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Abstract:
Scalar multiplication is the main operation in elliptic curve cryptography. In embedded systems,
it is vulnerable to both observation and perturbation attacks. Most of protections only target one
of these two types of attacks. Unfortunately, many protections against one type of attack may
reduce the protection against the other one. In this paper, we simultaneously deal with protections
against both types of attacks. Two countermeasures are presented for scalar multiplication and
implemented on a Cortex-M0 microcontroller. The first one protects finite field operations over
point coordinates. The second one protects the scalar (or key) bits.

1 Introduction

Elliptic curve cryptography (ECC) is pro-
moted for providing public-key cryptogra-
phy (PKC) support in embedded systems due to
its smaller cost, e.g. silicon area and energy, and
better performances than RSA (Cohen and Frey,
2005; Hankerson et al., 2004).

Embedded systems are widespread in our soci-
ety, thus their protection against various types of
attacks is essential. Due to their proximity with
other users, potentially malicious ones, embedded
circuits are vulnerable to physical attacks. In this
paper, we focus on side channel attacks (SCAs)
and fault attacks (FAs). The first ones, use ob-
servations of physical parameters, such as compu-
tation timings or power consumption, which are
analyzed using statistical tools to deduce links be-
tween physical measurements and internal secret
values. The second ones, use perturbations of the
circuit such as variations of the power supply or
electromagnetic radiations to inject fault(s) dur-
ing algorithms execution. These faults are ex-
ploited to deduce internal secret values.

Numerous countermeasures exist against
SCAs and FAs at various levels: mathematics, al-
gorithm, architecture, circuit. Most of these pro-
tections only target one type of attack. For exam-

ple, uniformization schemes are efficient against
SCAs but not for FAs. Some error correct-
ing codes can be used against FAs but not for
SCAs. Unfortunately, many protections, against
one type of attack, leave or may make the imple-
mentation vulnerable to the other type of attacks.

In this work, we simultaneously deal with pro-
tections against both types of attacks. We pro-
pose two countermeasures, developed onto spe-
cific curves, for scalar multiplication (SM) in
ECC. They are probably adaptable onto other
curves. The first one protects finite field oper-
ations over point coordinates. The second one
protects the scalar itself during SM.

Our paper is organized as follows. Sec-
tions 2, 3 and 4 respectively recall background
elements on ECC, SCAs/FAs attacks and ECC
attacks and protections. Our two propositions are
presented in Section 5. Section 6 reports imple-
mentation results on Cortex-M0 microcontrollers
and the µNaCl library (Düll et al., ).

2 Background on ECC

ECC (Hankerson et al., 2004; Cohen and Frey,
2005) is a PKC based on elliptic curves (ECs).



In the case of prime fields Fp, short Weier-
strass curves form EWS and Montgomery (Mont-
gomery, 1987) curves EM are defined, with a, b ∈
Fp and specific conditions on a, b (see books (Han-
kerson et al., 2004; Cohen and Frey, 2005)), re-
spectively by:

EWS : y2 = x3 + ax+ b,
EM : by2 = x3 + ax2 + x.

(1)

In this paper, we only consider these curves
onto prime fields Fp.

The most critical operation in ECC is the
scalar multiplication (SM) [k]P between a curve
point P and a scalar k (either the public or pri-
vate key). When k is private, it must be pro-
tected. SM can be performed by various algo-
rithms based on point addition (ADD) and point
doubling (DBL) operations at curve level. When
ADD and DBL have different behaviors, their dif-
ferences can be a leakage source in observation
attacks. The easiest way to perform SM is the
double and add (DA) algorithm 1. In case of
EM , the Montgomery ladder (ML) algorithm 2.
is commonly used.

Algorithm 1: SM - double and add

Input: P and k = (km−1, . . . , k0)2
Result: [k] · P

1 T ← O
2 for i = m− 1 to 0 do
3 T ← 2 · T DBL
4 if ki = 1 then
5 T ← T + P ADD

6 return T

Algorithm 2: SM - Montgomery ladder

Input: P and k = (km−1, . . . , k0)2
Result: [k] · P

1 T1 ← O, T2 ← P
2 for i = m− 1 to 0 do
3 if ki = 1 then
4 T1 ← T1 + T2 ADD
5 T2 ← 2 · T2 DBL

6 else
7 T2 ← T1 + T2 ADD
8 T1 ← 2 · T1 DBL

9 return T1

In order to perform T1+T2, the x coordinate of
T1 − T2 can be known. During ML [k]P internal
iterations, T1 − T2 is always equal to the base
point P .

