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Abstract 13 

Network-based sound monitoring systems are deployed in various cities over the world and mobile applications 14 
allowing participatory sensing are now common. Nevertheless, the sparseness of the collected measurements, either 15 
in space or in time, complicates the production of sound maps. This paper describes the results of a measurement 16 
campaign that has been conducted in order to test different spatial interpolation strategies for producing sound maps. 17 
Mobile measurements have been performed while walking multiple times in every street of the XIII’th district of 18 
Paris. By adaptively constructing a noise map on the basis of these measurements, the role of the density of 19 
observations and the performance of four different interpolation strategies is investigated. Ordinary and universal 20 
Kriging methods are assessed, as well as the effect of using an alternative definition of the distance between 21 
observation locations, which takes the topology of the road network into account. The results show that a high 22 
density of observation points is necessary to obtain an interpolated sound map close to the reference map.  23 
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I. Introduction 25 

In this work, we investigated the use of a large amount of in situ measurements and the interpolation of 26 

these to construct a sound level map.  27 

The Directive 2002/CE/49 contributed to the development and harmonization of noise prediction 28 

models (EC 2002). For making urban sound maps, model-based numerical engineering methods are 29 

currently widely used and these methods provide a good compromise between accuracy and computation 30 

time (Kephalopoulos et al. 2014). Nevertheless, they have many limitations, and the resulting sound maps 31 

neglect the diversity of urban sound environments in terms of both sound sources and sound environment 32 

dynamics.  33 

Sound maps based on measurements can help to improve sound mapping (Zambon et al. 2017; Asensio 34 

2017; Hong and Jeon 2017; Harman, Koseoglu, and Yigit 2016). The recent development of small and 35 

autonomous acoustic sensors contributes to this movement, and network-based sound monitoring systems 36 

are being deployed in an increasing number of cities over the world, using either high-quality or low-cost 37 

micropones (Mydlarz, Salamon, and Bello 2017; Asensio 2017; Sevillano et al. 2016). Also, smartphone 38 

applications, allowing participatory sensing, are now common, which multiplies the amount of available 39 



data to potentially map the sound environment of a city based on measurements (Aspuru et al. 2016; 40 

Guillaume et al. 2016; Maisonneuve et al. 2009; Issarny et al. 2016). 41 

Nevertheless, the production of sound maps based on measurements is complicated by metrological 42 

issues inherent to the typical microphones used in consumer electronics, the time sparseness of the 43 

measurements collected through mobile monitoring applications, and the space sparseness of the 44 

measurements collected through fixed sound monitoring networks. Therefore, it is fundamental to know 45 

the time and space representativeness of such measurements, as this knowledge is required to be able to 46 

propose relevant interpolation methods that can be used to produce sound maps that cover the full 47 

temporal and spatial extent of the study area. 48 

The temporal structure of urban sound levels (highly correlated day or week patterns, seasonal trends) 49 

can be exploited to restrict the number of sampled days, or to rely only on measurements performed at 50 

selected periods of the day, in order to estimate Lden values or Daily Average Noise Patterns (Hong and 51 

Jeon 2017; Geraghty and O’Mahony 2016; J. M. Barrigón Morillas and Prieto Gajardo 2014; Zuo et al. 52 

2014). Previous studies also revealed that a 10 or 15-minute measurement is representative of a 1h-period 53 

in an urban context, as the majority of the 10 or 15 minute-measurements are in the same sound level 54 

range during homogeneous periods (Brocolini et al. 2013; Prieto Gajardo and Barrigón Morillas 2015). 55 

Other studies that rely on short-term recording methods proved the relevance of 15-minute sampling 56 

periods (Morillas et al. 2005; Arnaud Can et al. 2011). Even shorter measurement periods can be found in 57 

the literature, especially in those cases where the opportunistic measurement context offered by 58 

smartphone applications is used. In this case, the short measurement duration is compensated by the large 59 

number of measurements (Guillaume et al. 2016), shifting the focus from the duration of each 60 

measurement episode to the number of sampling episodes, as recommended in (Mateus, Dias Carrilho, 61 

and Gameiro da Silva 2015). 62 

Zuo et al. (Zuo et al. 2014) showed that the sound level variability in urban environments can be 63 

explained for a large part by the spatial characteristics of the environment. Also, the space 64 

representativeness and the spatial interpolation of the measurements is an important issue when computing 65 

sound maps based on measurements. Maps interpolated from the data obtained through fixed sound 66 

measurement stations have recently been produced (Liu et al. 2013; Harman, Koseoglu, and Yigit 2016; 67 

