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Third and fifth harmonic responses in viscous
liquids

S. Albert, M. Michl, P. Lunkenheimer, A. Loidl, P. M. Déjardin, and F. Ladieu

1 Why measuring harmonic susceptibilities? Some facts and an
oversimplified argument

Most of our everyday materials are glasses, from window glasses to plastic bottles,
and from colloids to pastes and granular materials. Yet the formation of the glassy
state is still a conundrum and the most basic questions about the nature of the glassy
state remain unsolved, e.g., it is still hotly debated whether glasses are genuine solids
or merely hyperviscous liquids.

Over the past three decades, the notion evolved that higher-order harmonic sus-
ceptibilities are especially well suited to unveil the very peculiar correlations gov-
erning the glass formation, yielding information that cannot be accessed by moni-
toring the linear response. This is illustrated in Fig. 1 displaying the third harmonic
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Fig. 1 From Refs. [1, 2, 3, 6]. Third-harmonic susceptibilities of very different types of glasses
approaching their glass transition. (A): In the Ag:Mn spin glass [1], the static value of χ

(3)
3 di-

verges when approaching the critical temperature Tc ' 2.94 K [1]. (B): Similar arguments are used
to rationalize the third-harmonic dielectric susceptibility of an orientational glass [2]. (C): In glyc-
erol [3, 4], the modulus of the -dimensionless- cubic susceptibility X (3)

3 has a peak as function of
frequency, which increases anomalously upon cooling. (D): Strain-stress experiment in the col-
loidal system studied in Refs. [5, 6]. When increasing the volumic density φ the increasing peak of
Q0 = |χ(3)

3 /χ1| reveals that any shear strain connects the system to a non equilibrium steady state

-see [5, 6]-. In all these four examples χ
(3)
3 unveils informations about the nature of the glassy state

that cannot be obtained by studying the linear susceptibility χlin.

cubic susceptibility χ
(3)
3 -defined in Section 2.1- for four very different kinds of

glasses [1, 2, 3, 4, 5, 6]. In the case of spin glasses [1, 7] -see Fig. 1(A)-, it was dis-
covered in the eighties that χ

(3)
3 diverges at the spin glass transition temperature TSG,

revealing the long range nature of the spin glass amorphous order emerging around
TSG. Here the expression “amorphous order” corresponds to a minimum of the free
energy realized by a configuration which is not spatially periodic. Similar non-linear
susceptibility experiments have been performed by Hemberger et al. [2] on an orien-
tational glass former. In orientational glasses, electric dipolar or quadrupolar degrees
of freedom undergo a cooperative freezing process without long-range orientational
order [8]. As illustrated in Fig. 1(B), the divergence of |χ(3)

3 | is not accompanied by
any divergence of the linear susceptibility |χ1|.
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We shall show in Eqs. (1)-(2) that this is intimately related to the very notion of
amorphous ordering. For structural glasses, e.g., glycerol, it was discovered [3, 4]
less than 10 years ago that |χ(3)

3 (ω,T )| has a hump close to the α relaxation fre-
quency fα , the height of this hump increasing anomalously upon cooling. A hump
of |χ(3)

3 | has also been recently discovered in a colloidal glass [5, 6], in the vicinity
of the β relaxation frequency fβ , revealing that any shear strain connects the system
to a non equilibrium steady state -see [5, 6]-. Of course, as detailed balance does not
hold in colloids, the comparison of colloidal glasses with spin glasses, orientational
glasses, and structural glasses cannot be quantitative. However, the four very differ-
ent kinds of glasses of Fig. 1 have the common qualitative property that nonlinear
cubic responses unveil new information about the glassy state formation.

Let us now give an oversimplified argument explaining why nonlinear responses
should unveil the correlations developing in glasses. We shall adopt the dielectric
language adapted to this review devoted to supercooled liquids -where detailed bal-
ance holds-, and consider a static electric field Est applied onto molecules carrying a
dipole moment µdip. At high temperature T the system behaves as an ideal gas and
its polarization P is given by:

P =
µdip

ad Ld

(
µdipEst

kBT

)
' 1

3
µdip

ad

(
µdipEst

kBT

)
− 1

45
µdip

ad

(
µdipEst

kBT

)3

+
2

945
µdip

ad

(
µdipEst

kBT

)5

+ ... (1)

where ad is the molecular d-dimensional volume, Ld is the suitable Langevin func-
tion expressing the thermal equilibrium of a single dipole in dimension d, and where
the numerical prefactors of the linear, third, and fifth order responses correspond to
the case d = 3. Assume now that upon cooling some correlations develop over a
characteristic lengthscale `, i.e. molecules are correlated within groups containing
Ncorr = (`/a)d f molecules, with d f the fractal dimension characterizing the corre-
lated regions. Because these domains are independent from each other, one can use
Eq. (1), provided that we change the elementary volume ad by that of a domain -
namely ad(`/a)d-, as well as the molecular dipole µdip by that of a domain -namely
µdip(`/a)(d f /2)-. Here, the exponent d f /2 expresses the amorphous ordering within
the correlated regions, i.e. the fact that the orientation of the correlated molecules
looks random in space. We obtain:

P
µdip/ad '
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`
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+ ... (2)

which shows that the larger the order k of the response, the stronger the increase of
the response when ` increases. As d f ≤ d, Eq. (2) shows that the linear response



4 S. Albert, M. Michl, P. Lunkenheimer, A. Loidl, P. M. Déjardin, and F. Ladieu

never diverges with `: it is always, for any `, of the order of µ2
dip/(a

dkBT ). This
can be seen directly in Eq. (2) in the case d f = d ; while for d f < d one must add
to Eq. (2) the polarization arising from the uncorrelated molecules not belonging to
any correlated region. This insensitivity of the linear response to ` directly comes
from the amorphous nature of orientations that we have assumed when rescaling
the net dipole of a domain -by using the power d f /2-. By contrast, in a standard
para-ferro transition one would use instead a power d f to rescale the moment of
a domain, and we would find that the linear response diverges with ` as soon as
d f > d/2 -which is the standard result close to a second order phase transition-. For
amorphous ordering, the cubic response is thus the lowest order response diverging
with `, as soon as d f > d/2. This is why cubic responses -as well as higher order
responses- are ideally suited to test whether or not amorphous order develops in
supercooled liquids upon cooling.