Several ADD and DBL formulas for different
curves are available on the EFD website (Bern-
stein and Lange, ).

3 Background on Physical Attacks

Embedded systems have to face attacks at
both logical and physical levels. Logical attacks
target mathematical properties of cryptosystems,
networking protocols, weak software implemen-
tations, etc. For instance, very efficient factor-
ization algorithms and parallel implementations
have been used against RSA 768 bits a few years
ago. In this work, we do not consider these
attacks. Physical attacks are totally different
from logical ones and require specific protections.
Embedded systems have to be protected against
them since circuits in charge of security tasks can
be very close to the attackers. Typical physical
attacks include: reverse engineering, observation
(or SCAs) and perturbation (or FAs). In this pa-
per, we only consider SCAs and FAs. It is possible
to combine them such as (Roche et al., 2011).

3.1 SCAs and Countermeasures

SCAs observe physical parameters such as tim-
ings (Kocher, 1996), power consummation (Man-
gard et al., 2007) or electromagnetic radia-
tions (EM) (Agrawal et al., 2002) at run time.
They exploit potential correlations between mea-
surements of physical parameter(s) and some se-
cret data manipulated during execution.

SCAs are often decomposed into two types.
On one hand, simple power analysis (SPA) uses
a single trace of power measurements. For in-
stance, algorithm 1 is vulnerable to SPA. On the
other hand, various attacks use multiple traces
and statistical tools. For instance, differential
power analysis (DPA) (Kocher et al., 2011) uses
difference of averages and correlation power anal-
ysis (CPA) (Brier et al., 2004) uses Pearson cor-
relation. Both simple and differential-like attacks
exist for other physical parameters (e.g. EM).

For SCA protection, one must avoid, or
strongly reduce, dependencies between secret val-
ues and observable variations of the physical pa-
rameter(s). A first type of protection is denoted
uniformization: operations sequences must be in-
distinguishable whatever the actual secret bits
manipulated in the circuit. Useless operations
can be added to uniformize some algorithms. A
second type of SCA protection is denoted ran-



domization: a random activity generates a scram-
ble in the measurements. Statistic tools consider
this random activity as data and their results are
disturbed. For instance, random useless opera-
tions or random masks can be added. Many vari-
ations and combinations of uniformization and
randomization protections have been proposed.

3.2 FAs and Countermeasures

Lasers, electromagnetic radiations, variations in
supply voltage or circuit temperature, glitches in
clock signals are used to disturb the circuit by in-
jecting fault(s) during algorithm execution (Bar-
El et al., 2006; Verbauwhede et al., 2011). These
faults can be temporary or permanent and equiv-
alent at logical level to a bit flip, bit set, bit reset
or bit stuck-at (on single or multiple bits).

FAs exploit some unspecified circuit behavior,
directly or not, in order to deduce the secret. For
instance, they can use differences between faulty
and correct outputs thanks to differential fault
analysis (DFA) (Biham and Shamir, 1997).

Safe-error analysis (SEA) (Yen and Joye,
2000) checks if the injected fault has an impact
on the final result. By determining whether a
corrupted data was effectively used or not, SEA
is very efficient against SCA protections based on
useless/dummy operations.

Attackers can produce fault(s) on data, con-
trol or external memory. In this paper, we only
consider faults on data since we target software
implementations with on-chip memory.

Two types of protections exist against FAs:
detection and correction schemes. Detection
schemes allow various policy solutions when an
attack occurs: execution stop and re-run, algo-
rithm change, erasing/destroying secret values,
etc. Detection can be achieved at various lev-
els: in hardware using intrusion sensors, at al-
gorithm using redundant computations (spatial
and/or temporal) or data integrity checks for in-
stance. Correction schemes use methods perform-
ing the expected operations even in presence of
faults (e.g. use of majority voters). In this pa-
per, we only consider detection schemes.