Segura Garcia et al. 2016; Huang et al. 2017), and form a useful tool to estimate the noisiness of a 68 

neighborhood or to give a global overview of the city sound levels. However, the large distance between 69 

measurement stations often does not allow one to map sound levels in each street, which is offered by 70 

maps calculated using model-based numerical methods. A study by Can et al. (A. Can, Dekoninck, and 71 

Botteldooren 2014) that involved mobile measurements performed using sound level meters attached to 72 

backpacks permitted one to compare an interpolated map with a reference map, but only for a very small 73 

area (four streets). More studies are therefore needed to investigate the density of measurements that is 74 

required to have an acceptable accuracy at the street resolution.  75 

Another parameter to take into account is the method of interpolation. Several methods have been 76 

tested for urban sound level interpolation: Inverse Distance Weighting (IDW) methods (A. Can, 77 

Dekoninck, and Botteldooren 2014; Harman, Koseoglu, and Yigit 2016; Segura Garcia et al. 2016; Hong 78 

and Jeon 2017), Kriging methods (Harman, Koseoglu, and Yigit 2016; A. Can, Dekoninck, and 79 

Botteldooren 2014; Segura Garcia et al. 2016) and multiquadratic interpolation (Harman, Koseoglu, and 80 

Yigit 2016). Alternative interpolation methods that involve a modified definition of the distance between 81 



measurement locations, in order to account for the city geometry or the road network, have recently been 82 

proposed (A. Can, Dekoninck, and Botteldooren 2014; López-Quílez and Muñoz 2009; Hachem et al. 83 

2015). Nevertheless, these interpolation methods have only been tested on small measurement samples, 84 

and larger studies are needed to validate the conclusions of these works. It is worth mentioning that the 85 

density of measurements appears to be more important than the method of interpolation (Harman, 86 

Koseoglu, and Yigit 2016). 87 

Recently, a number of data fusion techniques have been proposed to correct model-based numerically 88 

computed sound maps with measurements (Hachem et al. 2015; Wei et al. 2016; Zambon et al. 2017; 89 

Ventura et al. 2017). These techniques are promising, but require a pre-calculated sound map, which can 90 

be expensive, and give priority to the potential indicators available in this sound map. Most of the existing 91 

sound maps involve the energy-equivalent sound level, whereas in situ measurements allow calculating a 92 

wide range of acoustical indicators, which may include information about the temporal dynamics of the 93 

sound environment; for example, percentile or emergence indicators can also be interesting to interpolate. 94 

The spatial interpolation methods can even be based on perceptual assessments (Aletta and Kang 2015).  95 

In this study, a large measurement campaign has been conducted in the XIII
th
 district of Paris, with the 96 

goal to test different spatial interpolation strategies. Mobile measurements have been performed with 97 

sound measurement stations attached to backpacks that were carried by researchers when walking in every 98 

street of the district between 1 and 15 times. The measurements are aggregated over a grid of locations in 99 

the study area, and are used to compute a reference map of the district. An analysis of the sensitivity of the 100 

sound level values with respect to the radius of the integration and the number of measurements is done 101 

via a bootstrap method. From the reference sound map, four Kriging methods for interpolation between a 102 

set of measurement locations are tested, based on a combination of two strategies: (i) Ordinary Kriging 103 

and universal Kriging which consists of adding a linear trend, defined from the distance between an 104 

observation location of the domain and its closest categorized road, and (ii) a variation of the distance 105 

definition between observation locations, which can be Euclidian or computed from the road network to 106 

take into account the influence of the city geometry. By progressively decreasing the number of 107 

observation locations, the impact of the density of observation locations and the performance of different 108 

spatial interpolation methods is investigated.  109 

II. Method 110 

A. Study area 111 

Figure 1 presents the study area, which corresponds to the XIII
th
 District of Paris. This district includes 112 

a large variety of urban sound environments: large avenues with high traffic density, lively streets with 113 

bars and restaurants, schools, small and large parks, quiet streets. The size of the study area is 114 

approximately 2.8 km² with a maximum extent of 2 km west to east and a maximum extent of 1.7 km 115 

north to south. 116 

B. Measurement set-up 117 

All measurements were carried out using dedicated mobile sound measurement stations developed by 118 

