(x) -6κ + (J 1 1) + (J 2 1) + σ(G 1) + c 1 + β 1, for a.a. x ∈ Ω.
Setting

C 1 = 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ κ + κ + 2σ, C 2 = 2σ 2 G 2 W 1,1 κ + c J 1 2 W 1,1 κ + J 2 2 W 1,1 κ + J 2 W 1,1 κ + σ,
and

C 3 = σm 2 |Ω| + g 2 (H 1 (Ω)) * κ + Ω c 1 + σ(G 1) + (J 1 1 + J 2 1) + β |∇ϕ 0 | 2 dx, it thus follows from (3.21)(3.23) that (3.24) ϕ l 2 + δt ∇ϕ l 2 C 1 δt l-1 n=0 ϕ n+1 2 + C 2 δt l-1 n=0 ϕ n 2 + C 3 lδt + ϕ 0 2 ,
whence, after some simplications,

(3.25) ϕ l 2 + δt ∇ϕ l 2 C 1 δt ϕ l 2 +(C 1 + C 2 )δt l-1 n=1 ϕ n 2 + (C 3 + C 2 ϕ 0 2 )lδt + ϕ 0 2 .
Assuming that δt < 1 2C 1 and lδt T , we arrive at

(3.26) ϕ l 2 + 1 1 -C 1 δt δt ∇ϕ l 2 C 1 + C 2 1 -C 1 δt δt l-1 n=1 ϕ n 2 + T C 3 + C 2 ϕ 0 2 1 -C 1 δt + 1 1 -C 1 δt ϕ 0 2 .
An application of the discrete Gronwall's inequality yields the desired result and the proof is complete.

3.3. Convergence to the exact solution. In this section, we establish the convergence of the discrete solution to the continuous one as the time step δt → 0. Taking Remark 2.2 into account, we have Theorem 3.3. Let ϕ(x, 0) ∈ H 3 (Ω) be an initial datum for (1.10) which satises the compatibility condition ∂µ ∂ν = 0 a.e. on ∂Ω. Then dene the discretization error e n = ϕ n -ϕ n , where ϕ n = ϕ(nδt). Assume that the assumptions of Proposition 3.1 and Theorem 3.2 hold. Then, provided that δt is suciently small, for all positive integers l such that lδt T , we have

e l 2 + δt ∇e l 2 ≤ C(δt) 2
where C > 0 is independent of l and δt.

Proof. It follows from (3.1), (3.2), (3.3) that e n+1 -e n δt -c 1 ∆e n+1 -2∆((J 1 1)e n+1 ) -σ∆((G 1)e n+1 ) + ∇.(ue n+1 )

= 1 δt (ϕ n+1 -ϕ n ) - 1 δt (ϕ n+1 -ϕ n ) -c 1 ∆ϕ n+1 + c 1 ∆ϕ n+1 + ∇.(uϕ n+1 ) -∇.(uϕ n+1 ) -2∆((J 1 1)ϕ n+1 ) + 2∆((J 1 1)ϕ n+1 ) -σ∆((G 1)ϕ n+1 ) + σ∆((G 1)ϕ n+1 ) = ∆(f (ϕ n )) -c 1 ∆ϕ n -∆((J 1 1 + J 2 1)ϕ n ) -∆(J ϕ n ) -σ∆((G 1)ϕ n ) -σϕ n + τ n -∆(f (ϕ n )) -c 1 ∆ϕ n -∆((J 1 1 + J 2 1)ϕ n ) -∆(J ϕ n ) -σ∆((G 1)ϕ n ) -σϕ n = -∆(f (ϕ n ) -f (ϕ n )) -c 1 ∆(ϕ n -ϕ n ) -∆((J 1 1 + J 2 1)(ϕ n -ϕ n )) -∆(J (ϕ n -ϕ n )) -σ∆((G 1)(ϕ n -ϕ n )) -σ(ϕ n -ϕ n ) + τ n .
Therefore, we nd (

e n+1 -e n = c 1 δt∆(e n+1 -e n ) + 2δt∆((J 1 1)e n+1 ) + σδt∆((G 1)(e n+1 -e n )) -δt∇.(ue n+1 ) + δt∆(f (ϕ n ) -f (ϕ n )) -δt∆((J 1 1 + J 2 1)e n ) -δt∆(J e n ) -σδte n + δtτ n . 3.27) 
Integrating (3.27) over Ω, we get (3.28) 1 δt e n+1 -e n + σ e n = τ n .