For spin-glasses, the above purely thermodynamic argument is enough to relate
the divergence of the static value of χ

(3)
3 -see Fig 1-(A)- to the divergence of the

amorphous order correlation length `. For structural glasses this argument must be
complemented by some dynamical argument, since we have seen on Fig. 1-(C) that
the anomalous behavior of χ

(3)
3 takes place around the relaxation frequency fα . This

has been done, on very general grounds, by the predictions of Bouchaud and Biroli
(BB), who anticipated [9] the main features reported in Fig. 1-(C). BB’s predic-
tions will be explained in Section 3. Before, we shall review in Section 2 the main
experimental features of third and fifth harmonic susceptibilities. Because of the
generality of Eq. (2) and of BB’s framework, we anticipate that χ3 and χ5 have
common anomalous features that can be interpreted as reflecting the evolution of `
-and thus of Ncorr- upon cooling. The end of the chapter, Section 4, will be devoted
to more specific approaches of the cubic response of glass forming liquids. Beyond
their apparent diversity, we shall show that they can be unified by the fact that in all
of them, Ncorr is a key parameter -even though it is sometimes implicit-. The Ap-
pendix contains some additional material for the readers aiming at deepening their
understanding of this field of high harmonic responses.

2 Experimental behavior of third and fifth harmonic
suceptibilities

2.1 Definitions

When submitted to an electric field E(t) depending on time t, the most general
expression of the polarisation P(t) of a dielectric medium is given by a series ex-
pansion :

P(t) =
∞

∑
m=0

P2m+1(t) (3)
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where because of the E → −E symmetry, the sum contains only odd terms, and
the (2m+1)-order polarisation P2m+1(t) is proportional to E2m+1. The most general
expression of P2m+1(t) is given by:

P2m+1(t)
ε0

=
∫

∞

−∞

...
∫

∞

−∞

χ2m+1(t− t ′1, ..., t− t ′2m+1)E(t
′
1)...E(t

′
2m+1)dt ′1...dt ′2m+1 (4)

Because of causality χ2m+1 ≡ 0 whenever one of its arguments is negative. For a
field E(t)=E cos(ωt) of frequency ω and of amplitude E, it is convenient to replace
χ2m+1 by its (2m+1)-fold Fourier transform and to integrate first over t ′1, ..., t

′
2m+1.

Defining the one-fold Fourier transform φ(ω) of any function φ(t) by φ(ω) =∫
φ(t)e−iωtdt (with i2 = −1) and using

∫
e−i(ω1−ω)tdt = 2πδ (ω1 −ω), where δ

is the Dirac delta function, one obtains the expression of P2m+1(t). This expression
can be simplified by using two properties: (a) the fact that the various frequencies
ωλ play the same role, which implies χ2m+1(−ω,ω, ...,ω) = χ2m+1(ω,−ω, ...,ω);
(b) the fact that χ2m+1 is real in the time domain implying that χ2m+1(−ω, ...,−ω)
is the complex conjugate of χ2m+1(ω, ...,ω). By using these two properties, we ob-
tain the expression of all the P2m+1(t), and in the case of the third order polarisation
this yields:

P3(t)
ε0

=
1
4

E3|χ(3)
3 (ω)|cos(3ωt−δ

(3)
3 (ω))+

3
4

E3|χ(1)
3 (ω)|cos(ωt−δ

(1)
3 (ω)) (5)

where we have set χ3(ω,ω,ω)= |χ(3)
3 (ω)|e−iδ (3)

3 (ω), and χ3(ω,ω,−ω)= |χ(1)
3 (ω)|e−iδ (1)

3 (ω).
Similarly, for the fifth-order polarisation, we obtain:

P5(t)
ε0

=
1

16
E5|χ(5)

5 (ω)|cos(5ωt−δ
(5)
5 (ω))+

5
16

E5|χ(3)
5 (ω)|cos(3ωt−δ

(3)
5 (ω))+

+
10
16

E5|χ(1)
5 (ω)|cos(ωt−δ

(1)
5 (ω)) (6)

where, we have set χ5(ω,ω,ω,ω,ω)= |χ(5)
5 (ω)|e−iδ (5)

5 (ω), and similarly χ5(ω,ω,ω,ω,−ω)=

|χ(3)
5 (ω)|e−iδ (3)

5 (ω) as well as χ5(ω,ω,ω,−ω,−ω) = |χ(1)
5 (ω)|e−iδ (1)

5 (ω).
For completeness we recall that the expression of the linear polarisation P1(t) is

P1(t)/ε0 = E|χ1(ω)|cos(ωt−δ1(ω)) where we have set χ1(ω) = |χ1(ω)|e−iδ1(ω).
In the linear case, we often drop the exponent indicating the harmonic, since the
linear response P1(t) is by design at the fundamental angular frequency ω . The only
exception to this simplification is in Fig. 11 (see below) where for convenience the
linear susceptibility is denoted χ

(1)
1 .

Up to now we have only considered nonlinear responses induced by a pure ac
field E, allowing to define the third harmonic cubic susceptibility χ

(3)
3 and/or the

fifth-harmonic fifth-order susceptibility χ
(5)
5 to which this chapter is devoted. In
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Section 2.3 and Figs. 8-9, we shall briefly compare χ
(3)
3 with other cubic suscep-

tibilities, namely χ
(1)
3 already defined in Eq. (5) as well as χ

(1)
2;1 that we introduce

now.
This supplementary cubic susceptibility is one of the new terms arising when a

static field Est is superimposed on top of E. Because of Est , new cubic responses
arise, both for even and odd harmonics. For brevity, we shall write only the expres-
sion of the first harmonic part P(1)

3 of the cubic polarization, which now contains
two terms:

P(1)
3 (t)
ε0

=
3
4
|χ(1)

3 (ω)|E3 cos(ωt−δ
(1)
3 (ω))+3|χ(1)

2,1 (ω)|E2
stE cos(ωt−δ

(1)
2,1 (ω))

(7)
where we have defined |χ(1)

2,1 (ω)|exp(−iδ (1)
2,1 (ω)) = χ3(0,0,ω).

For any cubic susceptibility – generically noted χ3 – or for any fifth-order sus-
ceptibility – generically noted χ5 – the corresponding dimensionless susceptibility
X3 or X5 is defined as :

X3 ≡
kBT

ε0∆ χ2
1 a3 χ3, X5 ≡

(kBT )2

ε2
0 ∆ χ3

1 a6
χ5 (8)

where ∆ χ1 is the “dielectric strength”, i.e. ∆ χ1 = χlin(0)−χlin(∞) where χlin(0) is
the linear susceptibility at zero frequency and χlin(∞) is the linear susceptibility at a
-high- frequency where the orientational mechanism has ceased to operate. Note that
X3 as well as X5 have the great advantage to be both dimensionless and independent
of the field amplitude.

2.2 Frequency and temperature dependence of third harmonic
susceptibility

In this section we review the characteristic features of χ
(3)
3 both as a function of

frequency and temperature. We separate the effects at equilibrium above Tg and
those recorded below Tg in the out-of-equilibrium regime.
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Fig. 2 Third-order harmonic component of the dielectric susceptibility of propylene carbonate
[10]. Spectra of |χ(3)

3 |E2 are shown for various temperatures measured at a field of 225 kV/cm.
The yellow-shaded plane indicates the plateau arising in the trivial regime.

