
HAL Id: hal-01826564
https://hal.science/hal-01826564v1

Submitted on 1 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Dynamics with Synchronous, Asynchronous
and General Semantics

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi
Inoue

To cite this version:
Tony Ribeiro, Maxime Folschette, Morgan Magnin, Olivier Roux, Katsumi Inoue. Learning Dynamics
with Synchronous, Asynchronous and General Semantics. 28th International Conference on Induc-
tive Logic Programming, Fabrizio Riguzzi; Elena Bellodi; Riccardo Zese, Sep 2018, Ferrara, Italy.
�10.1007/978-3-319-99960-9_8�. �hal-01826564�

https://hal.science/hal-01826564v1
https://hal.archives-ouvertes.fr


Learning Dynamics with Synchronous,
Asynchronous and General Semantics

Tony Ribeiro1, Maxime Folschette2, Morgan Magnin1,3, Olivier Roux1, and
Katsumi Inoue3

1 Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes,
France

tony ribeiro@ls2n.fr,
2 Univ Rennes, Inria, CNRS, IRISA, IRSET, F-35000 Rennes, France

3 National Institute of Informatics, Tokyo, Japan

Abstract. Learning from interpretation transition (LFIT) automati-
cally constructs a model of the dynamics of a system from the obser-
vation of its state transitions. So far, the systems that LFIT handles
are restricted to synchronous deterministic dynamics, i.e., all variables
update their values at the same time and, for each state of the system,
there is only one possible next state. However, other dynamics exist in
the field of logical modeling, in particular the asynchronous semantics
which is widely used to model biological systems. In this paper, we focus
on a method that learns the dynamics of the system independently of
its semantics. For this purpose, we propose a modeling of multi-valued
systems as logic programs in which a rule represents what can occurs
rather than what will occurs. This modeling allows us to represent non-
determinism and to propose an extension of LFIT in the form of a se-
mantics free algorithm to learn from discrete multi-valued transitions,
regardless of their update schemes. We show through theoretical results
that synchronous, asynchronous and general semantics are all captured
by this method. Practical evaluation is performed on randomly generated
systems and benchmarks from biological literature to study the scalabil-
ity of this new algorithm regarding the three aforementioned semantics.

Keywords: Dynamical semantics, learning from interpretation transi-
tion, dynamical systems, Inductive Logic Programming

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important due to many applications, e.g., multi-agent systems,
robotics and bioinformatics. Knowledge of a system dynamics can be used by
agents and robots for planning and scheduling. In bioinformatics, learning the
dynamics of biological systems can correspond to the identification of the in-
fluence of genes and can help to understand their interactions. While building
a model, the choice of a relevant semantics associated to the studied system
represents a major issue with regard to the kind of dynamical properties to



State Transitions Model
of the Dynamics

Learning
Algorithm

Previous LFIT

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

Fig. 1: Assuming a discretization of time series data of a system as state transi-
tions, we propose a method to automatically model the system dynamics.

analyze. The differences and common features of different semantics w.r.t. prop-
erties of interest (attractors, oscillators, etc.) constitutes an area of research per
itself, especially in the field of Boolean networks. In [8], the author exhibits the
translation from Boolean networks into logic programs and discusses the point
attractors in both synchronous and asynchronous semantics. In [6], A. Garg et al.
address the differences and complementarity of synchronous and asynchronous
semantics to model biological networks and identify attractors. The benefits of
the synchronous model are to be computationally tractable, while classical state
space exploration algorithms fail on asynchronous ones. For some applications,
like the biological ones, asynchronous semantics is said to capture more realistic
behaviors: at a given time, a single gene can change its expression level. This
results in a potential combinatorial explosion of the number of reachable states.
To illustrate this issue, the authors of [6] compare the time needed to compute
the attractors of various models (mammalian cell, T-helper, dendritic cell, . . .)
and compare the results with synchronous and asynchronous semantics. More re-
cently, in [3], the authors question the kind of properties that may be preserved,
whatever the semantics, while discussing the merits of the usual updating modes
including synchronous, fully asynchronous and generalized asynchronous updat-
ing. As a good choice of semantics is key to a sound analysis of a system, it is
critical to be able to learn not only one kind of semantics, but to embrace a wide
range of updating modes.

So far, learning from interpretation transition (LFIT) [9] has been proposed
to automatically construct a model of the dynamics of a system from the obser-
vation of its state transitions. Figure 1 shows this learning process. Given some
raw data, like time-series data of gene expression, a discretization of those data
in the form of state transitions is assumed. From those state transitions, ac-
cording to the semantics of the system dynamics, different inference algorithms
that model the system as a logic program have been proposed. The semantics
of system dynamics can indeed differ with regard to the synchronism of its vari-
ables, the determinism of its evolution and the influence of its history. The LFIT
framework proposes several modeling and learning algorithms to tackle those dif-
ferent semantics. To date, the following systems have been tackled: memory-less
consistent systems [9], systems with memory [14], non-consistent systems [12]



and their multi-valued extensions [15,11]. All those methods are dedicated to
discrete systems or assume an abstraction of time series data as discrete tran-
sitions. [16] proposes a method that allows to deal with continuous time series
data, the abstraction itself being learned by the algorithm.

As a summary, the systems that LFIT handles so far are restricted to syn-
chronous deterministic dynamics, i.e., all variables update their values at the
same time and, for each state of the system, there is only one possible next
state. However, as we said previously, other dynamics exist in the field of logical
modeling, in particular the asynchronous and generalized semantics which are
of deep interest to model biological systems.

In this paper, we focus on a method that learns the dynamics of the sys-
tem independently of its dynamics semantics. For this purpose, we propose a
modeling of discrete multi-valued systems as logic programs in which each rule
represents that a variable possibly takes some value at the next state, extending
the formalism introduced in [12,15,11]. Research in multi-valued logic program-
ming has proceeded along three different directions [10]: bilattice-based logics
[5,7], quantitative rule sets [17] and annotated logics [2,1]. The multi-valued
logic representation used in our new algorithm is based on annotated logics.
Here, to each variable corresponds a domain of discrete values. In a rule, a lit-
eral is an atom annotated with one of these values. It allows us to represent
annotated atoms simply as classical atoms and thus to remain in the normal
logic program semantics. This modeling allows us to represent non-determinism
and to propose an extension of LFIT in the form of a semantics free algorithm to
learn from discrete multi-valued transitions, regardless of their update schemes.
We show from theoretical results and experimental evaluation that our new al-
gorithm can learn systems dynamics from both synchronous (deterministic or
not), asynchronous and general semantics transitions.

The organization of the paper is as follows. Section 2 provides a formalization
of multi-valued logic program, dynamics semantics under logic programs, the
learning operations and their properties. Section 3 presents the GULA learning
algorithm and Section 4 its experimental evaluation. Section 5 concludes the
paper and provides possible outlooks about applications and improvements of
the method. All proofs of theorems and propositions are given in Appendix.

2 Formalization

In this section, the concepts necessary to understand the learning algorithm are
formalized. In Sect. 2.1 the basic notions of multi-valued logic (MVL) and a
number of important properties that the learned programs must have are pre-
sented. Then in Sect. 2.2 the operations that are performed during the learning,
as well as results about the preservation of the properties introduced in Sect.
2.1 throughout the learning are exposed. Finally, Sect. 2.3 introduces the for-
malization of several dynamical semantics of multi-valued logic and show that
the learning process of Sect. 2.2 is independent of the chosen semantics.



In the following, we denote by N := {0, 1, 2, ...} the set of natural numbers,
and for all k, n ∈ N, Jk; nK := {i ∈ N | k ≤ i ≤ n} is the set of natural numbers
between k and n included. For any set S, the cardinal of S is denoted |S|.

2.1 Multi-valued Logic Program

Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, and dom : V → N a
function associating a maximum value (and thus a domain) to each variable.
The atoms ofMVL are of the form vval where v ∈ V and val ∈ J0; dom(v)K. The
set of such atoms is denoted by AV

dom for a given set of variables V and a given
domain function dom. In the following, we work on specific V and dom that we
omit to mention when the context makes no ambiguity, thus simply writing A.