4 Attacks and Protections on ECC

In this section, several SCAs, FAs and related
protections for ECC are recalled. Attacks objec-
tive is to recover the secret scalar/key k from ex-
ecution(s) of the scalar multiplication Q = [k]P .
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Figure 1: Basic DA algorithm.

4.1 SCAs on ECC and Protections

During SM, each sequence of curve-level opera-
tions depends on the actual scalar bits. If ADD
and DBL operations can be distinguished (through
physical measurements) and DA algorithm is
used, then SM is vulnerable to SPA. Indeed, a 1
key bit generates a DBL followed by an ADD, while
a 0 key bit only generates a DBL. If partial traces
for ADD and DBL are different (even with a few dif-
ferences), an attacker is able to distinguish what
operation is made and then recover the key bits
from the trace as illustrated in Figure 1.

Several other SCAs on ECC exist including
timings, DPA, zero-value point attacks (Akishita
and Takagi, 2003) or doubling attacks (Fouque
and Valette, 2003). In practice, some random-
ization schemes can be applied against DPA-like
attacks in many protocols. Then SPA-like ones
are considered as a major threat in ECC. In this
paper, we only deal with SPA-like attacks.

Among SCA protections uniformization and
randomization have been widely used in ECC.

Among uniformization countermeasures,
double and add always (DAA) (Coron, 1999)
and ML are typical SPA protections. The DAA
algorithm is similar to DA where a useless ADD
is added when the key bit is zero. This is good
for SPA protection but very bad for SEA ones
(injecting a fault during the useless ADD has not
impact on the output, then the attacker knows
that the operation was a dummy one and the
corresponding key bit was 0).

ML is widely used in practice since it is SPA
and SEA resistant. The same operations se-
quence is made regardless of the key bits. At-
tackers cannot distinguish ADD and DBL patterns.
Furthermore, all intermediate computations im-
pact the final result.

Among randomization countermeasures,
scalar randomization and point blinding protec-
tions have been proposed against DPA (Coron,
1999). Scalar randomization consists in perform-
ing [k]P = [k + r · λ]P where r is the order of
E and λ is a random number. Point blinding
performs [k]P = [k](P+R)−[k]R instead of [k]P ,
where R is a random point. Other randomization
countermeasures use projective coordinates.
Before each SM execution, P coordinates are



randomized thanks to the multiplication by a
random number λ, so P = (λxP , λyP , λzP ). This
new P is employed during SM.

4.2 FAs on ECC and Protections

Attackers can inject faults on several types of data
during SM: curves parameters, scalar, field repre-
sentation (Ciet and Joye, 2005), base point (Biehl
et al., 2000) and current point (Blömer et al.,
2006). The attacker aims DFA or transferring
the ECDLP (discrete logarithm problem) onto a
weaker curve. Commonly, the transfer is possible
since b parameter in curve equation 1 is unused
during SM. Below, two attack examples with dif-
ferent targets are recalled.

In (Biehl et al., 2000), the base point P̃ be-

longs to ẼSW instead of ESW . Curve ẼSW has a
smaller order than ESW and it is defined by:

b̃ = y2 − x3 − ax. (2)

As [k]P = [k]P̃ , the DLP is transferred onto sub-
group of smaller order and an attacker recovers

k mod ord(P̃ ). By reiterating with several other

P̃ , the attacker recovers the key value thanks to
the Chinese remainder theorem (CRT).

In (Bao et al., 1997), the attack proposed on
RSA can also apply to ECC. The fault is supposed
one bit flip located on the random key bit at index

j. Let Q̃ the faulty SM result, then Q and Q̃ can
be written as:

Q̃ = [k̃]P =

j−1∑
i=0

ki2
iP + k̃j2

jP +

m−1∑
i=j+1

ki2
iP

Q = [k]P =

m−1∑
i=0

ki2
iP

(3)

Knowing both Q and Q̃, one can compute Q− Q̃
which helps to deduce the key bit kj . Indeed, if

Q − Q̃ = −2jP then kj = 0 and if Q − Q̃ = 2jP
then kj = 1. Finally, the attacker recovers the
full key iteratively for the other j ranks.