Using the fact that e 0 ≡ 0, we have e 0 = 0 and, owing to (3.5), we obtain

1 δt e 1 = O(δt).
So by mathematical induction, assuming that the assertion is true for n = k, i.e. We multiply (3.27) by 2 e n+1 . This gives (3.30)

1 δt e k = O(δt),
e n+1 2 -e n 2 + e n+1 -e n 2 = -2δt((∇(f (ϕ n ) -f (ϕ n )), ∇e n+1 )) -4δt((∇((J 1 1)e n+1 ), ∇e n+1 )) -2c 1 δt((∇(e n+1 -e n ), ∇e n+1 )) -2σδt((∇((G 1)(e n+1 -e n )), ∇e n+1 )) + 2δt((ue n+1 , ∇e n+1 )) + 2δt((∇((J 1 1 + J 2 1)e n ), ∇e n+1 )) + 2δt((∇(J e n ), ∇e n+1 ))
-2σδt((e n , e n+1 )) + 2δt((τ n , e n+1 )) = I + II + III + IV + V + VI + VII + VIII + IX.

Note that, since f is locally Lipschitz continuous, then

I = +2δt((-f (ϕ n )∇e n + ∇ϕ n (f (ϕ n ) -f (ϕ n )), ∇e n+1 )) 2βδt ∇e n ∇e n+1 + 2cδt ∇ϕ n L ∞ (Ω) e n ∇e n+1 βδt ∇e n 2 + c 2 ∇ϕ n 2 L ∞ (Ω) κ δt e n 2 + (β + κ)δt ∇e n+1 2 , (3.31) 
for all κ > 0. Arguing as for the estimates obtained above ((3.11)(3.13) and (3.15) (3.19)) we nd (3.32) II -4δt

Ω (J 1 1)|∇e n+1 | 2 dx + 4 κ δt J 1 2 W 1,1 e n+1 2 + κδt ∇e n+1 2 , (3.33 
) III -c 1 δt ∇e n+1 2 + c 1 δt ∇e n 2 , (3.34) 
IV -σδt Ω (G 1)|∇e n+1 | 2 dx + σδt Ω (G 1)|∇e n | 2 dx + 2σ 2 κ δt G 2 W 1,1 ( e n+1 2 + e n 2 ) + κδt ∇e n+1 2 , (3.35) V κδt ∇e n+1 2 + u 2 L ∞ (Ω) κ δt e n+1 2 , (3.36) 
VI δt +δt

Ω (J 1 1 + J 2 1)|∇e n+1 | 2 dx + δt Ω (J 1 1 + J 2 1)|∇e n | 2 dx + c κ δt( J 1 2 W 1,1 + J 2 2 W 1,
Ω c 1 + 4(J 1 1) + σ(G 1) -(J 1 1 + J 2 1) -β -8κ |∇e n+1 | 2 dx δt Ω c 1 + σ(G 1) + (J 1 1 + J 2 1) + β |∇e n | 2 dx +δt 2σ 2 G 2 W 1,1 κ + c( J 1 2 W 1,1 + J 2 2 W 1,1 ) κ + J 2 W 1,1 κ + c 2 ∇ϕ n 2 L ∞ (Ω) κ + σ e n 2 +δt 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ (Ω) κ + σ e n+1 2 + C(δt) 3 ,
with C independent of δt and l. Summing over n from n = 0 to n = l -1 and using the fact that e 0 ≡ 0, we obtain Proceeding as in the proof of Theorem 3.2, we introduce the constants

(3.41) e l 2 + δt Ω (2ζ(x) -8κ) l-1 n=1 |∇e n | 2 dx +δt Ω (ζ(x) + 2(J 1 1) + σ(G 1) + c 1 -8κ)|∇e l | 2 dx ≤ 2σ 2 G 2 W 1,1 κ + c( J 1 2 W 1,1 + J 2 2 W 1,1 ) κ + J 2 W 1,1 κ + c 2 ∇ϕ n 2 L ∞ (Ω) κ + σ δt l-1 n=0 e n 2 + 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ (Ω) κ + σ δt
C 1 = 4 J 1 2 W 1,1 κ + 2σ 2 G 2 W 1,1 κ + u 2 L ∞ (Ω) κ + σ
and

C 2 = 2σ 2 G 2 W 1,1 κ + c( J 1 2 W 1,1 + J 2 2 W 1,1 ) κ + J 2 W 1,1 κ + c 2 ∇ϕ n 2 L ∞ (Ω) κ + σ
and obtain

e l 2 (1 -δtC 1 ) + δt ∇e l 2 ≤ δt(C 1 + C 2 ) l-1 n=1 e n 2 + Cl(δt) 3 .
Then, dividing the last inequality by (1 -δtC 1 ) and choosing δt < 1 2C 1 and lδt T yields

e l 2 + δt ∇e l 2 ≤ 2δt(C 1 + C 2 ) l-1 n=1 e n 2 + 2Cl(δt) 3 .
An application of the discrete Gronwall Lemma entails

e l 2 + δt ∇e l 2 ≤ C(δt) 2 ,
with C independent of δt and l.