A MVL rule R is defined by:

R = vval00 ← vval11 ∧ · · · ∧ vvalmm (1)

where ∀i ∈ J0; mK, vvalii ∈ A are atoms in MVL so that every variable is men-
tioned at most once in the right-hand part: ∀j, k ∈ J1; mK, j 6= k ⇒ vj 6= vk.
Intuitively, the rule R has the following meaning: the variable v0 can take the
value val0 in the next dynamical step if for each i ∈ J1; mK, variable vi has value
vali in the current step.

The atom on the left-hand side of the arrow is called the head of R and is
denoted h(R) := vval00 . The notation var(h(R)) := v0 denotes the variable that
occurs in h(R). The conjunction on the right-hand side of the arrow is called
the body of R, written b(R) and can be assimilated to the set {vval11 , . . . , vvalmm };
we thus use set operations such as ∈ and ∩ on it. A multi-valued logic program
(MVLP) is a set of MVL rules.

In the following, we define several notions onMVL rules and programs that
will be used for dynamics learning. Def. 1 introduces a domination relation be-
tween rules that defines a partial anti-symmetric ordering, as stated by Propo-
sition 1.

Definition 1 (Rule Domination). Let R1, R2 be two MVL rules. The rule
R1 dominates R2, written R2 ≤ R1 if h(R1) = h(R2) and b(R1) ⊆ b(R2).

Proposition 1. Let R1, R2 be two MVL rules. If R1 ≤ R2 and R2 ≤ R1 then
R1 = R2.

Rules with the most general bodies dominate the other rules. In practice,
these are the rules we are interested in since they cover the most general cases.

The dynamical system we want to learn the rules of is represented by a
succession of states as formally given by Def. 2. We also define the compatibility
of a rule with a state in Def. 3 and with another rule in Def. 4, and give a
property on this last notions in Proposition 2.

Definition 2 (Discrete state). A discrete state s is a function from V to N,
i.e., it associates an integer value to each variable in V. It can be equivalently



represented by the set of atoms {vs(v) | v ∈ V} and thus we can use classical set
operations on it. We write S to denote the set of all discrete states, and a couple
of states (s, s′) ∈ S2 is called a transition.

Definition 3 (Rule-state matching). Let s ∈ S. The MVL rule R matches
s, written R u s, if b(R) ⊆ s.

Definition 4 (Cross-matching). Let R and R′ be two MVL rules. These
rules cross-match, written R u R′ when there exists s ∈ S such that R u s and
R′ u s.

Proposition 2 (Cross-matching). Let R and R′ be two MVL rules.

R uR′ iff ∀v ∈ V,∀val, val′ ∈ N, (vval, vval
′
) ∈ b(R)× b(R′) =⇒ val = val′.

The final program we want to learn should be complete and consistent within
itself and with the observed transitions. The following definitions formalize these
desired properties. In Def. 5 we characterize the fact that a rule of a program
is useful to describe the dynamics of one variable in a transition; this notion is
then extended to a program and a set of transitions, under the condition that
there exists such a rule for each variable and each transition. A conflict (Def. 6)
arises when a rule describes a change that is not featured in the considered
set of transitions. Two rules are concurrent (Def. 7) if they cross-match but
have a different head on the same variable. Finally, Def. 8 and Def. 9 give the
characteristics of a complete (the whole dynamics is covered) and consistent
(without conflict) program.

Definition 5 (Rule and program realization). Let R be a MVL rule and
(s, s′) ∈ S2. The rule R realizes the transition (s, s′), written s

R−→ s′, if R u s ∧
h(R) ∈ s′.

AMVLP P realizes (s, s′) ∈ S2, written s
P−→ s′, if ∀v ∈ V,∃R ∈ P, var(h(R)) =

v ∧ s
R−→ s′. It realizes T ⊆ S2, written P

↪−→ T , if ∀(s, s′) ∈ T, s
P−→ s′.

In the following, for all sets of transitions T ⊆ S2, we denote: fst(T ) := {s ∈
S | ∃(s1, s2) ∈ T, s1 = s}. We note that fst(T ) = ∅ =⇒ T = ∅.

Definition 6 (Conflicts). A MVL rule R conflicts with a set of transitions
T ⊆ S2 when ∃s ∈ fst(T ),

(
R u s ∧ ∀(s, s′) ∈ T, h(R) /∈ s′).

Definition 7 (Concurrent rules). Two MVL rules R and R′ are concurrent
when R uR′ ∧ var(h(R)) = var(h(R′)) ∧ h(R) 6= h(R′).

Definition 8 (Complete program). A MVLP P is complete if ∀s ∈ S,∀v ∈
V,∃R ∈ P, R u s ∧ var(h(R)) = v.

Definition 9 (Consistent program). A MVLP P is consistent with a set of
transitions T if P does not contains any rule R conflicting with T .



2.2 Learning operations

This section focuses on the manipulation of programs for the learning process.
Def. 10 and Def. 11 formalize the main atomic operations performed on a rule
or a program by the learning algorithm, whose objective is to make minimal
modifications to a given MVLP in order to be consistent with a new set of
transitions.

Definition 10 (Rule least specialization). Let R be a MVL rule and s ∈ S
such that R u s. The least specialization of R by s is:

Lspe(R, s) := {h(R)← b(R)∪{vval} | vval ∈ A∧vval 6∈ s∧∀val′ ∈ N, vval
′
6∈ b(R)}.

Definition 11 (Program least revision). Let P be a MVLP, s ∈ S and
T ⊆ S2 such that fst(T ) = {s}. Let RP := {R ∈ P | R conflicts with T}. The
least revision of P by T is Lrev(P, T ) := (P \RP ) ∪

⋃
R∈RP

Lspe(R, s).

Theorem 1 states properties on the least revision, in order to prove it suitable
to be used in the learning algorithm.

Theorem 1. Let R be a MVL rule and s ∈ S such that Ru s. Let SR := {s′ ∈
S | R u s′} and Sspe := {s′ ∈ S | ∃R′ ∈ Lspe(R, s), R′ u s′}.

Let P be aMVLP and T, T ′ ⊆ S2 such that |fst(T )| = 1∧fst(T )∩fst(T ′) = ∅.
The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T ) is consistent with T ,
3. P

↪−→ T ′ =⇒
Lrev(P,T )

↪−−−−−−→ T ′,
4. P

↪−→ T =⇒
Lrev(P,T )

↪−−−−−−→ T ,
5. P is complete =⇒ Lrev(P, T ) is complete.

Proof sketch. The first two points follow from Def. 10 and 11. The third point
follows from Def. 5 and the first point. The fourth point follows from Def. 5 and
11. The last point follows from Def. 8 and the first point. ut

Def. 12 groups all the properties that we want the learned program to have:
suitability and optimality, and Proposition 3 states that the optimal program of
a set of transitions is unique.

Definition 12 (Suitable and optimal program). Let T ⊆ S2. A MVLP P
is suitable for T when:

– P is consistent with T ,
– P realizes T ,
– P is complete
– for all MVL rules R not conflicting with T , there exists R′ ∈ P such that

R ≤ R′.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to MVLP suitable
for T are such that R ≤ R′ implies R′ ≤ R then P is called optimal.



Proposition 3. Let T ⊆ S2. The MVLP optimal for T is unique and denoted
PO(T ).

Proof sketch. Reasoning by contradiction, a rule that should occur in only one
MVLP optimal for T necessarily occurs in another one. ut

The next properties are directly used in the learning algorithm. Proposition 4
gives an explicit definition of the optimal program for an empty set of transitions,
which is the starting point of the algorithm. Proposition 5 gives a method to
obtain the optimal program from any suitable program by simply removing the
dominated rules; this means that the MVLP optimal for a set of transitions
can be obtained from any MVLP suitable for the same set of transitions by
removing all the dominated rules. Finally, in association with these two results,
Theorem 2 gives a method to iteratively compute PO(T ) for any T ⊆ S2, starting
from PO(∅).