2.2.1 Above Tg

In the α regime:

Fig. 2 shows the modulus |χ(3)
3 | for propylene carbonate [10]. It is an archetypical

example of what has been measured in glass forming liquids close to Tg. For a given
temperature one distinguishes two domains:

1. For very low frequencies, f/ fα ≤ 0.05, a plateau is observed as indicated by the
shaded area in Fig. 2, i.e. |χ(3)

3 | does not depend on frequency. This is reminis-
cent of the behavior of an ideal gas of dipoles where each dipole experiences
a Brownian motion without any correlation with other dipoles. In such an ideal
gas, |χ(3)

3 | has a plateau below the relaxation frequency and monotonously falls
to zero as one increases the frequency. Because the observed plateau in Fig. 2 is
reminiscent to the ideal gas case, it has sometimes [3, 4] been called the “trivial”
regime. What is meant here is not that the analytical expressions of the various
χ3 are “simple” –see Section 7–, but that the glassy correlations do not change
qualitatively the shape of χ

(3)
3 in this range. Physically, an ideal gas of dipoles

corresponds to the high-T limit of a fluid. This is why it is a useful benchmark
which allows to distinguish the “trivial” features and those involving glassy cor-
relations.

2. When rising the frequency above 0.05 fα one observes for |χ(3)
3 | a hump for a

frequency fpeak/ fα ' c where the constant c does not depend on T and weakly
depends on the liquid (e.g., c' 0.22 for glycerol and c' 0.3 for propylene car-
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bonate). This hump is followed by a power law decrease |χ(3)
3 | ∼ f−β3 where

β3 < 1 is close [3] to the exponent governing the decrease of |χ1| above fα .
Qualitatively, this hump is important since it exists neither in the cubic suscep-
tibility of an ideal gas of dipoles nor in the modulus of the linear response |χ1|
of the supercooled liquids. This is why this hump has been termed the “glassy
contribution” to χ3. On a more quantitative basis, the proportionality of fpeak and
of fα has been observed for fα ranging from 0.01 Hz to 10 kHz -above 10 kHz
the measurement of χ

(3)
3 is obscured by heating issues, see [11] and Section 7-.
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Fig. 3 (a) Modulus, real, and imaginary part of the third-order dielectric susceptibility χ
(3)
3 (times

E2) of 1-propanol at 120 K as measured with a field of 468 kV/cm [16]. The solid lines were
calculated according to Refs. [17]. (b) Same for glycerol at 204 K and 354 kV/cm [16].

The consistency of the above considerations can be checked by comparing the
third-order susceptibility of canonical glass formers to that of monohydroxy alco-
hols. The linear dielectric response of the latter is often dominated by a Debye relax-
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ation process, which is commonly ascribed to the fact that part of the molecules are
forming chain-like hydrogen-bonded molecule clusters with relatively high dipolar
moments [12]. This process represents an idealised Debye-relaxation case as it lacks
the heterogeneity-related broadening found for other glass formers. Moreover, cor-
relations or cooperativity should not play a significant role for this process, because
cluster-cluster interactions can be expected to be rare compared to the intermolec-
ular interactions governing the α relaxation in most canonical glass formers [13].
Thus, this relaxation process arising from rather isolated dipolar clusters distributed
in a liquid matrix can be expected to represent a good approximation of the ”ideal
dipole gas” case mentioned above. The monohydroxy alcohol 1-propanol is espe-
cially well suited to check this notion because here transitions between different
chain topologies, as found in several other alcohols affecting the nonlinear response
[14, 15], do not seem to play a role [15]. Figure 3(a) shows the frequency-dependent
modulus, real, and imaginary part of χ

(3)
3 E2 for 1-propanol at 120 K [13, 16]. In-

deed, no hump is observed in |χ(3)
3 |(ν) as predicted for a non-cooperative Debye

relaxation. The solid lines were calculated according to Refs. [17], accounting for
the expected trivial polarization-saturation effect. Indeed, the spectra of all three
quantities are reasonably described in this way. In the calculation, for the molecular
volume an additional factor of 2.9 had to be applied to match the experimental data,
which is well consistent with the notion that the Debye relaxation in the monohy-
droxy alcohols arises from the dynamics of clusters formed by several molecules.

In marked contrast to this dipole-gas-like behavior of the Debye relaxation of
1-propanol, the χ

(3)
3 spectra related to the conventional α relaxation of canonical

glass formers exhibit strong deviations from the trivial response, just as expected in
the presence of molecular correlations. As an example, Fig. 3(b) shows the modu-
lus, real, and imaginary part of χ

(3)
3 E2 of glycerol at 204 K. Again the lines were

calculated assuming the trivial nonlinear saturation effect only [17]. Obviously, this
approach is insufficient to provide a reasonable description of the experimental data.
Only the detection of plateaus in the spectra arising at low frequencies agrees with
the calculated trivial response. This mirrors the fact that, on long time scales, the
liquid flow smoothes out any glassy correlations.

When varying the temperature, two very different behaviors of χ
(3)
3 are observed:

1. In the plateau region the weak temperature dependence of χ
(3)
3 is easily captured

by converting χ
(3)
3 into its dimensionless form X (3)

3 by using Eq. (8): one observes

[3, 4] that in the plateau region X (3)
3 does not depend at all on the temperature.

Qualitatively this is important since in an ideal gas of dipoles X (3)
3 does also

not depend on temperature, once plotted as a function of f/ fα . This reinforces
the “trivial” nature of the plateau region, i.e. the fact that it is not qualitatively
affected by glassy correlations.

2. In the hump region, |X (3)
3 ( f/ fα)| increases upon cooling, again emphasizing

the “anomalous” –or “non trivial”– behavior of the glassy contribution to χ
(3)
3 .