ASAsense (De Coensel et al. 2015). These stations record the instantaneous 1/3-octave band spectrum 119 

with a 125-ms temporal resolution as well as the instantaneous GPS position with a 1-s temporal 120 



resolution. Both sound and GPS data are synchronized, such that the spatio-temporal evolution of the 121 

sound spectrum during each measurement session can be reconstructed afterwards. In order to fully 122 

capture the characteristics of the sound environment, a large set of indicators is calculated on the basis of 123 

this 1/3-octave band spectrum data, including the A-weighted energy-equivalent sound level at each 124 

second, Leq,1s, which is used throughout this study. 125 

C. Mobile measurements 126 

The sound measurement stations were mounted in backpacks with power provided by a battery pack, 127 

and, subsequently, mobile measurements were carried out between October 22
th
 2014 and May 26

th
 2015. 128 

Five operators participated in the measurements. In order to minimize the variation between measurement 129 

sessions and to be able to calculate sound levels that are representative for homogeneous sound 130 

environments, measurements were only carried out on weekdays, either between 10 a.m. and 12 a.m., or 131 

between 2 p.m. and 4 p.m. As shown in (Prieto Gajardo and Barrigón Morillas 2015; Zuo et al. 2014; 132 

Brocolini et al. 2013), these periods, which exclude rush hour traffic and lunch times, provide a similar 133 

sound environment. Depending on the variability of the sound environment, the number of walks in each 134 

street was varied. As shown in (Prieto Gajardo and Barrigón Morillas 2015), the sound environment of a 135 

calm street is more sensitive to single sound events than that of a large boulevard, thus a higher number of 136 

measurements is required to calculate a sound level value that is representative of the sound environment 137 

of a calm street, as compared to a large boulevard. After each day of measurements, the variance of the 138 

sound level was computed for each street, providing feedback on those streets that would benefit from 139 

more measurements to get a stable estimate. The number of passages per street ranged from 1 to 15 times, 140 

with an average of 4 and a standard deviation of 2.7 passages. Figure 1 shows the number of walks (only 141 

validated measurements were kept to plot this figure). 142 



 143 

 144 

Figure 1 (color online) Number of passages at each location (only validated measurements). 145 

D. Map matching 146 

A GPS track is associated with each measurement session. However, the accuracy of the GPS data 147 

depends on many factors such as the quality of the GPS receiver, the characteristics of the surroundings 148 

such as the presence of high buildings, or the weather. In this study, the median standard deviation 149 

associated with the GPS locations was about 10 meters. Although rarely considered in studies dealing with 150 

geo-referenced mobile measurements, this can be problematic for the present analysis, because some 151 

measurements can be associated with an erroneous street. 152 

Therefore, it was necessary to preprocess the GPS data, mapping each measurement to a location on 153 

the road, a problem commonly known as map-matching. For this study, a point-to-point method was 154 

developed, on the basis of the following conditions: (i) all measurements were performed on sidewalks or 155 

on roads, and the sound levels measured on both sides of each street are considered to be equivalent and 156 

are snapped to the middle of the street; (ii) all GPS locations are snapped to the center of the closest street 157 

under the conditions that the operator walked with a maximum speed of 5 km/h and that the map-matched 158 

point conserves the same direction of displacement (with a direction tolerance of 60°) as the original 159 

point; and (iii) the map-matched points are located at a maximum distance from the original GPS points 160 

equal to twice the standard deviation of the GPS tracker. 161 

E. From mobile measurements to observation locations 162 

In a previous study (Aumond et al. 2017), it was shown that the median sound level L50 is well 163 

correlated with the perceived loudness of an urban sound environment. The median sound level presents 164 



the advantage that it is less sensitive to peaks in the measurement than the energy-equivalent level. 165 

Exceptionally, peaks can be generated by the operators themselves, or can occur when extremely noisy 166 

vehicles pass by in the vicinity of the operators. In addition, the median sound level L50 does not include 167 

A-weighting, which is known to reduce too much the influence of low frequencies [63-500 Hz] at sound 168 

levels encountered in urban environments, and thus the influence of road traffic sound on overall 169 

perceived loudness. The first step in carrying out the spatial interpolation between measurement locations, 170 

was to aggregate, at each location, all mobile measurements that are within a radius r. This aggregation 171 

step is performed using the median sound level of all the 1-s values Leq,1s considered as independent 172 

observations. The associated value is assumed to be representative of the L50 sound level at the 173 

observation location on weekdays and during the measurement periods [10-12h; 14-16h]. Every 174 

aggregated observation location is situated on the road network, because mobile measurements where only 175 

taken on sidewalks and pedestrian walkways in the public space. The road network that was used for map-176 

matching was based on OpenStreetMap (“OpenStreetMap” n.d.). 177 

F. Variogram and Kriging 178 

1. Kriging method 179 

Ordinary Kriging method is a well-known interpolation method that has been used in various 180 

applications, especially in environmental applications. It also bears similarities with classical data 181 

assimilation methods that have helped environmental forecasting, including at urban scale for air pollution 182 