Proposition 4. PO(∅) = {vval ← ∅ | vval ∈ A}.

Proof sketch. By construction. ut

Proposition 5. Let T ⊆ S2. If P is a MVLP suitable for T , then PO(T ) =
{R ∈ P | ∀R′ ∈ P, R ≤ R′ =⇒ R′ ≤ R}

Theorem 2. Let s ∈ S and T, T ′ ⊆ S2 such that |fst(T ′)| = 1∧fst(T )∩fst(T ′) =
∅. Lrev(PO(T ), T ′) is a MVLP suitable for T ∪ T ′.

Proof sketch. Consistency is proved by contradiction. Completeness and realiza-
tion stem from Theorem 1. The final point is proved by exhibiting for each R
not conflicting with T ′ ∪ T the rule in Lspe(PO(T ′), T ) that dominates it. ut

2.3 Dynamical semantics

In this section, we first formalize the notion of semantics, in Def. 13, as an update
policy based on a program. More formally, a semantics is a function that, to a
complete program, associates a set of transitions where each state has at least
one outgoing transition. Such a set of transitions can also be seen as a function
that maps any state to a non-empty set of states, regarded as possible dynamical
branchings. We give examples of semantics afterwards.

Definition 13 (Semantics). Let AV
dom be a set of atoms and S the correspond-

ing set of states. A semantics (on AV
dom) is a function that associates, to each

complete MVLP P , a set of transitions T ⊆ S2 so that: fst(T ) = S. Equiva-
lently, a semantics can be seen as a function of

(
c-MVLP → (S → ℘(S) \ ∅)

)
where c-MVLP is the set of complete MVLPs and ℘ is the power set operator.

In the following, we present a formal definition and a characterization of
three particular semantics that are widespread in the field of complex dynamical
systems: synchronous, asynchronous and general, and we also treat the partic-
ular case of the deterministic synchronous semantics. Note that some points in



these definitions are arbitrary and could be discussed depending on the modeling
paradigm. For instance, the policy about rules R so that ∃s ∈ S, suR∧h(R) ∈ s,
which model stability in the dynamics, could be to include them (such as in
the synchronous and general semantics) or exclude them (such as in the asyn-
chronous semantics) from the possible dynamics. The learning method of this
paper is independent to the considered semantics as long as it respects Def. 13.

Def. 14 introduces the synchronous semantics, consisting in updating each
variables with one rule at each step, in order to compute the next state. However,
this is taken in a loose sense: as stated above, rules that make a variable change
its value are not prioritized over rules that don’t. Furthermore, if several rules
on a same variable match the current state, then several transitions are possible,
depending on which rule is applied. Thus, for a self-transition (s, s) to occur,
there needs to be, for each atom vval ∈ s, a rule that matches s and whose head
is vval. Note however that such a loop is not necessarily a point attractor; it is
only the case if all rules of P that match s have their head in s.
Definition 14 (Synchronous semantics). The synchronous semantics Tsyn
is defined by:

Tsyn : P 7→ {(s, s′) ∈ S2 | s′ ⊆ {h(R) ∈ A | R ∈ P, R u s}}

We note that if two different transitions are observed from the same state s,
all states that are combinations of those two states are also successors of s. This
is used in Proposition 6 as a characterization of the synchronous semantics.

In the following, if s ∈ S is a state and X ⊆ A is a set of atoms such that
∀vval11 , vval22 ∈ X, v1 = v2 =⇒ val1 = val2, we denote: s\\X := {vval ∈ s |
v /∈ {w | wval′ ∈ X}} ∪X. In other words, s\\X is the discrete state s where all
variables mentioned in X have their value replaced by the value in X.
Proposition 6 (Synchronous transitions). Let T ⊆ S2 so that fst(T ) = S.
The transitions of T are synchronous, i.e., ∃P aMVLP such that Tsyn(P ) = T ,
if and only if ∀(s, s1), (s, s2) ∈ T, ∀s3 ∈ S, s3 ⊆ s1 ∪ s2 =⇒ (s, s3) ∈ T .
Proof sketch. (⇒) By definition of Tsyn. (⇐) Consider the most naive program
P realizing T ; the characterization applied iteratively allows to conclude that
Tsyn(P ) ⊆ T while T ⊆ Tsyn(P ) comes by definition of P and Tsyn. ut

In Def. 15, we formalize the asynchronous semantics that imposes that no
more than one variable can change its value in each transition. Contrary to the
previous one, this semantics prioritizes the changes. Thus, for a self-transition
(s, s) to occur, it is required that all rules of P that match s have their head
in s, i.e., this only happens when (s, s) is a point attractor. Proposition 7 char-
acterizes the asynchronous semantics by stating that from a state s, either the
only successor is s, or all successors differ from s by exactly one atom.
Definition 15 (Asynchronous semantics). The asynchronous semantics Tasyn
is defined by:

Tasyn : P 7→ {(s, s\\{h(R)}) ∈ S2 | R ∈ P ∧R u s ∧ h(R) /∈ s}
∪ {(s, s) ∈ S2 | ∀R ∈ P, R u s =⇒ h(R) ∈ s}.



Proposition 7 (Asynchronous transitions). Let T ⊆ S2 so that fst(T ) = S.
The transitions of T are asynchronous, i.e., ∃P a MVLP such that Tasyn(P ) =
T , if and only if ∀s, s′ ∈ S, s 6= s′,

(
(s, s) ∈ T =⇒ (s, s′) /∈ T

)
∧
(
(s, s′) ∈ T =⇒

|s \ s′| = 1
)
.

Proof sketch. When handling a transition (s, s′), consider separately the cases
s = s′ and s 6= s′. (⇒) By contradiction, based the definition of Tasyn. (⇐)
Consider the most naive program P realizing T ; from the characterization, it
comes: Tsyn(P ) = T . ut

Finally, Def. 16 formalizes the general semantics as a more permissive version
of the synchronous one: any subset of the variables can change their value in
a transition. A self-transition (s, s) thus occurs for each state s because the
empty set of variables can always be selected for update. However, as for the
synchronous semantics, such a self-transition is a point attractor only if all rules
of P that match s have their head in s. Proposition 8 is a characterization of
the general semantics. It is similar to the synchronous characterization, but the
combination of the two successor states is also combined with the origin state.

Definition 16 (General semantics). The general semantics Tgen is defined
by:

Tgen : P 7→ {(s, s\\r) ∈ S2 | r ⊆ {h(R) ∈ A | R ∈ P ∧R u s} ∧
∀vval11 , vval22 ∈ r, v1 = v2 =⇒ val1 = val2}.

Proposition 8 (General transitions). Let T ⊆ S2 so that fst(T ) = S. The
transitions of T are general, i.e., ∃P a MVLP such that Tgen(P ) = T , if and
only if: ∀(s, s1), (s, s2) ∈ T, ∀s3 ∈ S, s3 ⊆ s ∪ s1 ∪ s2 =⇒ (s, s3) ∈ T .

Proof sketch. Similar to the synchronous case. ut
In addition, in Def. 17, we define the notion of deterministic dynamics, that

is, a set of transitions with no “branching”, and give a particular characterization
of deterministic dynamics in the synchronous case in Proposition 9.

Definition 17 (Deterministic transitions). A set of transitions T ⊆ S2 is
deterministic if ∀(s, s′) ∈ T, @(s, s′′) ∈ T, s′′ 6= s′. A MVLP P is deterministic
regarding a semantics if the set of all transitions TP obtained by applying the
semantics on P is deterministic.

Proposition 9 (Synchronous Deterministic program). A MVLP P pro-
duces deterministic transitions with synchronous semantics if it does not con-
tain concurrent rules, i.e., ∀R, R′ ∈ P,

(
var(h(R)) = var(h(R′)) ∧ R u R′) =⇒

h(R) = h(R′).