This increase of the hump of |X (3)
3 | has been related to that of the apparent
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Fig. 4 From Ref. [18]: For several glass formers, Ncorr(T ) as extracted from the hump of |X (3)
3 | (left

axis) closely follows Eact(T ), deduced from the temperature dependence of the α-relaxation time
[10] (right axis). The abbreviations stand for propylene carbonate (PCA), 3-fluoroaniline (FAN),
2-ethyl-1-hexanol (2E1H), cyclo-octanol (c-oct), and a mixture of 60% succinonitrile and 40%
glutaronitrile (SNGN).

activation energy Eact(T ) ≡ ∂ lnτα/∂ (1/T ) -see refs. [10, 18]- as well as to
T χT ≡ |∂ lnτα/∂ lnT | [3, 4, 19, 20]. Note that because the experimental tem-
perature interval is not so large, the temperature behavior of Eact and of T χT
is extremely similar. Both quantities are physically appealing since they are re-
lated to the number Ncorr(T ) of correlated molecules: the line of thought where
Eact ∼ Ncorr(T ) dates back to the work of Adam and Gibbs [21]; while another
series of papers [22, 23] proposed a decade ago that Ncorr ∝ T χT . Fig. 4 illus-
trates how good is the correlation between the increase of the hump of |X (3)

3 | -left
axis- and Eact(T ). This correlation holds for 5 glass formers, of extremely differ-
ent fragilities, including a plastic crystal, where only the orientational degrees of
freedom experience the glass transition [24].

In the excess wing regime:

In the dielectric-loss spectra of various glass formers, at high frequencies the excess
wing shows up, corresponding to a second, shallower power law at the right flank
of the α peak [25]. Figure 5(a) shows loss spectra of glycerol, measured at low and
high fields up to 671 kV/cm [26, 27], where the excess wing is indicated by the
dashed lines. (It should be noted that the difference of these loss curves for high and
low fields is directly related to the cubic susceptibility χ

(1)
3 , defined in Eq. (5) [16].)

As already reported in the seminal paper by Richert and Weinstein [28], in Fig. 5(a)
at the right flank of the α-relaxation peak a strong field-induced increase of the
dielectric loss is found while no significant field dependence is detected at its low-
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frequency flank. In Ref. [28] it was pointed out that these findings are well consistent
with the heterogeneity-based box model (see Section 4.3). However, as revealed by
Fig. 5(a), remarkably in the region of the excess wing no significant nonlinear effect
is detected. Time-resolved measurements, later on reported by Samanta and Richert
[29], revealed nonlinearity effects in the excess-wing region when applying the high
field for extended times of up to several 10000 cycles. Anyhow, the nonlinearity in
this region seems to be clearly weaker than for the main relaxation and the nonlinear
behavior of the excess wing differs from that of the α relaxation.

To check whether weaker nonlinearity in the excess-wing region is also revealed
in higher-harmonic susceptibility measurements, Fig. 5(b) directly compares the
modulus of the linear dielectric susceptibility of glycerol at 191 K to the third-
order susceptibility |χ(3)

3 | (multiplied by E2) [30]. (We show |χ1| corrected for
χ1,∞ = ε∞−1 caused by the ionic and electronic polarizability, whose contribution
in the modulus strongly superimposes the excess wing.) While the linear response
exhibits a clear signature of the excess wing above about 100 Hz (dashed line), no
trace of this spectral feature is found in |χ(3)

3 (ν)|. Thus, we conclude that possible
nonlinearity contributions arising from the excess wing, if present at all, must be sig-
nificantly weaker than the known power-law decay of the third-order susceptibility
at high frequencies, ascribed to the nonlinearity of the α relaxation.

The excess wing is often regarded as the manifestation of a secondary relaxation
process, partly superimposed by the dominating α-relaxation [31, 32]. Thus the
weaker nonlinearity of the excess wing seems to support long-standing assumptions
of the absence of cooperativity in the molecular motions that lead to secondary
relaxation processes [33, 34]. Moreover, in a recent work [35] it was pointed out
that the small or even absent nonlinear effects in the excess-wing region can also be
consistently explained within the framework of the coupling model [34], where the
excess wing is identified with the so-called ”nearly constant loss” caused by caged
molecular motions.

2.2.2 Below Tg

Below Tg, the physical properties are aging, i.e. they depend on the time ta elapsed
since the material has fallen out of equilibrium, i.e. since the glass transition temper-
ature Tg has been crossed. The mechanism of aging is still a matter of controversy
[36, 37, 38, 39, 40], owing to the enormous theoretical and numerical difficulties in-
herent to out-of-equilibrium processes. Experimentally, a few clear cut results have
been obtained in spin glasses [41] where it was shown, by using nonlinear tech-
niques, that the increase of the relaxation time τα with the aging time ta can be rather
convincingly attributed to the growth of the number Ncorr of correlated spins with
ta. Very recently extremely sophisticated numerical simulations have been carried
out by the so called Janus international collaboration, yielding, among many other
results, a strong microscopic support [42] to the interpretation given previously in
the experiments of Ref. [41].
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Fig. 5 (a) Dielectric loss of glycerol measured at fields of 14 kV/cm (open symbols) and
671 kV/cm (closed symbols) shown for four temperatures [27]. The solid lines were measured
with 0.2 kV/cm [26]. The dashed lines indicate the excess wing. (b) Open triangles: Absolute val-
ues of χ1 (corrected for χ1,∞ = ε∞−1) at 14 kV/cm for glycerol at 191 K. Closed triangles: χ

(3)
3 E2

at 565 kV/cm [30]. The solid lines indicate similar power laws above the peak frequency for both
quantities. The dashed line indicates the excess wing in the linear susceptibility at high frequencies,
which has no corresponding feature in χ

(3)
3 (ν).

In structural glasses, the aging properties of the linear response have been re-
ported more than one decade ago [43, 44]. More recently, the aging properties of
χ
(3)
3 were reported in glycerol [45] and its main outputs are summarized in Figs. 6

and 7. A glycerol sample previously well equilibrated at Tg+8 K was quenched to a
working temperature Tw = Tg−8 K and its third harmonic cubic susceptibility was
continuously monitored as a function of ta. The dominant effect is the increase of
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Fig. 6 From [45]. During the aging of glycerol -at Tg−8K- the increase of τα with the aging time
ta is measured by rescaling the aging data -symbols- of χ ′′1 -right axis- onto the equilibrium data
-solid black line-. The corresponding scaling fails for X (3)

3 ( f , ta) -left axis- revealing the increase
of Ncorr during aging. See [45] for details about the quantity z(ta)/z(T ) which is involved in the
left axis but varies by less than 2% during aging-.

Fig. 7 From [45]. The values of δ =Ncorr(ta)/Ncorr(eq) extracted from Fig. 6 show the increase of
Ncorr during aging. Inset: different theories are tested gathering equilibrium and aging experiments.

the relaxation time τα with ta. In Ref. [45] τα increases by a factor ' 6 between the
arrival at Tw -i.e. ta = 0- and the finally equilibrated situation reached for ta� τα,eq
where τα is equal to its equilibrium value τα,eq -and no longer evolves with ta-.
This variation of τα with the aging time ta can be very accurately deduced from
the shift that it produces on the imaginary part of the linear response χ ′′( f , ta). This
is summarized in Fig. 6 for 5 different frequencies: when plotted as a function of
f/ fα(ta) ≡ 2π f τα(ta), the aging values of χ ′′( f , ta) -symbols- are nicely rescaled
onto the equilibrium values χ ′′( f ,eq) -continuous line- measured when ta� τα,eq.