(Tilloy et al. 2013) and noise pollution (Ventura et al. 2017; Harman, Koseoglu, and Yigit 2016). The 183 

approach is likely to succeed when some meaningful function can fit the empirical variogram, which is the 184 

case in this study. Nonetheless, at urban scale, the sound levels exhibit a special distribution due to the city 185 

geometry, and this is a difference with typical applications of Kriging (López-Quílez and Muñoz 2009). 186 

This is the reason why, in the construction of the variogram, we made use of the distance along the road 187 

network instead of a raw Euclidean distance (see Section II.F.3). Also, since it is known that sound levels 188 

can be approximated from external data (Juan Miguel Barrigón Morillas et al. 2011) and can provide some 189 

sort of prior for the spatial distribution of the sound levels, we also tested universal Kriging, which carries 190 

out the interpolation of the measurements on top of a prior sound level map (see Section II.F.4). 191 

2. Implementations and parameters 192 

The variogram and Kriging algorithms presented in this study are applied using the functions variog 193 

(computation of the variogram), variofit (best fit of the variogram) and krige.conv (Kriging function) of 194 

the packages GeoR (“GeoR: Analysis of Geostatistical Data Version 1.7-5.2 from CRAN” n.d.) and 195 

GeoRcb (López-Quílez and Muñoz 2009). The empirical variogram is computed over a distance of 1000 196 

meters. The classical estimator is chosen to compute the empirical variogram as defined in (Cressie 2015). 197 

The Matérn covariance model, as defined in (Diggle and Ribeiro 2007), is used to compute the best fit of 198 

the experimental variogram with a fixed value for the shape parameter κ=0.5 and φ the value of the range 199 

parameter to estimate. 200 

3. Euclidian vs cost-based distance 201 

The package GeoR has been used to interpolate using the Euclidian distance (EUCL). The package 202 

GeoRcb permits the use of alternative definitions of distance. In this study, the distance between two 203 

observation locations has also been defined along the road network as presented in Figure 2 The error 204 

correlations in the traffic flow are assumed to be better modeled as a function of the distance along the 205 



road than the Euclidean distance. As a consequence, the use of the distance along the road network 206 

presumably allows one to better model errors that come from the traffic. The distance between all the 207 

possible observation locations of the domain has been calculated with the Johnson's algorithm of the 208 

“distances” function of the package “igraph” of the R software described in (West 2001). 209 

 210 

Figure 2(color online) Schema of the road network (shown in black), with the Euclidian Distance (shown in red) as well as the Road Network 211 
Distance (shown in green). 212 

 213 

4. Ordinary and universal Kriging 214 

Two Kriging methods are compared: Ordinary Kriging (OK) and Universal Kriging (UK). Universal 215 

Kriging is a variant of the ordinary Kriging operation that includes a linear trend. Barrigon et al. showed 216 

that urban sound is strongly stratified (Morillas et al. 2005). Based on a similar statement, the linear trend 217 

T in this study is defined as a linear regression based on 4 explanatory variables which are the distances Di 218 

between the observation locations of the study area and its closest roads belonging to 4 categories i. 219 

Equation 1 presents the equation of the trend: 220 

T ~ a.D1+b.D2+c.D3+d.D4 +e 221 

in which a, b, c, d and e are adjusted constants. 222 

Road categories have been defined based on the OpenStreetMap attributes as shown in Table 1. Figure 223 

3 presents a map of the study area, in which the roads are shown in different colors according to their 224 

category. The first three categories correspond to streets with vehicular traffic, the last one to pedestrian 225 

streets. 226 

 227 
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Figure 3 (color online) Outline of the study area (black dashed line) and, in color, the 4 roads categories.  228 

G. Performance metrics 229 

The performance of the interpolation methods is assessed with two indicators: the Root Mean Square 230 

Error (RMSE) and the Pearson correlation coefficient (r) between the interpolated and the reference map. 231 

The geospatial interpolations are proposed following four methods: (a) ordinary Kriging (OK + EUCL), 232 

(b) ordinary Kriging using the distance along the road network (OK + ROAD), (c) universal Kriging (UK 233 

+ EUCL), (d) universal Kriging using the distance along the road network (UK + ROAD).  234 

III. Results 235 

A. Reference sound map 236 

A reference sound map based on all mobile measurements is first computed. For each observation 237 

location, the mobile measurements that are within a specific integration radius are mapped to this location. 238 

A sensitivity analysis of the spatial representativeness and the expected accuracy of the sound level at the 239 

aggregation radius and the aggregated number of 1-s samples is then performed.  240 

Six values for the aggregation radius have been tested: 2.5 m, 5 m, 10 m, 15 m, 25 m and 50 m. For 241 

each radius value, a set of observation locations has been selected, uniformly distributed. For this 242 

statistical analysis, the observation locations are spaced apart by at least two times the radius value, to 243 

avoid redundancy. In Figure 4, three of those subsets of observation locations are shown.  244 