Numerical simulations

In the time-stepping scheme (3.1)(3.2), we use a P1-nite element for the space discretization. The numerical simulations are performed with the software Freefem++ (see [START_REF] Hecht | New development in FreeFem++[END_REF]).

In the numerical results presented below, Ω is a (0, 10) × (0, 10)-square, so that we can use the DFFT function to compute the nonlocal terms.

The numerical simulations presented below show the eciency of the model not only for phase separation phenomena, but also for crystal nucleation. In particular, when σ = 0, and u ≡ g ≡ 0, the results can be compared with the ones presented in [START_REF] Guan | A Convergent convex splitting scheme for the periodic nonlocal CahnHilliard equation[END_REF] and [START_REF] Guan | Second-order convex splitting schemes for periodic nonlocal CahnHilliard and Allen-Cahn equations[END_REF]. The simulations presented below illustrate, from the numerical point of view, the modied nonlocal model proposed by Bates and Han with dierent value of σ (which allows to change the convolution kernel), with dierent value of m (which characterizes of the loss of mass in the model) and dierent value of u (corresponding to a transport term that accounts for a possible ow of the mixture at a certain given velocity eld u). Note that the numerical results show that the solution seems to converge to a homogeneous state when σ and m are suciently large. Dynamics of the solutions with a null transport term. In Figure 1, we consider a random initial datum between -0.05 and 0.05, which leads to a spatial average close to 0. In that case, the interaction kernel J is given by a positive Gaussian function dened as follows (4.1)

J(x, y) = 1 ε 2 1 e - (x -5) 2 + (y -5) 2 ε 2 1
and the long-ranged interaction kernel G in two space dimensions is the Green-like function dened as

(4.2) G(x, y) = ln( (x -y) 2 + λ 2 ),
where ε 1 = 0.05 and λ = 10 -2 (here, we have used the usual regularization |x -y| ≈ (x -y) 2 + λ 2 ). Furthermore, we consider the typical choice of the nonlinear term f (s) = s 3 -s and take m = ϕ 0 ≈ 0. The parameters of the numerical simulations are h = 10 128 , δt = 2.10 -4 , u ≡ (0, 0), and g = 0. The nal time for the simulation is T = 2.

For σ = 0, we present the dynamics of the solution to the nonlocal CahnHilliard equation at T = 0.4, T = 1.2, and T = 2, respectively. Next, for σ = 0.005, we show that the results obtained in [START_REF] Miranville | Asymptotic behavior of the CahnHilliard-Oono equation[END_REF] for the CahnHilliardOono equation are also satised for the nonlocal CahnHilliardOono equation. This means that, when σ is close to zero, the dynamics of the nonlocal CahnHilliardOono equation is close to that of the nonlocal CahnHilliard equation. Finally, we show the eects of the long-range interaction kernel G on the nonlocal CahnHilliard equation with σ = 0.05, σ = 0.5, and σ = 2 respectively. Eects of the transport term. We present in Figures 2 and3 the evolution of the nonlocal CahnHilliardOono equation again, with the same parameters and functions as in Figure 1 and a nonlinear term f (s) = s 3 -s, but we now take a non-vanishing transport term. First, in Figure 2, we take a transport term u = (10, 0) and then, in Figure 3, we take u = (-2 cos 2 ( π(x-5) 10 ) cos( π(y-5) 10 ), 2 cos 2 ( π(y-5) 10 ) cos( π(x-5) 10 )).

O critical case (i.e., m = ϕ 0 ). We present in Figures 4 and5 the evolution of the nonlocal CahnHilliardOono equation, with the same parameters and functions as in Figure 1 and a nonlinear term f (s) = s 3 -s, but we now assume loss of mass (i.e., m = ϕ 0 ), where ϕ 0 ≈ 0 in Figure 4 and ϕ 0 ≈ 0.02 (ϕ 0 randomly distributed between -003 and 0.007) in Figure 5. First, in Figure 4 we take m = 1 and then in Figure 5 we take m = -1.