14 S. Albert, M. Michl, P. Lunkenheimer, A. Loidl, P. M. Déjardin, and F. Ladieu

The most important experimental result is that this scaling fails for |X (3)
3 ( f , ta)| as

shown by the left axis of Fig. 6: For short aging times, the difference between aging
data (symbols) and equilibrium values (continuous line) is largest. This has been
interpreted as an increase of Ncorr with the aging time ta. This increase of Ncorr(ta)
towards its equilibrated value Ncorr(eq) is illustrated in Fig. 7 where the variation of
δ = Ncorr(ta)/Ncorr(eq) is plotted as a function of ta. It turns out to be independent
of the measuring frequency, which is a very important self consistency check.

The increase of Ncorr during aging can be rather well captured by extrapolating
the Ncorr(T ) variation obtained from the growth of the hump of |χ(3)

3 | measured at
equilibrium above Tg and by translating the τα(ta) in terms of a fictive temperature
Tf ict(ta) which decreases during aging, finally reaching Tw when ta � τα,eq. This
yields the continuous line in Fig. 7, which fairly well captures the data drawn from
the aging of χ

(3)
3 . Because this extrapolation roughly agrees with the aging data,

one can estimate that the quench from Tg + 8 K to Tw = Tg− 8 K corresponds to
a doubling of Ncorr,eq. The approximately 10% increase reported in Fig. 7 is thus
the long time tail of this increase, while the first 90% increase cannot be measured
because it takes place during the quench.

Beyond the qualitative result that Ncorr increases during aging, these χ
(3)
3 (ta) data

can be used to test quantitatively some theories about the emergence of the glassy
state. By gathering, in the inset of Fig. 7, the equilibrium data -symbols lying in
the [1;1.3] interval of the horizontal axis- and the aging data translated in terms of
Tf ict(ta) -symbols lying in the [2;2.3] interval-, one extends considerably the exper-
imental temperature interval, which puts strong constraints onto theories. Summa-
rizing two different predictions by ln(τα/τ0) =Y Nψ/3

corr /(kBT ) with Y ∼ T ;ψ = 3/2
for Random First Order Transition theory (RFOT) [46] while Y ∼ 1;ψ = 1 for the
numerical approach of Ref. [47], Fig. 7 is designed to test these two predictions -see
Ref. [45] for details-: it shows that both of them are consistent with experiments
-contrary to another prediction relying onto a critical relation τα ∝ Nz

corr, yielding
an unrealistic large value of z∼ 20 to account for the experiments-.

2.3 Strong similarities between third and first cubic susceptibilities

We now come back to equilibrium measurements -i.e. above Tg- and compare the
behavior of the third-harmonic cubic susceptibility χ

(3)
3 as well as the first-harmonic

cubic susceptibilities χ
(1)
3 and χ

(1)
2;1 introduced in Eq. (7). We remind that χ

(1)
2;1 corre-

sponds to the case where a static field Est is superimposed to the ac field E cos(ωt).
Figs. 8 and 9 show the modulus and the phases of the three cubic susceptibilities

for glycerol and for propylene carbonate.

1. For the modulus: At a fixed temperature, the main features of the frequency de-
pendence of |χ(1)

3 | and of |χ(1)
2;1 | are the same as those of |χ(3)

3 |: when increasing
the frequency, one first observes a low frequency plateau, followed by a hump in
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Fig. 8 From [48]: For glycerol and fα ' 2 Hz, modulus -top panel- and phase -bottom panel- of
the three cubic susceptibilities defined in Eqs. (5) and (7). The salient features of the three cubic
susceptibilities are similar, which strongly suggests a common physical origin -see text-. Dotted
lines are Arg[X (1)

2;1 ]+π or +2π and support Eqs. (9) and (10).

the vicinity of fα and then by a power law decrease ∼ f−β3 . The most important
differences between the three cubic susceptibilities are the precise location of the
hump and the absolute value of the height of the hump. As for the temperature
dependence one recovers for |χ(1)

3 | and for |χ(1)
2;1 | what we have already seen for

|χ(3)
3 |: once put into their dimensionless forms X3 the three cubic susceptibilities

do not depend on T in the plateau region, at variance with the region of the hump
where they increase upon cooling typically as Eact(T ) ≡ ∂ lnτα/∂ (1/T ) which
in this T range is very close to T χT ≡ |∂ lnτα/∂ lnT | [3, 4, 10, 19, 20, 48].

2. The phases of the three cubic susceptibilities basically do not depend explicitly
on temperature, but only on u = f/ fα , through a master curve that depends only
on the precise cubic susceptibility under consideration. These master curves have
the same qualitative shape as a function of u in both glycerol and propylene car-
bonate. We note that the phases of the three cubic susceptibilities are related to
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Fig. 9 From [48]. Same representation as in Fig. 8 but for propylene carbonate.

each other. In the plateau region all the phases are equal, which is expected be-
cause at low frequency the systems responds adiabatically to the field. At higher
frequencies, we note that for both glycerol and propylene carbonate (expressing
the phases in radians):

Arg
[
X (1)

3

]
≈ Arg

[
X (1)

2,1

]
+π for f/ fα ≥ 0.5; (9)

Arg
[
X (1)

3

]
≈ Arg

[
X (3)

3

]
for f/ fα ≥ 5 (10)

which are quite non trivial relations.
3. In the phase of χ

(1)
3 of propylene carbonate (Fig. 9), a jump of π is observed

which is accompanied by the indication of a spikelike minimum in the modulus
-see [48] for more details-. A similar jump may also be present in glycerol (Fig.
8). This jump in the phase happens at the crossover between the T -independent
“plateau” and the strongly T -dependent hump. More precisely in the “plateau”
region one observes a reduction of the real part of the dielectric constant χ ′1,
while around the hump χ ′1 is enhanced. At the frequency of the jump, both effects
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compensate and this coincides with a very low value of the imaginary part of
X (1)

3 .

2.4 Frequency and temperature dependence of fifth harmonic
susceptibility

In this section, we first explain why measuring χ
(5)
5 is interesting for a better under-

standing of the glass transition. We then see the characteristic features of χ
(5)
5 as a

function of frequency and temperature.