Until now, the LFIT algorithm only tackled the learning of synchronous
deterministic program. Using the formalism introduced in the previous sections,
it can now be extended to learn systems from transitions produced from the three
semantics defined above. Furthermore, both deterministic and non-deterministic
systems can now be learned.



Finally, with Theorem 3, we state that the definitions and method developed
in the previous section are independent of the chosen semantics.

Theorem 3 (Semantics-free correctness). Let P be a MVLP such that P
is complete.

– Tsyn(P ) = Tsyn(PO(Tsyn(P ))),
– Tasyn(P ) = Tasyn(PO(Tasyn(P ))),
– Tgen(P ) = Tgen(PO(Tgen(P ))).

Proof sketch. Using the properties of an optimal program (Def. 12) and by con-
tradiction. ut

3 GULA

In this section we present GULA: the General Usage LFIT Algorithm, an ex-
tension of the LF1T algorithm to capture both synchronous, asynchronous and
general semantics dynamics. GULA learns a logic program from the obser-
vations of its state transitions. Given as input a set of transitions T , GULA
iteratively constructs a model of the system by applying the method formalized
in the previous section as follows:
GULA:

– INPUT: a set of atoms A and a set and of transitions T ⊆ S2.
– For each atom vval ∈ A
• Extract all states from which no transition to vval exist:

Negvval := {s | @(s, s′) ∈ T, vval ∈ s′}
• Initialize Pvval := {vval ← ∅}
• For each state s ∈ Negvval

∗ Extract each rule R of Pvval that matches s:
Mvval := {R ∈ P | b(R) ⊆ s}, Pvval := Pvval \Mvval .

∗ For each rule R ∈Mvval

· Compute its least specialization P ′ = Lspe(R, s).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in Pvval dominated by a rule in P ′.
· Add all remaining rules in P ′ to Pvval .

• P := P ∪ Pvval

– OUTPUT: PO(T ) := P .
Algorithms 1 and 2 provide the detailed pseudocode of the algorithm. Algo-

rithm 1 learns from a set of transitions T the conditions under which each value
val of each variable v may appear in the next state. Here, learning is performed
iteratively for each value of variable to keep the pseudo-code simple. But the pro-
cess can easily be parallelized by running each loop in an independent thread,
bounding the run time to the variable for which the learning is the longest. The
algorithm starts by the pre-processing of the input transitions. Lines 4–13 of
Algorithm 1 correspond to the extraction of Negvval , the set of all negative ex-
amples of the appearance of vval in next state: all states such that v never takes



the value val in the next state of a transition of T . Those negative examples
are then used during the following learning phase (lines 14–32) to iteratively
learn the set of rules PO(T ). The learning phase starts by initializing a set of
rules Pvval to {R ∈ PO(∅) | h(R) = vval} = {vval ← ∅} (see Def. 12). Pvval is
iteratively revised against each negative example neg in Negvval . All rules Rm

of Pvval that match neg have to be revised. In order for Pvval to remain opti-
mal, the revision of each Rm must not match neg but still matches every other
state that Rm matches. To ensure that, the least specialization (see Def. 10)
is used to revise each conflicting rule Rm. Algorithm 2 shows the pseudo code
of this operation. For each variable of V so that b(Rm) has no condition over
it, a condition over another value than the one observed in state neg can be
added (lines 3–8). None of those revision match neg and all states matched by
Rm are still matched by at least one of its revision. The revised rules are then
added to Pvval after discarding the dominated rules. Once Pvval has been revised
against all negatives example of Negvval , P = {R ∈ PO(T ) | h(R) = vval} and
Pvval is added to P . Once all values of each variable have been treated, the al-
gorithm outputs P which becomes PO(T ). Theorem 4 gives good properties of
the algorithm, Theorem 5 states that GULA can learn from both synchronous,
asynchronous and general semantics transitions and Theorem 11 characterizes
its time and memory complexities.

Theorem 4 (GULA Termination, soundness, completeness, optimal-
ity). Let T ⊆ S2. The call GULA(A, T ) terminates and GULA(A, T ) =
PO(T ).

Theorem 5 (Semantic-freeness). Let P be aMVLP such that P is complete.
From Theorem 3 and Theorem 4, the following holds:

– GULA(A, Tsyn(P )) = PO(Tsyn(P ))
– GULA(A, Tasyn(P )) = PO(Tasyn(P ))
– GULA(A, Tgen(P )) = PO(Tgen(P ))

Theorem 6 (GULA Complexity). Let T ⊆ S2 be a set of transitions, n :=
|V| be the number of variables of the system and d := max(dom(V)) be the
maximal number of values of its variables. The worst-case time complexity of
GULA when learning from T belongs to O(|T |2 + 2n3d2n+1 + 2n2dn) and its
worst-case memory use belongs to O(d2n + 2dn + ndn+2).

4 Evaluation

In this section, the benefits from GULA are demonstrated on a case study and
its scalability is assessed w.r.t. system size and input size, i.e., the number of
variables and transitions. All experiments4 were conducted on an Intel Core I7
(6700, 3.4 GHz) with 32 Gb of RAM. Figure 2 shows results of the evaluations
of GULA scalability w.r.t. the number of variables of system, the domains size
of the variables and the number of transitions in the input of the algorithm.
4 Available at: http://tonyribeiro.fr/data/experiments/ILP_2018.zip

http://tonyribeiro.fr/data/experiments/ILP_2018.zip


Algorithm 1 GULA(A,T )
1: INPUT: A set of atoms A and a set of transitions T ⊆ S2

2: OUTPUT: P = PO(T )

3: for each vval ∈ A do
4: // 1) Extraction of negative examples
5: Negvval := ∅
6: for each (s1, s′

1) ∈ T do
7: negative example := true
8: for each (s2, s′

2) ∈ T do
9: if s1 == s2 and vval ∈ s′

2 then
10: negative example := false
11: Break
12: if negative example == true then
13: Negvval := Negvval ∪ {s1}

14: // 2) Revision of the rules of vval to avoid matching of negative examples
15: Pvval := {vval ← ∅}
16: for each neg ∈ Negvval do
17: M := ∅
18: for each R ∈ Pvval do // Extract all rules that conflict
19: if b(R) ⊆ neg then
20: M := M ∪ {R}; P := P \ {R}
21: for each Rm ∈ M do // Revise each conflicting rule
22: LS := least specialization(Rm, neg,A)
23: for each Rls ∈ LS do
24: for each Rp ∈ Pvval do // Check if the revision is dominated
25: if b(Rp) ⊆ b(Rls) then
26: dominated := true
27: break
28: if dominated == false then // Remove old rules that are now dominated
29: for each Rp ∈ P do
30: if b(Rls) ⊆ b(Rp) then
31: Pvval := Pvval \ {Rp}
32: Pvval := Pvval ∪ {Rls} // Add the revision
33: P := P ∪ Pvval

34: return P

For the first experiment, each variable domain is fixed to 3 values and the
size of the system evolves from 1 to 20 variables. Run time performances are
evaluated on synchronous, asynchronous and general semantics. Given a num-
ber of variables and a semantics, the transitions of a random system are directly
generated as follows. First all possible states of the system are generated, i.e., S.
For each state, a set S ⊆ A is randomly generated by adding each vval ∈ A with
50% chance, simulating the matching of rules of each variable value. All possi-
ble transitions w.r.t. the considered semantics are then generated according to
Proposition 6, 7 or 8. A total of 10 such instances are generated and successively
given as input to the algorithm. The average run time in seconds (log scale)
is given in Figure 2 (top left) w.r.t. to the number of variables of the system
learned. In those experiments, the algorithm succeeds to handle systems of at
most 8 variables before reaching the time-out of 10,000 seconds.