Most FAs on ECC are defeated using point
verification (PV) (Biehl et al., 2000) at various
steps of SM. For instance, PV ensures that final
or current point belongs to the curve by injecting
their coordinates into the curve equation. Thus,
PV protects against FA which targets the curve
parameters and the point P of SM [k]P .

In case of Montgomery curve, the y coordi-
nate is unused during SM, and PV is equivalent

to verify if C = x3+ax2+x
b is a square with Legen-

dre symbol (LS). As a reminder LS is computed

by C
p−1
2 , and if C ≡ 0 mod p (p is prime) then,

LS equals to 0. In other case, LS equals to 1 if C
is square modulo p and −1 else. However, PV is
ineffective against FA targeting scalar bits kjs.

5 Proposed Protections

As protections against one type of attack may
weaken the implementation against the other one,
simultaneously dealing with both SCAs and FAs
is important but it can be tricky. For instance,
basic uniformization schemes using dummy oper-
ations for SCA protection may be weak against
SEA. Or in case of FA protection, adding re-
dundancy checks must not reduce the robustness
against SCAs (for instance by breaking the uni-
form behavior). In most of the literature, FAs
and SCAs are considered independently.

We propose two combined countermeasures
for protecting SM simultaneously against both
SPA-like attacks and major FAs. Standard pro-
tections against DPA-like attacks can be used on
top of our countermeasures. Our first counter-
measure is an extension of PV proposed for pro-
tection against FAs but we added uniformization
for SPA protection. Our second countermeasure,
called iteration counter, protects the scalar bits
against FAs with a uniform behavior for SPA pro-
tection. In this section, we describe these coun-
termeasures for Weierstrass curves (with both ja-
cobian and projective coordinates) and Montgo-
mery curves (with XZ coordinates).

Their cost will be first evaluated in terms of
the number of Fp operations: multiplication M,
square S and addition/subtraction A. In Sec-
tion 6, detailed comparisons will be reported for
microcontroller implementation.

5.1 Point Verification (PV)

PV injects point coordinates into the curve equa-
tion to verify that the checked point effectively
belongs to the curve. PV can be integrated in
SM at different periods leading to various trade-
offs between security and performance. For low
cost protection, PV can be performed at begin-
ning and end of SM. Then, a FA on an inter-
mediate point is detected very late. For earlier
detection, but with a higher run time, PV can
be performed every d iterations or randomly dur-
ing SM. The strongest protection is obtained for
d = 1 where PV is performed at each SM itera-
tion. In this paper, we denote ` the number of
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Figure 2: Point verification in DA

executed PVs during one SM (1 ≤ ` ≤ m+ 1).
Care must be taken when applying PV to not

weakening the implementation against SCAs. For
instance, using PV after DBL operations is safer
(they do not depend on k bits).

For our first countermeasure, we explore and
modify PV to ensure a uniform behavior against
SPA-like attacks. The sequence of Fp operations
added for PV, denoted V, can be used to ”fill”
the differences between ADD and DBL as illustrated
in Figure 2. We modified the complete compu-
tations to ensure the exact same behavior, i.e.
same sequence of Fp operations, for both ADD and
DBL+V to make our SM uniform (against SPA).

5.1.1 Uniform PV on Weierstrass curves

We first present uniformization of SM with PV for
projective and jacobian coordinates where ADD is
more complex than DBL. We include PV in DBL,
denoted DBL+V, to ensure a uniform behavior of
SM.

Weierstrass curves onto Fp in projective coor-
dinates are defined below with a = −3:

EWP : y2z = x3 + axz2 + bz3. (4)

Multiplication by b, denoted Mb, can be imple-
mented with a generic multiplication or additions
depending on b value (e.g. sparse decomposition).

Table 1 reports the cost of curve operations
and verification V. Obviously, V cost is too small
to directly uniformize SM. We add operations in
V by multiplying by y such that:

V : y3z = x3y + axyz2 + byz3. (5)

After factorization of some operations and add
of operation Mb to ADD (this is not a dummy op-
eration, see the source code), the new cost for
DBL+V is equal to the ADD cost (11M+ 6S+ 18A+
1Mb). The final overhead for our uniform SM is
6`M + 4`A + 2`Mb.