2.4.1 Interest in the fifth-order susceptibility

In the previous sections, we have seen that the increase of the hump of |X3| upon
cooling has been interpreted as reflecting that of the correlation volume Ncorra3.
However in practice, this increase of Ncorr remains modest -typically it is an increase
by a factor 1.5- in the range 0.01 Hz≤ fα ≤ 10 kHz where the experiments are
typically performed. Physically this may be interpreted by the fact that an increase
of Ncorr changes the activation energy, yielding an exponentially large increase of
the relaxation time τα . Now if one demands, as in standard critical phenomena, to
see at least a factor of 10 of increase of |X3| to be able to conclude on criticality,
one is lead to astronomical values of τα : extrapolating the above result, e.g., |X3| ∝
|∂ lnτα/∂ lnT | and assuming a VFT law for τα , one concludes that the experimental
characteristic times corresponding to an increase of |X3| by one order of magnitude
is 0.1 ms≤ τα ≤ 1018 s. This means experiments lasting longer than the age of the
universe.

This issue of astronomical time scales can be circumvented by using a less com-
monly exploited but very general property of phase transitions: close to a critical
point all the responses diverge together [49], since the common cause of all these
divergences is the growth of the same correlation length. Showing that all the re-
sponses of order k behave as a power law of the first diverging susceptibility is an-
other way of establishing criticality. For glasses, we have seen in Eq. (2) that, apart
from χ1 which is blind to glassy correlations, all other responses χk≥3 grow as power
laws with the amorphous ordering length `: χ3 ∝ (l/a)2d f−d and χ5 ∝ (l/a)3d f−d .
Therefore, assuming that the main cause for the singular responses appearing in the
system is the development of correlations, there should be a scaling relation between
the third and fifth order responses, namely one should observe χ5 ∝ χ

µ(d f )

3 where
µ(d f ) = (3d f −d)/(2d f −d).

Measuring χ5 is of course extremely difficult, because, for the experimentally
available electric fields, one has the hierarchy |χ1|E � |χ3|E3� |χ5|E5. However
this was done in Ref. [50] and we shall now briefly review the corresponding results.



18 S. Albert, M. Michl, P. Lunkenheimer, A. Loidl, P. M. Déjardin, and F. Ladieu

Fig. 10 From Ref. [50]. Measured values of |χ(5)
5 | for glycerol - upper panel- and propylene car-

bonate - lower panel- (the spheres and cubes in the upper panel indicate results from two differ-
ent experimental setups). The hump lies at the same frequency as for |χ(3)

3 | and has significantly
stronger variations in frequency and in temperature, see Figs 11 and 12. The arrows indicate the
peak positions fα in the dielectric loss. The yellow-shaded planes indicate the plateau arising in
the trivial regime.

2.4.2 Characteristic features of the fifth order susceptibility

The modulus |χ(5)
5 | of glycerol and propylene carbonate [50] can be seen in Fig.

10 as a function of frequency and temperature. Similarly to what has been seen in
section 2.2 on |χ(3)

3 |, the frequency dependence can be separated in two domains
(see also Fig. 11):

1. For very low reduced frequencies ( f/ fα ≤ 0.05), there is a plateau (indicated
by the yellow-shaded planes in Fig. 10) where the reduced response X (5)

5 de-
pends neither on frequency nor on temperature. In this plateau, the behavior of
the supercooled liquid cannot be qualitatively distinguished from the behavior
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Fig. 11 From Ref. [50]. For glycerol, comparison of the fifth, third and linear susceptibilities -the
latter is noted |χ(1)

1 |-. The hump for |χ(5)
5 | is much stronger than that of |χ(3)

3 |. The dashed lines are
the trivial contribution -see [50] for details-.

expected from a high temperature liquid of dipoles, depicted by the ”trivial” X (k)
k

curves represented as dotted lines in Fig. 11.
2. At higher frequencies, we can observe a hump of |X (5)

5 | that remarkably occurs

at the same peak frequency fpeak as in |χ(3)
3 | in both glycerol and propylene car-

bonate. Again one finds that, for the five temperatures where the peak is studied,
fpeak/ fα = c, where the constant c does not depend on T and weakly changes
with the liquid. This peak is much sharper for |X (5)

5 | than for |X (3)
3 |: this is clearly

evidenced by Fig. 11 where the linear, cubic and fifth-order susceptibilities are
compared, after normalisation to their low-frequency value. This shows that the
anomalous features in the frequency dependence are stronger in |X (5)

5 | than in

|X (3)
3 |: This may be regarded as a sign of criticality since close to a critical point,

the larger the order k of the response, the stronger the anomalous features of Xk.

A second, and more quantitative indication of incipient criticality is obtained by
studying the temperature dependence of |X (5)

5 | and by comparing it with that of

|X (3)
3 |:

1. In the plateau region at f/ fα ≤ 0.05, the value of |X (5)
5 | does not depend on

the temperature. This shows that the factor involved in the calculation of the
dimensionless X (5)

5 from χ
(5)
5 -see Eq. (8)- is extremely efficient to remove all

trivial temperature dependences. As the trivial behavior depends on frequency
-see the dashed lines of Fig. 11-, the “singular” parts of X3 and of X5 are obtained
as follows:

X (3)
3,sing. ≡ X (3)

3 −X (3)
3,trivial , X (5)

5,sing. ≡ X (5)
5 −X (5)

5,trivial (11)
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Fig. 12 From Ref. [50] Temperature evolution of the singular parts of fifth and third order re-
sponses. All quantities are normalized at a given temperature -namely 207 K for glycerol, upper
panel; and 164 K for propylene carbonate, bottom panel-. This allows to determine the exponent
µ relating |X5| and |X3|µ and to conclude that the amorphously ordering domains are compact -see
text-. The hatched areas represent the uncertainty on µ .

which correspond in Fig. 11 to a complex subtraction between the measured data
-symbols- and the trivial behavior -dashed lines.

2. Around the hump, the temperature behavior of |X (5)
5,sing.( fpeak)| is compared to that

of |X (3)
3,sing.( fpeak)|µ where µ is an exponent that is determined experimentally by

looking for the best overlap of the two series of data in Fig. 12 -see [50] for
details-. This leads us to values of µ = 2.2± 0.5 in glycerol and µ = 1.7± 0.4
in propylene carbonate. Therefore, within experimental uncertainties, results for
|X (3)

3 | and |X (5)
5 | would seem to advocate a value of µ ≈ 2. With µ = (3d f −

d)/(2d f − d) as seen in Eq. (2) -see also Eq. (13) below-, this corresponds to a
fractal dimensions of d f ≈ 3.
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3 Testing Bouchaud-Biroli’s predictions as well as the general
theories of the glass transition

Having shown the experimental data for the nonlinear responses, we now move to
the interpretation part and start with Bouchaud-Biroli’s approach (BB), which is
the most general one. The more specific and/or phenomenological approaches of
nonlinear responses will be detailed in Section 4.