For the second experiment, the number of variables is fixed to 3 and the
domain of each variable evolves from 2 to 10 values. Run time performances
are once again evaluated on the three semantics. The instances are generated in
the same manner as in previous experiment. The average run time in seconds



Algorithm 2 least specialization(R, s, A) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s and a set of atoms A
2: OUTPUT: a set of rules LS which is the least specialization of R by s according to A.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if @vval′

∈ b(R) then // Add condition for all values not appearing in s

6: for each vval′′
∈ A, val′′ 6= val do

7: R′ := h(R)← (b(R) ∪ {vval′′
})

8: LS := LS ∪ {R′}
9: return LS

1 2 3 4 5 6 7 8
0

0,01

0,1

1

10

100

1000

10000

 Synchronous

Asynchronous

General

Number  of Variables

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

2 3 4 5 6 7 8 9 10 11 12 13 14
0

0,01

0,1

1

10

100

1000

10000

Synchronous

Asynchronous

General

Number of variables values

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

0 5000 10000 15000 20000 25000 30000 35000 40000 45000
0

500

1000

1500

2000

2500

3000

3500

Synchronous

Asynchronous

General

Number of transitions

R
u

n
 ti

m
e

 in
 s

e
co

n
d

s

Fig. 2: Evaluation of GULA’s scalability w.r.t. number of variables (top left),
number of variables values (top right) and number of input transitions (bottom).

(log scale) is given in Figure 2 (top right) w.r.t. to the size of the domains of
variables in the system. In those experiment the algorithm succeeds to handle
systems with variable of at most 14 values before reaching the time-out of 10,000
seconds.

Finally, for the third experiment, the system size is fixed to 13 variables and
we change the number of transitions given as input to the algorithm from 10 to
50,000. Given a number N and a semantics, a set of transitions T is generated
in the same manner as previous experiments except that the generation stops
when |T | = N . Again, a total of 10 such instances are generated and successively
given as input to the algorithm, the average run time in second is given in
Figure 2 (bottom) w.r.t. the number of input transitions. In those experiment
the algorithm succeeds to handle at most 40,000 transitions before reaching the
time-out of 10,000 seconds.

The first and second experiment show the exponential impact of the system
size on the learning time. The third experiment shows that the run time of the
algorithm is rather polynomial w.r.t. to the number of input transitions. The



exponential shape of the first results is explained by the fact that the number
of input transitions is exponentially higher when we increase either the number
of variables or the variables domains. General semantics instances are longer to
learn than the two others, and synchronous semantics instances are longer to
learn than asynchronous ones. The same reasoning w.r.t. the number of input
transitions holds here too: from the same logic program there are more tran-
sitions generated using general semantics than synchronous (non-deterministic)
than asynchronous semantics. The learning time is rather similar for all seman-
tics when the number of transitions is the same. This was quite expected since
it only impacts the pre-processing phase of the algorithm when searching for
negative examples of each variable values.

Semantics Mammalian (10) Fission (10) Budding (12) Arabidopsis (15)
Synchronous 1.84s / 1, 024 1.55s / 1, 024 34.48s / 4, 096 2, 066s / 32, 768

Asynchronous 19.88s / 4, 273 19.18s / 4, 217 523s / 19, 876 T.O. / 213, 127
General 928s / 34, 487 1, 220s / 29, 753 T.O. / 261, 366 T.O. / > 500, 000

Table 1: Run time of GULA (run time in seconds / number of transitions as
input) for Boolean network benchmarks up to 15 nodes for the three semantics.

Table 1 shows the run time of GULA when learning Boolean networks
from [4]. Here we reproduced the experiments held in [13]: all transitions of
each benchmark are generated but only for the three considered semantics. The
table also provides the number of transitions generated by the semantics for
each benchmark. It is important to note that those systems are all synchronous
deterministic, meaning that in the synchronous case, the input transitions of
GULA are the same as the input transitions of LF1T in [13]. Here the number
of transitions in the synchronous case is much lower than for the random exper-
iment, which explains the difference in terms of run-time. Furthermore the rules
to be learned are quite simpler in the sense that the number of conditions (i.e.,
the size of the body of all rules) never exceed 6 and the total number of rules
is always below 124. Nevertheless, the new algorithm is slower than LF1T [13]
in the synchronous deterministic Boolean case, which is expected since it is not
specifically dedicated to learning such networks: GULA learns both values (0
and 1) of each variable and pre-processes the transitions before learning rules,
while LF1T is optimized to only learn rules that make a variable take the value
1 in the next state. On the other hand, asynchronous and general semantics
transitions can only be handled by our new algorithm.

GULA succeeds to learn the two smaller benchmarks for all semantics in
less than an hour. The 12 variables benchmark could be learned for both the
synchronous and asynchronous semantics. For the general semantics, however,
it took more that the 10 hours time-out (T.O. in the table), which is due to
the very high number of transitions generated by those semantics: more than
200,000. The 15 variables benchmark could only be learned in synchronous case,



both asynchronous and general semantics cases having reached the time-out.
The current implementation of the algorithm is rather naive and better per-
formances are expected from future optimizations. In particular, the algorithm
can be parallelized into as many threads as there are different rule heads (one
thread per variable value). We are also developping an approximated version of
the algorithm based on local search which could be free of the combinatorial
explosion.

5 Conclusions

In this paper we proposed a modeling of multi-valued system in the form of
annotated logic programs. A modeling of both synchronous, asynchronous and
general semantics is also proposed. From this solid theory a rather straightfor-
ward extension of the LF1T algorithm of [13] is proposed. LF1T is restricted to
learning synchronous deterministic Boolean systems. GULA can capture multi-
valued deterministic or non-deterministic systems from transitions produced by
synchronous, asynchronous and general semantics. The current implementation
of the algorithm is rather naive which can explain the quite poor performances
compared to previous algorithms on the same ground. Scalability can be greatly
improved through practical optimization as well as the design of heuristic meth-
ods based on local search, which are our current focus.

This work opens the way to several theoretical extensions, among them:
taking into account dead-ends, memory or update delays; tackling incomplete or
incoherent dynamics; formally characterizing the semantics that can, or cannot,
be learned; learning the semantics alongside the dynamical rules. Once answered,
each of these subjects can lead to the creation of a new level of learning greatly
extending the expressive power of the LFIT framework. A long-term objective
is to fully automate the learning of models directly from time series, that is,
gene expression measurements during time, the semantics of which is unknown
or even changeable.

Other possible practical or technical extensions include optimization addi-
tions, such as a massive parallelization of the learning of each head of rule, or
the inclusion of heuristics to guide the learning.

References

1. H. A. Blair and V. Subrahmanian. Paraconsistent foundations for logic program-
ming. Journal of non-classical logic, 5(2):45–73, 1988.

2. H. A. Blair and V. Subrahmanian. Paraconsistent logic programming. Theoretical
Computer Science, 68(2):135 – 154, 1989.

3. T. Chatain, S. Haar, and L. Paulevé. Boolean networks: Beyond generalized asyn-
chronicity. In AUTOMATA 2018. Springer, 2018.

4. E. Dubrova and M. Teslenko. A SAT-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB), 8(5):1393–1399, 2011.



5. M. Fitting. Bilattices and the semantics of logic programming. The Journal of
Logic Programming, 11(2):91 – 116, 1991.

6. A. Garg, A. Di Cara, I. Xenarios, L. Mendoza, and G. De Micheli. Syn-
chronous versus asynchronous modeling of gene regulatory networks. Bioinfor-
matics, 24(17):1917–1925, 2008.

7. M. L. Ginsberg. Multivalued logics: A uniform approach to reasoning in artificial
intelligence. Computational intelligence, 4(3):265–316, 1988.

8. K. Inoue. Logic programming for boolean networks. In IJCAI Proceedings-
International Joint Conference on Artificial Intelligence, volume 22, page 924,
2011.

9. K. Inoue, T. Ribeiro, and C. Sakama. Learning from interpretation transition.
Machine Learning, 94(1):51–79, 2014.

10. M. Kifer and V. Subrahmanian. Theory of generalized annotated logic program-
ming and its applications. Journal of Logic Programming, 12(4):335–367, 1992.