Table 1: Operations costs for Weierstrass curves

Projective Jacobian
ADD 11M+6S+18A 11M+ 5S+13A
DBL 5M+6S+14A 3M+ 6S+ 15A

Basic V 4M+3S+5A+1Mb 1M+6A+1Mb
V 6M+4A+2Mb 7M+ 7A+2Mb

For jacobian coordinates, we first transform
DBL (remove 1 S and add 1 M):

xx = x21
yy = y21
t0 = x1 · yy
t1 = t0 + t0
s = t1 + t1
t2 = xx+ xx
t3 = t2 + t2

⇒

yy = y21
t0 = x1 + x1
t1 = t0 + x1
t2 = t0 + t0
s = t2 · yy
t3 = t1 · x1

(6)

Then, the verification equation is transformed
thanks to a multiplication by the z coordinate:

V : y2z = x3z + axz5 + bz7 (7)

After integration into DBL and some factoriza-
tions, our uniform SM overhead is 7`M+7`A+2Mb.

Table 2: Overheads.

Projective Jacobian
PV 6`M + 4`A + 2`Mb 7`M + 7`A + 2`Mb
DAA ' 6.5`M + 3`S + 9`A ' 6.5`M + 2.5`S + 7.5`A

Despite ADD and DBL have the same cost, their
behaviors are distinguishable. Then, we resched-
ule the operations sequences of ADD and DBL+V to
ensure the exact same behavior.

We compare our uniform PV with DAA in Ta-
ble 2. Our uniform SM with PV protects against
both SPA and FA (only SPA for DAA) and has a
smaller cost than DAA.

Obviously, one can use a smaller security level
with less frequent PVs (with d > 1) leading to
smaller overheads (while d = 1 for DAA).

5.1.2 Uniform PV on Montgomery
curves

Direct PV is too expensive for Montgomery
curves using XZ coordinates. The unused y co-
ordinate forces to check current point using LS.
Furthermore, Montgomery curves with XZ coor-
dinates and ML are more efficient than Weier-
strass curves.

Our proposition takes advantage of a constant
inside ML Algorithm 2. Indeed, T2−T1 is always
equal to P at each iteration. If point T1 is faulted,

it becomes T̃1 and T2− T̃1 6= P . The computation
T2−T1 with addition formulas is possible at each
iteration since T1 + T2 is also computed.

T1 +T2 = (x3, z3) is performed using the x co-
ordinate of P denoted xP . After, T2−T1 is made
with x3. A first verification consist in comparing
between result of T2−T1 and P . This verification
does not detect attacks since the x3 must be nor-
malized by z3. Then, a final test is equivalent to
x3(1− zP ) = 0 which is always true since zP = 1.



To solve this problem, SM is modified. Instead
to deal with one bit, the new ladderStep, denote
ML V, deals with simultaneously two bits (the it-
erations number is halved). Indeed, the curve op-
erations are performed as in the algorithm 3. The
variable T6 is the new T2 after ML V. If ki 6= ki+1

then, T5 replaces T1. Else T1 is replaced by T7.
In order to perform PV, we note that T6−P = T7
and T6 + P = T5. As T5 and T7 are calculated
earlier, T8 = T6±P can be performed with the x
coordinate of the new T1 (T5 or T7).

Algorithm 3: ML V

Input: T1, T2, xor ← ki ⊕ ki+1

1 T3 ← 2T1

2 T4 ← T1 + T2

3 T5 ← 2T4 new T1, if xor = 1
4 T6 ← T3 + T4 new T2

5 T7 ← 2T3 new T1, if xor = 0
6 T8 ← T6 + P use x of new T1

7 if xor = 1 then
8 T8 = T7

9 else
10 T8 = T5

If a fault is performed during SM then, the
equality between T8 and T7 (xor = 1) and be-
tween T8 and T5 (xor = 0) is wrong.