3.1 Bouchaud-Biroli’s predictions

3.1.1 General considerations about χ2k+1

To illustrate the general relations existing between the susceptibility χ2k+1 and
the correlation function of order 2k+ 2 -with k ≥ 0- in a system at thermal equi-
librium, let us consider a sample, submitted to a constant and uniform magnetic
field h, containing N spins with an Hamiltonian H that depends on the spin
configuration “c”. The elementary relations of statistical physics yield the mag-
netisation M ≡ ∑i < Si > /(Na3) where a3 is the elementary volume and where
the thermal average < Si > is obtained with the help of the partition function
Z = ∑c exp(−βH +βh∑k Sk) by writing < Si >= ∑c Si exp(−βH +βh∑k Sk)/Z
with β = 1/(kBT ). The linear response χ1 ≡ (∂M/∂h)h=0 is readily obtained:

Na3
χ1 =

1
βZ

(
∂ 2Z
∂h2

)
h=0
− 1

β

(
∂Z

Z∂h

)2

h=0
= β

(
∑
i1;i2

< Si1Si2 >−(∑
i1

< Si1 >)2

)
(12)

which shows that the linear response is related to the connected two-point cor-
relation function. Repeating the argument for higher-order responses -e.g. χ3 ∝

(∂ 3M/∂h3)h=0-, one obtains that χ2k+1 is connected to the (2k + 2) points cor-
relation function -e.g., χ3 is connected to a sum combining < Si1Si2Si3Si4 >,
< Si1Si2Si3 >< Si4 >, < Si1Si2 >< Si3Si4 > etc...-.

3.1.2 The spin glass case

Spin glasses are characterized by the fact that there is frozen disorder, i.e. the set
of the interaction constants {Ji; j} between two given spins Si and S j is fixed once
and for all, and has a random sign -half of the pairs of spins are coupled ferromag-
netically, the other half antiferromagnetically-. Despite the fact that the system is
neither a ferromagnet, nor an antiferromagnet, upon cooling it freezes, below a crit-
ical temperature TSG, into a solid -long range ordered- state called a spin glass state.
This amorphous ordering is not detected by χ1 which does not diverge at TSG: this
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is because the various terms of ∑i1;i2 < Si1Si2 > cancel since half of them are posi-
tive and the other half are negative. By contrast the cubic susceptibility χ3 contains
a term ∑i1;i2 < Si1Si2 >2 which does diverge since all its components are strictly
positive: this comes from the fact that the influence < Si1Si2 > of the polarization
of spin Si1 on spin Si2 may be either positive or negative, but it has the same sign as
the reverse influence < Si2Si1 > of spin Si2 on spin Si1. This is why the amorphous
ordering is directly elicited by the divergence of the static value of χ3 when decreas-
ing T towards TSG, as already illustrated in Fig. 1-(A). By adding a standard scaling
assumption close to TSG one can account for the behavior of χ3 at finite frequencies,
i.e. one easily explains that χ3 is frequency independent for ωτα ≤ 1, and smoothly
tends to zero at higher frequencies. Finally, similar scaling arguments about corre-
lation functions easily explain the fact that the stronger k ≥ 1 the more violent the
divergence of χ2k+1 in spin glasses, as observed experimentally by Levy et al [51].

3.1.3 The glass forming liquids case

The case of glass forming liquids is of course different from that of spin glasses for
some obvious reasons (e.g. molecules have both translational and rotational degrees
of freedom). As it has been well established that rotational and translational degrees
of freedom are well coupled in most of liquids, it is tempting to attempt a mapping
between spin glasses and glass forming liquids by replacing the spins Si by the local
fluctuations of density δρi or by the dielectric polarisation pi. As far as nonlinear
responses are concerned, this mapping requires a grain of salt because (a) there is
no frozen-in disorder in glass forming liquids, and (b) there is a nonzero value of
the molecular configurational entropy Sc around Tg.

The main physical idea of BB’s work [9] is that these difficulties have an effect
which is important at low frequencies and negligible at high enough frequencies:

1. Provided f ≥ fα , i.e. for processes faster than the relaxation time, one cannot
distinguish between a truly frozen glass and a still flowing liquid. If some amor-
phous order is present in the glass forming system, then non-trivial spatial cor-
relations should be present and lead to anomalously high values of non-linear
susceptibilities: this holds for very general reasons -e.g., the Langevin equation
for continuous spins which is used in Ref. [9] needs not to specify the detailed
Hamiltonian of the system- and comes from an analysis of the most diverging
term in the four terms contributing to χ3(ω). If the amorphous correlations ex-
tend far enough to be in the scaling regime, one can neglect the subleading terms
and one predicts that the nonlinear susceptibilities are dominated by the glassy
correlations and given by [9, 50]:

Xglass
2k+1( f ,T ) = [Ncorr(T )]αk ×Hk

(
f
fα

)
with αk = (k+1)−d/d f (13)

where the scaling functions Hk do not explicitly depend on temperature, but
depend on the kind of susceptibility that is considered, i.e. X (1)

3 , X (3)
3 or X (1)

2,1 in
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the third order case k = 1. We emphasize that in Ref. [9] the amorphously ordered
domains were assumed to be compact, i.e. d f = d, yielding α1 = 1 i.e. X3 ∝ Ncorr.
The possibility of having a fractal dimension d f lower than the spatial dimension
d was considered in Ref. [50] where the fifth order response was studied. As
already shown in Section 2.4.2, the experimental results were consistent with
d f = d, i.e. X5 ∝ N2

corr.
2. In the low frequency regime f � fα , relaxation has happened everywhere in the

system, destroying amorphous order [52] and the associated anomalous response
to the external field and Hk(0) = 0. In other words, in this very low frequency
regime, every molecule behaves independently of others and X2k+1 is dominated
by the “trivial” response of effectively independent molecules.

Due to the definition adopted in Eq. (8), the trivial contribution to X2k+1 should
not depend on temperature (or very weakly) . Hence, provided Ncorr increases upon
cooling, there will be a regime where the glassy contribution Xglass

2k+1 should exceed
the trivial contribution, leading to hump-shaped non-linear susceptibilities, peaking
at fpeak ∼ fα , where the scaling function Hk reaches its maximum.

3.2 Experimentally testing BB’s predictions

We now briefly recall why all the experimental features reported in section 2 are
well accounted for by BB’s prediction:

1. The modulus of both the third order susceptibilities |χ(3)
3 |, |χ

(1)
3 |, |χ

(1)
2;1 | and of

|χ(5)
5 | have a humped shape in frequency, contrary to |χ1|.

2. Due to the fact that Hk does not depend explicitly on T , the value of fpeak/ fα

should not depend on temperature, consistent with the experimental behavior.
3. Because of the dominant role played by the glassy response for f ≥ fpeak, the

T -dependence of |X2k+1| will be much stronger above fpeak than in the trivial
low-frequency region.