11. D. Martınez, G. Alenya, C. Torras, T. Ribeiro, and K. Inoue. Learning relational
dynamics of stochastic domains for planning. In Proceedings of the 26th Interna-
tional Conference on Automated Planning and Scheduling, 2016.

12. D. Mart́ınez Mart́ınez, T. Ribeiro, K. Inoue, G. Alenyà Ribas, and C. Torras.
Learning probabilistic action models from interpretation transitions. In Proceedings
of the Technical Communications of the 31st International Conference on Logic
Programming (ICLP 2015), pages 1–14, 2015.

13. T. Ribeiro and K. Inoue. Learning prime implicant conditions from interpretation
transition. In Inductive Logic Programming, pages 108–125. Springer, 2015.

14. T. Ribeiro, M. Magnin, K. Inoue, and C. Sakama. Learning delayed influences of
biological systems. Frontiers in Bioengineering and Biotechnology, 2:81, 2015.

15. T. Ribeiro, M. Magnin, K. Inoue, and C. Sakama. Learning multi-valued biological
models with delayed influence from time-series observations. In 2015 IEEE 14th
International Conference on Machine Learning and Applications (ICMLA), pages
25–31, Dec 2015.

16. T. Ribeiro, S. Tourret, M. Folschette, M. Magnin, D. Borzacchiello, F. Chinesta,
O. Roux, and K. Inoue. Inductive learning from state transitions over continuous
domains. In N. Lachiche and C. Vrain, editors, Inductive Logic Programming, pages
124–139, Cham, 2018. Springer International Publishing.

17. M. H. Van Emden. Quantitative deduction and its fixpoint theory. The Journal
of Logic Programming, 3(1):37–53, 1986.



A Appendix: proofs of Section 2.1

Proposition 10 (Prop. 1). Let R1, R2 be two MVL rules. If R1 ≤ R2 and
R2 ≤ R1 then R1 = R2.

Proof. Let R1, R2 be two MVL rules such that R1 ≤ R2 and R2 ≤ R1. Then
h(R1) = h(R2) and b(R1) ⊆ b(R2) and b(R2) ⊆ b(R1), hence b(R1) ⊆ b(R2) ⊆
b(R1) thus b(R1) = b(R2) and R1 = R2. ut

Proposition 11 (Prop. 2: Cross-matching). Let R and R′ be two MVL
rules.

R uR′ iff ∀v ∈ V,∀val, val′ ∈ N, (vval, vval
′
) ∈ b(R)× b(R′) =⇒ val = val′.

Proof. For the direct implication, assume given two MVL rules R and R′ such
that R u R′. By definition, there exists s ∈ S such that R u s and R′ u s. Also
by definition, for all (vval, vval′) ∈ b(R) × b(R′), there exists vval, vval′ ∈ s.
Moreover, by the definition of a state, vval = vval′ , thus val = val′.

For the reverse implication, consider a state s so that b(R) ∪ b(R′) ⊆ s.
This is compatible with the definition of a state because if a variable v ∈ V is
featured in both b(R) and b(R′), that is, if there exists val, val′ ∈ N so that
(vval, vval′) ∈ b(R) × b(R′), then val = val′ and vval = vval′ . For variables not
featured in both b(R) and b(R′), we can chose any value in the domain of the
variable. As a consequence, we have: b(R) ⊆ s and b(R′) ⊆ s, which gives: Ru s
and R′ u s, meaning: R uR′. ut

B Appendix: proofs of Section 2.2

Theorem 7 (Th. 1: properties of the least revision). Let R be a MVL
rule and s ∈ S such that R u s. Let SR := {s′ ∈ S | R u s′} and Sspe := {s′ ∈
S | ∃R′ ∈ Lspe(R, s), R′ u s′}.

Let P be aMVLP and T, T ′ ⊆ S2 such that |fst(T )| = 1∧fst(T )∩fst(T ′) = ∅.
The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T ) is consistent with T ,

3. P
↪−→ T ′ =⇒

Lrev(P,T )
↪−−−−−−→ T ′,

4. P
↪−→ T =⇒

Lrev(P,T )
↪−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T ) is complete.

Proof.

1. First, let us suppose that ∃s′′ 6∈ SR \ {s} such that ∃R′ ∈ Lspe(R, s), R′ u s′′.
By definition of matching R′ u s′′ =⇒ b(R′) ⊆ s′′. By definition of least
specialization, b(R′) = b(R) ∪ {vval}, vval′ ∈ s, vval′′ 6∈ b(R), val 6= val′. Let
us suppose that s′′ = s, then b(R′) 6⊆ s′′ since vval ∈ b(R′) and vval 6∈ s, this



is a contradiction. Let us suppose that s′′ 6= s then ¬R u s′′, thus b(R) 6⊆ s′′

and b(R′) 6⊆ s′′, this is a contradiction.
Second, let us assume that ∃s′′ ∈ SR \ {s} such that ∀R′ ∈ Lspe(R, s),¬R′ u
s′′. By definition of SR, R u s′′. By definition of matching ¬R′ u s′′ =⇒
b(R′) 6⊆ s′′. By definition of least specialization, b(R′) = b(R)∪{vval}, vval′ ∈
s, val 6= val′. By definition of matching R u s′′ =⇒ b(R) ⊆ s′′ =⇒
s′′ = b(R) ∪ I, b(R) ∩ I = ∅ and thus b(R′) 6⊆ s′′ =⇒ vval 6∈ I. The
assumption implies that ∀vval′ ∈ I, ∀R′ ∈ Lspe(R, s), vval ∈ b(R′), val 6=
val′. By definition of least specialization, it implies that vval′ ∈ s and thus
I = s \ b(R) making s′′ = s, which is a contradiction.
Conclusion: Sspe = SR \ {s}

2. By definition of a consistent program, if two sets of MVL rules SR1, SR2
are consistent with T then SR1 ∪ SR2 is consistent with T . Let RP = {R ∈
P | R u s,∀(s, s′) ∈ T, h(R) 6∈ s′} be the set of rules of P that conflict with
T . By definition of least revision Lrev(P, T ) = (P \RP ) ∪

⋃
R∈RP

Lspe(R, s). The

first part of the expression P \ RP is consistent with T since @R′ ∈ P \ RP

such that R′ conflicts with T . The second part of the expression
⋃

R∈RP

Lspe(R, s)

is also consistent with T : @R′ ∈ Lspe(R, s), R′ u s thus @R′ ∈ Lspe(R, s) that
conflict with T and

⋃
R∈RP

Lspe(R, s) is consistent with T . Conclusion: Lrev(P, T )

is consistent with T .
3. Let (s1, s2) ∈ T ′ thus s1 6= s. From definition of realization, vval ∈ s2 =⇒

∃R ∈ P, h(R) = vval, R u s1. If ¬R u s then R ∈ Lrev(P, T ) and
Lrev(P,T )

↪−−−−−−→
(s1, s2). If R u s, from the first point ∃R′ ∈ Lspe(R, s), R′ u s1 and since

h(R′) = h(R) = vval,
Lrev(P,T )

↪−−−−−−→ (s1, s2). Applying this reasoning on all ele-

ments of T ′ implies that P
↪−→ T ′ =⇒

Lrev(P,T )
↪−−−−−−→ T ′.

4. Let (s1, s2) ∈ T , since P
↪−→ T by definition of realization ∀vval ∈ s2,∃R ∈

P, R u s1, h(R) = vval. By definition of conflict, R is not in conflict with T

thus R ∈ Lrev(P, T ) and
Lrev(P,T )

↪−−−−−−→ T .
5. Let (s1, s2) ∈ S2, if P is complete, then by definition of a complete program
∀v ∈ V,∃R ∈ P, R u s1, var(h(R)) = v. If ¬R u s then R ∈ Lrev(P, T ). If
Ru s, from the first point ∃R′ ∈ Lspe(R, s), R′ u s1 and thus R′ ∈ Lrev(P, T )
and since var(h(R′)) = var(h(R)) = v, Lrev(P, T ) is complete.

ut

Proposition 12 (Prop. 4: optimal program of empty set). PO(∅) =
{vval ← ∅ | vval ∈ A}.