4.2. Crystal nucleation. Here, the triangulation of Ω is obtained by dividing Ω into 300 × 300 rectangles and by dividing each rectangle along the same diagonal.

Six-fold anisotropic shape. In Figures 6, we consider a random initial datum between -0.3 and 0.7, which leads to a spatial average close to 0.2. In that case, the interaction kernel J s (in view of [START_REF] Guan | Second-order convex splitting schemes for periodic nonlocal CahnHilliard and Allen-Cahn equations[END_REF]) is given by the dierence of two positive Gaussian functions dened as we consider the interaction kernel J a (in view of [START_REF] Guan | Second-order convex splitting schemes for periodic nonlocal CahnHilliard and Allen-Cahn equations[END_REF]) given by (4. where ε 1 = 0.08, ε 2 = 0.2. The long-ranged interaction kernel G is dened by (4.2) with λ = 10 -6 . 

  which yields, owing to (3.5), τ 2 n (δt) (H 1 (Ω)) * = O(δt), as δt → 0, and τ = max n τ n (H 1 (Ω)) * = O(δt), as δt → 0.

  with ζ(x) := (J 1)(x) -β > 0 for almost any x ∈ Ω according to (3.6). Hence, taking 3κ < ζ(x) for almost any x ∈ Ω, we obtain (3.22) 2ζ(x) -6κ > 0, for a.a. x ∈ Ω, and (3.23)

  we nd, thanks to (3.28) and (3.5), 1 δt e k+1 -e k + σ e k = τ k . Hence, we have that 1 δt e k+1 + (σδt -1)O(δt) = O(δt), which yields e k+1 = O((δt) 2 ) and (3.29) e n = O((δt) 2 ), ∀n 1.

2 +

 2 Cl(δt)3 , where we have used the fact that ζ(x) = (J 1)(x) -β > 0, for almost any x ∈ Ω. Since (3.6) holds and taking 4κ < ζ(x), for almost any x ∈ Ω, we obtain (3.42) 2ζ(x) -8κ > 0, for a.a. x ∈ Ω, and (3.43) ζ(x) + 2(J 1 1) + σ(G 1) + c 1 -8κ 1, for a.a. x ∈ Ω.

4. 1 .

 1 Phase separation and coarsening: dynamics of the solutions of the nonlocal CahnHilliardOono equation with positive Gaussian kernel. Here, the triangulation of Ω is obtained by dividing Ω into 128 × 128 rectangles and by dividing each rectangle along the same diagonal.

Figure 1 .

 1 Figure 1. u ≡ 0, f (s) = s 3 -s, m = ϕ 0 ≈ 0. First row to fth row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0, second row : σ = 0.005, third row : σ = 0.05, fourth row : σ = 0.5, fth row : σ = 2.

  3) J a (x, y) = 0

Figure 2 .

 2 Figure 2. J, u = (10, 0), f (s) = s 3 -s, m = ϕ 0 ≈ 0. First row to fth row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0, second row : σ = 0.005, third row : σ = 0.05, fourth row : σ = 0.5, fth row : σ = 2.

Figure 3 .

 3 Figure 3. J, u = (-2 cos 2 ( π(x-5) 10 ) cos( π(y-5) 10 ), 2 cos 2 ( π(y-5) 10 ) cos( π(x-5) 10 )), f (s) = s 3 -s, m = ϕ 0 ≈ 0. First row to fth row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0, second row : σ = 0.005, third row : σ = 0.05, fourth row : σ = 0.5, fth row : σ = 2.

Figure 4 .

 4 Figure 4. u ≡ 0, f (s) = s 3 -s, ϕ 0 ≈ 0, m = 1. First row to fourth row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0.005, second row : σ = 0.05, third row : σ = 0.5, and fourth row : σ = 1.

Figure 5 .

 5 Figure 5. u ≡ 0, f (s) = s 3 -s, ϕ 0 ≈ 0.02, m = -1. First row to fourth row : solutions at T = 0.4, T = 1.2, and T = 2. First row : σ = 0.05, second row : σ = 0.2, third row : σ = 0.5, and fourth row : σ = 1.

Figure 6 .

 6 Figure 6. J a , u ≡ 0, f (s) = s 3 -s, m = ϕ 0 ≈ 0.2. First row and second row : T = 0.5, T = 1, and T = 5. First row : σ = 0 and second row : σ = 0.05.
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