   



(a) (b) (c) 

Figure 4 Example of three selected sets of observation locations (dots) for radii: (a) 2.5m, (b) 15 m and (c) 50m. Observation locations are located 245 
on the study area road network (solid lines). 246 

Figure 5(a) shows the distribution of the aggregated sound levels L50 over the study area for the 247 

smallest and largest aggregation radii (2.5m and 50m) as presented in Section II.E. Figure 5 (b) shows the 248 

P90-P10 indicator (where P10 and P90 are the percentiles 10 and 90 of the sound level distributions), which 249 

reflects the width of these distributions for all the studied aggregation radii. As expected, the range of the 250 

aggregated sound levels L50 over the study area decreases as the value of the radius increases. More 251 

prosaically, the reference sound map will appear to be blurred. A small radius will give rise to a more 252 

detailed reference sound map, but comes with a decreased number of measurements at each location that 253 

may therefore no longer be representative. The results show that the influence of the aggregation radius 254 

over the sound level distribution is relatively small, with P90-P10 decreasing from 13.5 dB to 10.5 dB. 255 

 256 

Figure 5 (color online) (a) Distribution of the aggregated sound levels L50 over the study area for two values of the aggregation radius. (b) Width 257 
of the distribution of the sound levels (P90-P10) for 6 different aggregation radii  258 

 259 

A bootstrapping method (bootstrp function, statistical toolbox, Matlab) is proposed to analyze the 260 

sensitivity of the L50 value to the aggregation radius and the number of measurements. This method relies 261 

on random sampling, with replacement, of the 1-s measurements for each location within the study area 262 

(Efron 1979). Multiple replications of the method permits the computation of the variance associated with 263 

the average L50 value at each observation location due to the sample characteristics. Figure 6 presents (a) 264 

the standard deviation of 1000 bootstrap replications of the calculated L50 varying with the number of 1-s 265 

samples and (b) the relationship between the aggregation radius and the proportion of retained locations, 266 

considering a minimum number of 1-second samples of 180. The correlation between these two 267 

parameters is statistically significant (r=0.53, p<.05), but a large aggregation radius does not always imply 268 

a large number of measurements (e.g., along the borders of the study area) and vice versa (e.g., if the 269 

operator measured a few minutes at one specific location). 270 



 271 

Figure 6 (color online) The upper plot shows the relationship between the standard deviation of 1000 replications (subsets) of the underlying 272 
reference data set and the number of 1-s samples of the subsets. The lower plot shows the relationship between the aggregation radius and the 273 

proportion of retained measurement locations, considering a minimum number of 1-second samples of 180. Each dot represents a replication, the 274 
solid line denotes the mean value, the dashed line denotes the percentile-90). 275 

 276 

The variation specific to each location is found to be considerably smaller than the global variation 277 

between the locations over the whole study area, which is about 5 dB (see Figure 5). If we consider a 278 

standard deviation smaller than 1 dB as acceptable, 90% of the calculated standard deviations are below 279 

this threshold when a sample is composed by a minimum of 180 1-s measurements. The chosen threshold 280 

also guarantees to have enough data to carry out the spatial analysis. An aggregation radius of 25 meters is 281 

chosen as the threshold value because it permits one to retain more than 60% of the computed locations. 282 

This aggregation radius also has the advantage that it corresponds to the longitudinal spatial 283 

representativeness of sound level measurements found in literature, perceptually (Brocolini et al. 2009) or 284 

physically (A. Can, Dekoninck, and Botteldooren 2014), thus suggesting that the resulting sound level 285 

map will be consistent with observed spatio-temporal variations. 286 

On the basis of the above results, it can be concluded that, at least for the urban study area considered, 287 

three-minute measurements provide sufficient confidence in the aggregated measurement value, even if its 288 

representativeness is not guaranteed. As the purpose of the present study was to perform a comparison of 289 

interpolation techniques, the calculated sound maps only need to respect the spatial variation of the sound 290 

level, but do not necessarily need to be representative of a homogeneous time period.  291 



Figure 7 presents the resulting reference map of the median sound level (L50, dB). For the calculation 292 

of this map, a distance of 10 m between each observation location was used, resulting in 4360 locations. 293 

 294 

Figure 7 (color online) Reference sound map, integration radius 25 meters, integration time > 180 sec. (n= 4360) 295 