Proof. Let P = {vval ← ∅ | vval ∈ A}. TheMVLP P is consistent and complete
by construction. Like allMVLPs, P

↪−→ ∅ and there is no transition in ∅ to match
with the rules in P . In addition, by construction, the rules of P dominate all
MVL rules. ut



Proposition 13 (Prop. 3: uniqueness of optimal program). Let T ⊆ S2.
The MVLP optimal for T is unique and denoted PO(T ).

Proof. Let T ⊆ S2. Assume the existence of two distinct MVLPs optimal for
T , denoted by PO1(T ) and PO2(T ) respectively. Then w.l.o.g. we consider that
there exists a MVL rule R such that R ∈ PO1(T ) and R 6∈ PO2(T ). By the
definition of a suitable program, R is not conflicting with T and there exists a
MVL rule R2 ∈ PO2(T ), such that R ≤ R2. Using the same definition, there
exists R1 ∈ PO1(T ) such that R2 ≤ R1 since R2 is not conflicting with T . Thus
R ≤ R1 and by the definition of an optimal program R1 ≤ R. By Proposition 1,
R1 = R and thus R ≤ R2 ≤ R hence R2 = R, a contradiction. ut

Theorem 8 (Th. 2: least revision is suitable). Let s ∈ S and T, T ′ ⊆ S2

such that |fst(T ′)| = 1∧fst(T )∩fst(T ′) = ∅. Lrev(PO(T ), T ′) is aMVLP suitable
for T ∪ T ′.

Proof. Let P = Lrev(PO(T ), T ′). Since PO(T ) is consistent with T , by Theo-
rem 1, P is also consistent with T and thus consistent with T ′∪T . Since PO(T ) re-
alize T by Theorem 1, P

↪−→ T . Since s 6∈ fst(T ), aMVL rule R such that b(R) = s
does not conflict with T . By definition of suitable program ∃R′ ∈ PO(T ), R ≤ R′,

thus
PO(T )

↪−−−−→ T ′. Since
PO(T )

↪−−−−→ T ′ by Theorem 1 P
↪−→ T ′ and thus P

↪−→ T ∪ T ′. Since
PO(T ) is complete, by Theorem 1, P is also complete. To prove that P verifies
the last point of the definition of a suitableMVLP, let R be aMVL rule not con-
flicting with T∪T ′. Since R is also not conflicting with T , there exists R′ ∈ PO(T )
such that R ≤ R′. If R′ is not conflicting with T ′, then R′ will not be revised and
R′ ∈ P , thus R is dominated by a rule of P . Otherwise, R′ is in conflict with T ′,
thus R′ u s and ∀(s, s′) ∈ T ′, h(R′) 6∈ s′. Since R is not in conflict with T ′ and
h(R) = h(R′), since R ≤ R′ then b(R) = b(R′) ∪ I, ∃vval ∈ I, vval 6∈ s. By defi-
nition of least revision and least specialization, there is a rule R′′ ∈ Lspe(R′, s)
such that vval ∈ b(R′′) and since R′′ = h(R′)← b(R′)∪ vval thus R ≤ R′′. Thus
R is dominated by a rule of P . ut

C Appendix: proofs of Section 2.3

Proposition 14 (Prop. 6 Synchronous transitions). Let T ⊆ S2 so that
fst(T ) = S. The transitions of T are synchronous, i.e., ∃P a MVLP such that
Tsyn(P ) = T , if and only if ∀(s, s1), (s, s2) ∈ T, ∀s3 ∈ S, s3 ⊆ s1 ∪ s2 =⇒
(s, s3) ∈ T .

Proof. (⇒) Let (s, s1) and (s, s2) in T and s3 ∈ S so that s3 ⊆ s1 ∪ s2. Let
A := {h(R) | R ∈ P, Rusα}. Then it comes: s1, s2 ⊆ A, thus: s3 ⊆ (s1∪s2) ⊆ A.
By construction of Tsyn, it comes: (s, s3) ∈ T .

(⇐) Consider P := {vval ← s | (s, s′) ∈ T ∧ vval ∈ s′} the program made of
the most specific rules that realize T .

(⊆) Let (s, s′) ∈ Tsyn(P ) and let x ∈ s′. By construction of P , there is
a rule R such that h(R) = x. Therefore, there exists a state sx ∈ S such that



x ∈ sx and (s, sx) ∈ T . This reasoning can be carried for all atoms x in s′,
and in the end: s′ ⊆

⋃
x∈s′ sx. By applying the proposition for each x, it comes:

(s, s′) ∈ T .
(⊇) Let (s, s′) ∈ T . By construction of P , we have s′ ⊆ {h(R) | R ∈

P, R u s}. Thus, (s, s′) ∈ Tsyn(P ). ut

Proposition 15 (Prop. 7 Asynchronous transitions). Let T ⊆ S2 so that
fst(T ) = S. The transitions of T are asynchronous, i.e., ∃P a MVLP such
that Tasyn(P ) = T , if and only if ∀s, s′ ∈ S, s 6= s′,

(
(s, s) ∈ T =⇒ (s, s′) /∈

T
)
∧
(
(s, s′) ∈ T =⇒ |s \ s′| = 1

)
.

Proof. (⇒) Let s, s′ ∈ S so that s 6= s′. • First suppose that (s, s) ∈ T . Then,
by construction of Tasyn(P ), ∀R ∈ P, R u s =⇒ h(R) ∈ s. If (s, s′) ∈ T ,
then ∃R ∈ P, R u s ∧ h(R) /∈ s, which is a contradiction. • Now suppose that
(s, s′) ∈ T . Then, still by construction of Tasyn(P ), there exists R ∈ P so that
s′ = s\\{h(R)} and h(R) /∈ s. Thus, |s \ s′| = 1.

(⇐) Consider P := {vval ← s | (s, s′) ∈ T ∧ vval ∈ s′} the program made of
the most specific rules that realize T .

(⊆) Let (s, s′) ∈ Tasyn(P ). • First suppose that s = s′. By construction
of Tasyn, it means that ∀R ∈ P, R u s =⇒ h(R) ∈ s which, by construction
of P , means that (s, s) ∈ T . • Now suppose that s 6= s′. By construction of
Tasyn, it means that there exists R ∈ P so that h(R) /∈ s and s′ = s\\{h(R)}.
By construction of P , this means that there exists (s, s′′) ∈ T so that h(R) ∈ s′′

(and thus s′′ 6= s). Moreover, from the right-hand part of the property, it comes
that |s \ s′′| = 1, that is, there exists a unique x ∈ A such that x /∈ s and
s′′ = s\\{x}. Necessarily, x = h(R), thus s′′ = s′ and (s, s′) ∈ T .

(⊇) Let (s, s′) ∈ T . • First suppose that s = s′. From the left-hand side
of the property, there exists no transition (s, s′′) ∈ T such that s′′ 6= s. By
construction, it comes: (s, s) ∈ Tasyn(P ). • Now suppose that s 6= s′. From the
right-hand side of the property, |s\s′′| = 1, meaning that there exists x ∈ A such
that s′ = s\\x and x /∈ s. Thus there exists a rule R ∈ P such that b(R) = s and
h(R) ∈ (s′\s). As (s′\s) = {x}, and by construction, we have: (s, s′) ∈ Tasyn(P ).

ut

Proposition 16 (Prop. 8 General transitions). Let T ⊆ S2 so that fst(T ) =
S. The transitions of T are general, i.e., ∃P a MVLP such that Tgen(P ) = T ,
if and only if: ∀(s, s1), (s, s2) ∈ T, ∀s3 ∈ S, s3 ⊆ s ∪ s1 ∪ s2 =⇒ (s, s3) ∈ T .