The cost of the original LadderStep is 5M +
4S + 8A + 1Ma. As ML V deals with two key bits
instead of one, its overhead equals to 8M + 4S +
7A + Ma. Thus, for one SM the overhead is 4`M +
2`S + 4.5`A + `

2Ma.
The verification in ML V is faster than verify-

ing if x3 + ax2 + x is a square using LS. Never-
theless, this PV does not ensure that P belongs
to curve. Thus, the first attack from Section 4 is
possible. To avoid this, the y coordinate is kept
and a basic PV is performed at the beginning of
SM. In latter steps of SM, the y coordinate can
be removed without security reduction. The cost
of the beginning curve equation computation is
1M+2S+3A+Ma. Finally, our uniform PV simul-
taneously protects intermediate point and curve
parameters against major FAs and SPA.

As ML is uniform, if late detection is accept-
able, one can only use PV at beginning and end
of SM for a very low cost.

5.2 Iteration Counter (IC)

During SM, key bits manipulations are very short
and have a different behavior compared to field
operations. But injecting faults during them is

also possible (see Sec. 4). PV only protects curve
parameters and verified points against FAs but
not key bits (PV is verified with faulted key bits).

In order to protect all scalar bits against FAs,
we propose the iteration counter countermeasure.
It ensures that the executed SM iterations effec-
tively correspond to the actual key k even in pres-
ence of FAs with a uniform behavior.

A naive solution is a check sum which counts
the Hamming weight of k. Nevertheless, this idea
is not sufficient when attackers can flip two key
bits at different indexes (i 6= i′).

Another solution is to count ADDs using a
weight depending on the iteration index i. When
ki = 1, index i is added to a register reg (re-
member that i is small). Attackers have to forge
multiple bit flips according to interesting values
of i, which is very unlikely. Then the overwhelm-
ing majority of faults in k are detected. Unfortu-
nately, when ki = 0, reg is not modified leading
to a small but measurable activity drop. This sec-
ond solution is good against FAs but not sufficient
against SPA.

Our final solution consists in splitting reg into
4 registers r1, . . . , r4 as illustrated in Figure 3.
Thanks to these registers, the cswap function
(used during ML) can switch both the IC reg-
isters and current point coordinates according to
key bits at each ML iteration.

When ki 6= ki−1, cswap switches (r1, r2) with
(r3, r4). Regardless of key bits, random values
are added to r3 and r4. If i%2 = 0, i is added to
first part of r1. Else, i is added to first part of r2.

At the end of the SM, r1 and r2 are shifted
and added. This result is compared to a reference
value. This new version, denoted ICC, costs 1
swap, 5 small integer additions, 2 shifts and 2m
small random number generations.

r1 0C1 + i if i%2 = 0 Θ1 + i if i%2 = 1

r2 0C2 + i if i%2 = 1 Θ2 + i if i%2 = 0

r3 Θ3 + λ3

r4 Θ4 + λ4

Figure 3: ICC split on registers during SM iterations.

ICC detects bit flip attacks and is resistant to
SPA. But it does not detect bit set or bit reset
faults (the bits are forced to 1 and 0 respectively)
used in some SEAs. Indeed, if the i-th bit is set
to 1 and actually ki = 1, this ”non-modification”
is not detected. But SEAs can be avoided using
masking schemes such as (Coron, 1999).



5.3 Fault Detection Policy

Protection against SCAs is based on good proper-
ties of the algorithms and implementations with-
out detection at run time. But fault detection can
be an active process. Several detection policies
can be applied at run time: stopping the execu-
tion, erasing the secret data, re-computing with
the same or another algorithm, continuing com-
putations with a random key. The policy choice
depends on the application and related threats.

In this work, we implemented the continua-
tion using a random scalar. A random scalar kr
is generated before SM. If an attack is detected,
kr is used instead of k as soon as possible. The
cost of this additional protection is the random
generation of m bits (i.e. k length) and k ↔ kr
swap when a detection occurs.

6 Implementation Results

We implemented our countermeasures on a
32-bit Cortex-M0 microcontroller (STM32F0 Dis-
covery board) and the µNaCl library (Düll et al.,
) at 128-bit security level. This is a variant of the
NaCl (Daniel J. Bernstein and Schwabe, ) library
where the Bernstein curve (Bernstein, 2006) (EM

with a = 48662, b = 1 and p = 2255 − 19) is im-
plemented thanks to ML and XZ coordinates.