B. Spatial dependence of the data 296 

The spatial dependence of the data is highlighted through the calculation of variograms, which express 297 

the semivariance between L50 values for a couple of locations according to their distance. On Figure 8, 298 

four fitted variograms derived from the reference sound map are presented: (a) an ordinary variogram with 299 

the Euclidean distance (OK+EUCL), (b) an ordinary variogram using the distance along the road network 300 

(OK+ROAD) (c) an universal variogram which accounts for the trend with the Euclidean distance 301 

(UK+EUCL), (d) an universal variogram which accounts for the trend and also uses the distance along the 302 

road network (UK+ROAD). 303 

 304 



 305 

Figure 8 Empirical variograms (dots) and best fitted parametrical models (red line) computed using the ordinary Kriging (OK) and universal 306 
Kriging (UK) methods. The printed distance is computed using the Euclidian distance (EUCL) or the distance along the road network (ROAD) 307 

(distance in meters, and semivariance in dB²). 308 

 309 

The parameters of the best fitted covariance models are presented in Table 1. The practical ranges of 310 

the variograms, defined as the value for which the correlation function decays to 5% of its value at 0, are 311 

(a) 366 m for OK+EUCL (b) 285 m for UK+EUCL (c) 691 m for OK+ ROAD (d) 481 m for UK+ROAD. 312 

For OK+EUCL, hardly any information is given by an observation to an estimated value located in a 313 

radius superior to 366 m. As the nugget variance τ² is null, the variogram asymptote, or sill value, 314 

corresponds to the signal variance σ². This value at 1000 meters is 22.4 dB² and 24.2 dB² for OK + EUCL 315 

and OK + ROAD methods, and 11.2 dB² and 11.9 dB² for UK + EUCL and UK + ROAD. Thus, adding 316 

the trend permits one to considerably reduce the signal variance and illustrates the strong correlation 317 

between the urban sound levels and the proximity to different types of roads. Also, the practical range of 318 

the variograms increases when the alternative definition of distance from the road network is used (from 319 

366 to 691 m and from 285 to 481 m). 320 

Table 1 – Parameters of the Kriging methods 321 

Kriging method Covariance model 

Nugget 

variance 

(dB²) 

 τ² 

Sill 

 

(dB²) 

σ² 

Range 

parameter 

(m) 

 φ 

Practical Range 

(m) 

OK+EUCL Matérn with fixed κ = 0.5 0 22.4 122.2 366 

UK+EUCL Matérn with fixed κ = 0.5 0 11.2 95.1 285 

OK+ROAD Matérn with fixed κ = 0.5 0 24.2 230.7 691 

UK+ROAD Matérn with fixed κ = 0.5 0 11.9 160.6 481 



C. Spatial interpolation and performance analysis 322 

A subset of the observation locations is selected from the reference map and is interpolated over the 323 

whole study area using the four tested strategies. As described in Section III.A, the median sound level 324 

values at the observation locations are computed from at least 180 Leq,1s measurements included in a 25 m 325 

radius around each observation location. The subset of observation locations for evaluation is randomly 326 

selected and 1000 replications are performed for each subset configuration. The replications give 327 

information about the variability due to a chosen set of observation nodes. Figure 9 presents the 328 

relationships between two indicators of performance (RMSE and the Pearson correlation coefficient), and 329 

the density of nodes (number of nodes per sq. km) for the four methods of interpolation. 330 

 
(a) 

 
(b) 

Figure 9 (color online) Relationships between the two indicators of quality (RMSE and the Pearson correlation coefficient), and the density of 331 
nodes (number of nodes per sq. km) for the four methods of interpolation. The area corresponds to the standard deviation associated with the 1000 332 

replications. (The red and blue lines are nearly superposed). 333 

 334 



Universal Kriging (UK) considerably increases the quality of the results on both indicators compared 335 

to ordinary Kriging (OK). Taking into account the distance along the road network (ROAD) only leads to 336 

better results for the ordinary Kriging cases. 337 

From a practical point of view, in case only fixed measurement stations are used, 15 observation 338 

locations per sq. km is already a large number. In this case, Figure 9 shows that the correlation between 339 

interpolated and reference sound levels is between 0.5 and 0.8, and that the RMSE value is between 2.5 340 

and 3.5 dB. Figure 10 shows an interpolated sound map, using the UK + EUCL and the OK + EUCL 341 

methods, based on one of the random sets of 42 observation locations (15 locations per sq. km). The 342 

associated prediction standard error maps are also given, as the Kriging methods give access to this 343 

information (Diggle and Ribeiro 2007). Figure 10 shows a good correspondence with the reference sound 344 

map (see Figure 7). Nevertheless, the dispersion in Figure 9 shows that the observation locations have an 345 

important influence over the performance of the algorithm.  346 

 347 

OK+EUCL 

 
(a) 