Proof. (⇒) Let (s, s1) and (s, s2) in T and s3 ∈ S so that s3 ⊆ s ∪ s1 ∪ s2.
Let A := {h(R) | R ∈ P, R u sα}. Then it comes: s1, s2 ⊆ A, thus: (s3 \ s) ⊆
(s1 ∪ s2) ⊆ A. By construction of Tgen, it comes: (s, s\\(s3 \ s)) = (s, s3) ∈ T .

(⇐) Consider P := {vval ← s | (s, s′) ∈ T ∧ vval ∈ s′} the program made of
the most specific rules that realize T .

(⊆) Let (s, s′) ∈ Tgen(P ) and let x ∈ s′. By definition of Tgen, either x ∈ s
or there exists R ∈ P so that x = h(R). In the first case, let sx = s; in the second
case, by construction of P , there exists a state sx ∈ T so that (s, sx) ∈ T and
x ∈ sx. By carrying this reasoning for all atoms x in s′, we have: s′ ⊆

⋃
x∈s′ sx



where for some x, we have sx = s. By applying the proposition for each x, it
comes: (s, s′) ∈ T .

(⊆) Let (s, s′) ∈ T . By construction of P , s′ ⊆ {h(R) | R ∈ P ∧ R u s}.
Thus, (s, s\\s′) = (s, s′) ∈ Tgen(P ). ut

Theorem 9 (Semantics-free correctness). Let P be a MVLP such that P
is complete.

– Tsyn(P ) = Tsyn(PO(Tsyn(P ))),
– Tasyn(P ) = Tasyn(PO(Tasyn(P ))),
– Tgen(P ) = Tgen(PO(Tgen(P ))).

Proof. Let us first consider the case of Tsyn. Let T ⊆ S2 so that fst(T ) = S and
let M(P, s) be the set of heads of rules of P that match the state s: M(P, s) :=
{h(R) | R ∈ P ∧R u s}.

We first expose two properties about M(PO(T ), s). According to Def. 12,
PO(T ) realizes T , thus: (a) ∀(s, s′) ∈ T, s′ ⊆M(PO(T ), s). According to the same
definition, PO(T ) is consistent with T , thus: (b) ∀s ∈ S,∀vval ∈M(PO(T ), s),∃(s, s′) ∈
T, vval ∈ s′.

Now we prove by contradiction that Tsyn(P ) = Tsyn(PO(Tsyn(P ))). Thus,
suppose Tsyn(P ) 6= Tsyn(PO(Tsyn(P ))) and let T := Tsyn(P ). Therefore, there
exists s ∈ S so that M(P, s) 6= M(PO(T ), s). Thus:

– Either ∃vval ∈ M(P, s), vval 6∈ M(PO(T ), s) and thus ∃(s, s′) ∈ T, s′ 6⊆
M(PO(T ), s) which is a contradiction with (a).

– Or ∃vval ∈ M(PO(T ), s), vval 6∈ M(P, s) and thus @(s, s′) ∈ T, vval ∈ s′

which is a contradiction with (b).

Then ∀s ∈ S, M(P, s) = M(PO(T ), s) and according to Def. 14, Tsyn(P ) =
Tsyn(PO(Tsyn(P ))).

The case of Tgen is similar with M(P, s) := s ∪ {h(R) | R ∈ P ∧ R u s}
and noting that Tgen(P ) = {(s, s′) ∈ S2 | s′ ⊆ M(P, s)}. The case of Tasyn
is also similar with M(P, s) := {h(R) | R ∈ P ∧ R u s} \ s and noting that
Tasyn(P ) = {(s, s\\x) ∈ S2 | x ∈M(P, s)} ∪ {(s, s) ∈ S2 |M(P, s) = ∅}. ut

D Appendix: proofs of Section 3

Theorem 10 (Th. 10: GULA Termination, soundness, completeness,
optimality). Let T ⊆ S2. The call GULA(A, T ) terminates and GULA(A, T ) =
PO(T ).

Proof. Let T ⊆ S2. The call GULA(T ) terminates because all loops iterate on
finite sets.

The algorithm iterates over atom vval iteratively to extract all state s such
that (s, s′) ∈ T =⇒ vval 6∈ s′. This is equivalent to generate the set TT =
{T ′ ⊆ T | ∀t, t′ ∈ T =⇒ t = (s, s′), t′ = (s, s′′)}.



To prove that GULA(T )=PO(T ), and is thus sound, complete and optimal,
it suffices to prove that the main loop (Algorithm 1, lines 16–32) preserves the
invariant P = PO(Ti) after the ith iteration where Ti is the union of all set of
transitions already selected line 16 after the ith iteration for all i from 0 to |TT |.

Line 15 initializes P to {vval ← ∅}. Thus by Proposition 4, after line 15,
P = {R ∈ PO(∅) | h(R) = vval}.

Let us assume that before the (i + 1)th iteration of the main loop, P = {R ∈
PO(Ti) | h(R) = vval}. Through the loop of lines 18–20, P ′ = {R ∈ PO(Ti) |
R does not conflict with Ti+1, h(R) = vval} is computed. Then the set P ′′ =⋃
{Lspe(R, s) | R ∈ PO(Ti)\P ′, h(R) = vval} is iteratively build through the calls

to least specialization at line 22 and the dominated rules are pruned as they
are detected by the loop of lines 23–32. Thus by Theorem 2 and Proposition 5,
P = {R ∈ PO(Ti+1) | h(R) = vval} after the (i + 1)th iteration of the main loop.
Since the same operation is hold for each vval ∈ A, P =

⋃
{R ∈ PO(

⋃
TT = T ) |

h(R) = vval} = PO(T ) after all iterations of the loop of line line 3. ut

Theorem 11 (GULA Complexity). Let T ⊆ S2 be a set of transitions, n :=
|V| be the number of variables of the system and d := max(dom(V)) be the
maximal number of values of its variables. The worst-case time complexity of
GULA when learning from T belongs to O(|T |2 + 2n3d2n+1 + 2n2dn) and its
worst-case memory use belongs to O(d2n + 2dn + ndn+2).

Proof. The algorithm takes as input a set of transition T ⊆ S2 bounding the
memory use to O(|S2|) = O(dn × dn) = O(d2n) at start. The learning is per-
formed iteratively for each possible rule head vval ∈ A. The extraction of nega-
tive example requires to compare each transition of T one to one and thus has a
complexity of op1 = O(|T |2). Those transitions are stored in Negvval which size
is at most |S| extending the memory use to O(d2n + dn).

The learning phase revises a set of rule Pvval where each rule has the same
head vval. There are at most dn possible rule bodies and thus |Pvval | ≤ dn, the
memory use of |Pvval | is then O(dn) extending the memory bound to O(d2n +
dn + dn) = O(d2n + 2dn).

For each state s of Negvval , each rule of Pvval that matches s are extracted
into a set of rules Rm. This operation has a complexity of op2 = O(dn × n2).
Each rule of Rm are then revised using least specialization, this operation has
a complexity of O(n2). |Rm| ≤ dn thus the revision of all matching rules is
op3 = O(dn × n2). All revision are stored in LS and there are at most dn
revisions for each rule, thus |LS| ≤ dn × dn extending the memory bound to
O(d2n + 2dn + ndn+1) = O(d2n + 2dn + n× dn+2).

The memory usage of GULA is therefore O(d2n + 2dn + n× dn+2).
All rules of LS are compared to the rule of Pvval for domination check, this

operation has a complexity of op4 = O(2× |LS| × |Pvval | ×n2) = O(2× dn× d×
n × dn × n2) = O(2 × n3 × d2n+1). The complexity is bound by O(op1 + op2 +
op3 + op4) = O(|T |2 + dn × n2 + dn × n2 + 2× n3 × d2n+1) = O(|T |2 + 2× n3 ×
d2n+1 + 2× n2dn)

The computational complexity of GULA is thus O(|T |2+2n3d2n+1+2n2dn).
ut


	Learning Dynamics with Synchronous, Asynchronous and General Semantics