The main SM variable is state composed of:
coordinates of points T1 and T2, xP coordinate,
scalar, previous bit and downwards counter.

The SM loop on key bits is handled by the
cswap which swaps T1 and T2 when the current
key bit is different from the last one. After cswap,
a LadderStep is performed on state.

We use the structure and parameters defined
in µNaCl for SM with ML onto Montgomery
curves. In case of Weierstrass curves, we use the
same base field with the NIST parameters and
y-coordinate is added to state.

In order to implement ICC, the variable Reg
is created to hold r1, r2, r3 and r4. Moreover,
the small random numbers are generated with
random number generator of µNaCl. Before per-
forming ICC computations, the swap function is
used on Reg at each iteration.

Figure 5 illustrates the overhead of PV dur-
ing the SM with a 256-bit scalar. The practical
overhead is larger than theoretical overhead. The
original library was optimized to fill the proces-
sors registers efficiently. When PV is added more
memory pressure leads to slower execution.
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Figure 4: Clock cycles depending on PV numbers.
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Cost increases linearly with the number of
PVs, this leads to trade-offs between the detec-
tion level and the performance. The PV over-
head for Montgomery curves is 62% in worst case
against only 2.3% when PV is only used the be-
ginning and the end of SM. Similar observations
can be made for Weierstrass curves. Neverthe-
less, overheads of uniform algorithm (the worst
case) are smaller than DAA. In addition to the
number of clock cycles, the overhead of size code
and intermediate RAM are reported in Table 3.

Table 3: Experimental results overhaed.

protection type code size RAM size

M
o
n
tg

.
X

Z

ICC 2.7% 2.8%
PV end 10.6% 11%

PV 12.6% 13.2%
PV+ICC+answer 17.3% 16.9%

W
ei

er
.

J
a
c.

ICC 2.5% 2.6%
PV 2.9% 2.6%

PV begin+end 3.9% 4%
PV+ICC+answer 5.6% 5.8%

DAA 0.4% 0.4%

W
ei

er
.

P
ro

j.

ICC 2.3% 2.4%
PV 2.1% 2.2%

PV begin+end 2.1% 2.2%
PV+ICC+answer 4.8% 5%

DAA 0.4% 0.2%



7 Conclusion

We proposed two ECC countermeasures com-
bined simultaneous protection against SCAs and
FAs. They protect field operations on point co-
ordinates and the scalar bits against both major
fault and SPA-like attacks with various security
vs. performance trade-offs. They have been im-
plemented for short Weierstrass and Montgomery
curves on a 32-bit microcontroller.

A uniform PV in Weierstrass curves was pro-
posed. It leads to faster SM than DAA with early
detection of FAs (at each SM iteration if needed)
and protection against SPA-like attacks. For
Montgomery curves, a PV was proposed against
FAs (with a uniform behavior). For protecting
scalar bits against FAs, a specific countermeasure
called iteration counter was proposed. It is low
cost and robust to SPA-like attacks.

Our code will be distributed as open source
software. Future works will focus on new ran-
domization schemes and other types of ECs and
point coordinates.
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Roche, T., Lomné, V., and Khalfallah, K. (2011).
Combined Fault and Side-Channel Attack on
Protected Implementations of AES. In Proc.
Smart Card Research and Advanced Applications
-CARDIS, pages 65–83.

Verbauwhede, I., Karaklajic, D., and Schmidt, J.
(2011). The Fault Attack Jungle - A Classifi-
cation Model to Guide You. In Proc. Workshop
on Fault Diagnosis and Tolerance in Cryptogra-
phy, pages 3–8.

Yen, S. and Joye, M. (2000). Checking Before Output
May Not Be Enough Against Fault-Based Crypt-
analysis. IEEE Trans. Computers, 49(9):967–
970.

http://hyperelliptic.org/EFD/
https://nacl.cr.yp.to/
http://munacl.cryptojedi.org/index.shtml
http://munacl.cryptojedi.org/index.shtml