UK+EUCL 

 
(b) 

 
(c) 

  
(d) 

Figure 10 (color online) Example of an interpolated sound map from 42 observations: Estimated L50 values using the (a) OK+EUCL and (b) 348 
UK+EUCL Kriging methods, and the associated standard errors maps (c) OK+EUCL and (d) UK+EUCL  349 

 350 

Figure 11 shows the average errors for the 1000 replications (42 observation locations), against the 351 

reference map presented in Figure 7. Figure 11 (a-d) shows that all the interpolation strategies 352 



underestimate the sound level for large boulevards and overestimate the sound level for quiet places, but 353 

this is a common limitation of interpolation methods. This is less pronounced for universal Kriging 354 

(Figure 11 (b), Figure 11 (d)). In this case, the trend partly corrects this shortcoming, and the errors are 355 

distributed more uniformly over the study area. A comparison between Figure 11(a) and (c) or Figure 356 

11(b) and (d) shows the difference between the use of the Euclidian and the road network distance; no 357 

major influence is observable. 358 

 
(a) (OK+EUCL) - REF 

 
(b) (UK+EUCL) - REF 

 
(c) (OK+ROAD) - REF 

 
(d) (UK+ROAD) - REF 

Figure 11 (color online) Average errors for 1000 replications (42 observation locations) against the reference map REF for the four interpolation 359 
methods (a) OK+EUCL, (b) UK+EUCL, (c) OK+ROAD and (d) UK+ROAD. 360 

 361 

Figure 9 shows that the standard deviation of the performance indicators can be important, especially 362 

in case of a small density of measurement locations. In order to identify the principal factors which 363 

influence the performance of the Kriging algorithms, a short statistical analysis has been performed over 364 

geospatial indicators of the spatial distribution of 42 observations. Table 2 presents some of the 365 

parameters which have been calculated for each generated set of observations. 366 

The Variance Mean Ratio (VMR), also called index of dispersion, is an indicator of a good dispersion 367 

of the observations over the domain. For this, the domain is divided in 6x6 cells. In each cell, the number 368 

of observations is calculated. The variance mean ratio corresponds to the ratio between (i) the variance of 369 

the number of observations between each cell, and (ii) the mean number of observations for a cell. If 370 

VMR is equal to 1, the observations are randomly dispersed; if VMR<1 the observations are more 371 



dispersed than random (e.g., regular distribution); if VMR > 1 the observations are more clustered than a 372 

random dispersion. 373 

MEAN_ROAD, STD_ROAD, KURT_ROAD, SKEW_ROAD are indicators of the distribution of the 374 

observations over the road categories (integers from 1 to 4, see Figure 2). For example, if MEAN_ROAD 375 

is equal to 1 and STD_ROAD equal to 0, it means that all the observations are located over roads of type 1 376 

(avenue/boulevard).  377 

Finally, the CENTER indicator represents the distance between the center of gravity of the observation 378 

locations and the center of gravity of the whole road network within the case study area. If CENTER is 379 

small, the observations are well centered over the domain. 380 

Table 2 – Geospatial indicators of the observation locations. 381 
Index Name Range 

VMR Variance Mean Ratio [0.8 – 1.9] 

STD_L50 Standard deviation on observed sound levels (L50) [2.8– 6] (dB) 

MEAN_ROAD  Average closest road categories  [1.7 – 2.8] 

STD_ROAD Standard deviation on closest road categories [0.5 – 1.2] 

KURT_ROAD Kurtosis closest road categories [-0.19 – 1.6] 

SKEW_ROAD Skewness closest road categories [1.4 – 7.4] 

CENTER Distance between the gravity center of the observations and 

the gravity center of the whole network 

[0.34 – 364] (m) 

Table 3 presents the Pearson correlation coefficient between the spatial distribution indicators and the 382 

performance indicators. It shows that the STD_L50 is the only geospatial indicator that is well correlated 383 

with the performance indicators, particularly for ordinary Kriging. As it can be expected, this suggests that 384 

the measurement stations should be placed in locations that represent a large distribution of sound levels. 385 

For universal Kriging, this factor is less important because of the correction brought by the trends. The 386 

same analysis was carried out with other performance metrics than the Pearson correlation coefficient, but 387 

this did not bring more information. 388 

Table 3 – Pearson correlation coefficient between the geospatial and performance indicators for two Kriging 389 
methods (* p<0.05). 390 

 r 

(OK+EUCL) 

r 

(UK+EUCL) 

RMSE 

(OK+EUCL) 

RMSE 

(UK+EUCL) 

VMR 0.06*  -0.07*  

STD_L50 0.48* 0.27* -0.55* -0.21* 

MEAN_ROAD 0.07*   -0.04* 

STD_ROAD 0.19* 0.07* -0.19* -0.10* 

KURT_ROAD -0.10* -0.06* 0.07* 0.09* 

SKEW_ROAD -0.16* -0.07* 0.14* 0.11* 

CENTER -0.05*  0.06*  

IV. Discussion 391 

As the study area was the XIII
th
 district of Paris, the variogram and Kriging parameters were only 392 

adjusted for this district. Even if some of these parameters are comparable with those from previous 393 

studies (A. Can, Dekoninck, and Botteldooren 2014), other replications in other urban contexts will be 394 

necessary to extend the conclusions of this work.  395 



On the one hand, the alternative definition of distance along the road network slightly increases the 396 

performance of the algorithms, but only for ordinary Kriging methods. On the other hand, the proposed 397 

trend based on the distance to the closest roads by category, as defined in Section II.F.4, strongly improves 398 

the results for all Kriging methods. These results confirm the observations done in (Morillas et al. 2005; 399 

Rey Gozalo, Barrigón Morillas, and Prieto Gajardo 2015; Juan Miguel Barrigón Morillas et al. 2011) 400 

which state that using a street categorization method that accounts for street use is particularly appropriate 401 

to study the spatial variability of urban sound levels. Thus, to continue to improve the performance of the 402 

interpolation methods, efforts should be focused on the trend definition. Nevertheless, a complex trend 403 

definition is comparable to the computation of a model-based sound map. Moreover, it might increase the 404 

computational cost of the interpolation method considerably, and can possibly introduce new error 405 

sources.  406 

The errors associated with the observations are not taken into account in our Kriging approach; 407 

nevertheless, a follow-up study should investigate the integration of noisy observations with a proper 408 

uncertainty associated with each measurement location. Maybe data assimilation methods used in 409 

geosciences, e.g., computing the so-called best linear unbiased method (Bouttier et al. 2002; Tilloy et al. 410 

2013), could be useful to achieve this task.  411 

All the presented results are valid for one homogeneous time period. Time interpolation could be 412 

added. This interpolation could be done in pre- or post-processing, relying on previous works dealing with 413 

temporal interpolation of urban sound levels (Prieto Gajardo et al. 2016) or directly with a spatio-temporal 414 

Kriging. 415 

Finally, this study shows the influence of the spread of observation locations over the study area to 416 

correctly interpolate sound levels. As it can be expected, the results suggest that fixed measurement 417 

stations should be placed to obtain a large distribution of sound levels and so, a large variety of sound 418 

environments. Nevertheless, even if it can be estimated, this information is not fully available prior to the 419 

installation of the measurement stations. Other indicators, such as the distribution of the measurement 420 

stations over the various road categories, or the location of the center of gravity of the measurement 421 

stations, which are available a priori, do not show relevant relationship with performance indicators.  422 

V. Conclusion 423 

By means of a progressive degradation of a reference map of 2.8 km² interpolated from geo-referenced 424 

mobile measurements, spatial interpolation methods were compared. The impact of the density of 425 

observation points and the performance of four spatial interpolation methods were presented. The four 426 

interpolation methods were constructed by combining two algorithms: (i) the Kriging method, either 427 

ordinary Kriging or universal Kriging (which consists in adding a linear trend, defined from the distance 428 

between each location and its closest road in each category) and (ii) the definition of the distance between 429 

locations, either Euclidian or computed from the road network. 430 

The main conclusions are: 431 

 A minimum of 180 1-s measurements are needed to obtain an acceptable level of confidence 432 

(1dB) in the L50 value calculated at each location within the study area, with an aggregation 433 

radius of 25 m. 434 



 The practical ranges of the variograms computed for the four Kriging methods are between 435 

250 and 700 meters. 436 

 Using the distance along the road network in the Kriging method considerably increases the 437 

performance in case of ordinary Kriging, but not in case of universal Kriging. 438 

 Universal Kriging, which consists of adding a local trend in the ordinary Kriging formulation, 439 

is a promising method. Nevertheless, it introduces an additional calculation of the trend that 440 

has a pre-processing cost and can in itself be a source of error. 441 

 Approximately 50 observation locations per sq. km are needed in order to get a correlation 442 

coefficient superior to 0.8 and a RMSE value inferior to 2.5 dB between the reference and the 443 

interpolated map. 444 

In view of the large density of observation locations needed to obtain a sound map with a high 445 

accuracy and the strong improvement brought by the trend in the Kriging formulation, further studies 446 

should probably focus on fusion or assimilation techniques combining measurements and numerical 447 

simulation results.  448 
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