4. Finally, because non-linear susceptibilities are expressed in terms of scaling func-
tions, it is natural that the behavior of their modulii and phases are quantitatively
related especially at high frequency where the ”trivial” contribution can be ne-
glected, consistent with Eqs. (9)-(10) –see below for a more quantitative argu-
ment in the context of the so-called “Toy model”– [53].

Having shown that BB’s prediction is consistent with experiments, the temper-
ature variation of Ncorr can be drawn from the increase of the hump of X3 upon
cooling. It has been found [3, 4, 10, 19, 20] that the temperature dependence of
Ncorr inferred from the height of the humps of the three X3’s are compatible with
one another, and closely related to the temperature dependence of T χT , which was
proposed in Refs. [22, 23] as a simplified estimator of Ncorr in supercooled liq-
uids. The convergence of these different estimates, that rely on general, model-free
theoretical arguments, is a strong hint that the underlying physical phenomenon is
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indeed the growth of collective effects in glassy systems – a conclusion that will be
reinforced by analyzing other approaches in Section 4.

Let us again emphasize that the BB prediction relies on a scaling argument, where
the correlation length ` of amorphously ordered domains is (much) larger than the
molecular size a. This naturally explains the similarities of the cubic responses in
microscopically very different liquids such as glycerol and propylene carbonate, as
well as many other liquids [10, 20]. Indeed the microscopic differences are likely to
be wiped out for large ` ∝ N

1/d f
corr , much like in usual phase transitions.

3.3 Static vs dynamic length scale? χ3 and χ5 as tests of the
theories of the glass transition.

We now shortly discuss whether Ncorr, as extracted from the hump of |X3|, must
be regarded as a purely dynamical correlation volume, or as a static correlation
volume. This ambiguity arises because theorems relating (in a strict sense) nonlinear
responses to high-order correlation functions only exist in the static case, and that
supplementary arguments are needed to interpret the humped shape of X3 (and of
X5) observed experimentally. In the original BB’s work [9] it was clearly stated that
Ncorr was a dynamical correlation volume since it was related to a four point time
dependent correlation function. This question was revisited in Ref. [50] where it was
argued that the experimental results could be accounted for only when assuming
that Ncorr is driven by static correlations. This statement comes from an inspection
of the various theories of the glass transition [50]: as we now briefly explain, only
the theories where the underlying static correlation volume is driving the dynamical
correlation volume are consistent with the observed features of nonlinear responses.

As a first example, the case of the family of kinetically constrained models
(KCMs) [56] is especially interesting since dynamical correlations, revealed by,
e.g., four-point correlation functions, exist even in the absence of a static corre-
lation length. However in the KCM family, one does not expect any humped shape
for nonlinear responses [50]. This is not the case for theories (such as RFOT [46]
or Frustration theories [57]) where a non-trivial thermodynamic critical point drives
the glass transition: in this case the incipient amorphous order allows to account
[50] for the observed features of X3 and X5. This is why it was argued in [48, 50]
that, in order for X3 and X5 to grow, some incipient amorphous order is needed,
and that dynamical correlations in strongly supercooled liquids are driven by static
(“point-to-set”) correlations [55] –this statement will be reinforced in section 4.2.

4 More specific models for harmonic susceptibilities

We now review the various other approaches that have been elaborated for the non-
linear responses of glass forming liquids. We shall see that most of them -if not
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all- are consistent with BB’s approach since they involve Ncorr as a key -implicit or
explicit- parameter.

4.1 Toy and pragmatical models

The “Toy model” has been proposed in Refs. [19, 58] as a simple incarnation of
the BB mechanism, while the “Pragmatical model” is more recent [59, 60]. Both
models start with the same assumptions: (i) each amorphously ordered domain is
compact and contains Ncorr molecules, which yields a dipole moment ∝

√
Ncorr and

leads to an anomalous contribution to the cubic response Xglass
3 ∝ Ncorr; (ii) there

is a crossover at low frequencies towards a trivial cubic susceptibility contribution
X triv

3 which does not depend on Ncorr. More precisely, in the “Toy model” each
amorphously ordered domain is supposed to live in a simplified energy landscape,
namely an asymmetric double-well potential with a dimensionless asymmetry δ ,
favoring one well over the other. The most important difference between the Toy and
the Pragmatical model comes from the description of the low-frequency crossover,
see Refs. [58] and [60] for more details.

On top of Ncorr and δ , the Toy model uses a third adjustable parameter, namely
the frequency f ∗ below which the trivial contribution becomes dominant. In Ref.
[58], both the modulus and the phase of X (3)

3 (ω,T ) and of X (1)
3 (ω,T ) in glycerol

were well fitted by using f ∗ ' fα/7, δ = 0.6 and, for T = 204 K, Ncorr = 5 for
X (3)

3 and Ncorr = 15 for X (1)
3 . Fig. 13 gives an example of the Toy model prediction

for X (3)
3 in glycerol. Besides, in Ref. [19], the behavior of X (1)

2,1 (ω,T ) in glycerol
was fitted with the same values of δ and of f ∗ but with Ncorr = 10 (at a slightly
different temperature T = 202 K). Of course, the fact that a different value of Ncorr
must be used for the three cubic susceptibilities reveals that the Toy model is over-
simplified, as expected. However, keeping in mind that the precise value of Ncorr
does not change the behavior of the phases, we note that the fit of the three exper-
imental phases is achieved [19, 58] by using the very same values of f ∗/ fα and of
δ . This means that Eqs. (9) and (10) are well accounted for by the Toy model by
choosing two free parameters. This is a quantitative illustration of how the BB gen-
eral framework does indeed lead to strong relations between the various non-linear
susceptibilities, such as those contained in Eqs. (9) and (10).

Let us mention briefly the Asymmetric Double Well Potential (ADWP) model
[61], which is also about species living in a double well of asymmetry energy ∆ , ex-
cepted that two key assumptions of the Toy and Pragmatical models are not made:
the value of Ncorr is not introduced, and the crossover to trivial cubic response is not
enforced at low frequencies. As a result, the hump for |X (3)

3 | is predicted [61, 62]
only when the reduced asymmetry δ = tanh(∆/(2kBT )) is close to a very specific
value, namely δc =

√
1/3, where X3 vanishes at zero frequency due to the compen-

sation of its several terms. However, at the fifth order [62] this compensation hap-
pens for two values of δ very different from δc: as a result the model cannot predict
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Fig. 13 From Ref. [58]. Fit of the values of X (3)
3 measured in glycerol -symbols- at 204 K by using

the Toy model with Ncorr = 5, δ = 0.6 and f ∗ ' fα/7. The prediction of the Toy model is given
by the two thick solid lines (main panel for the modulus of X (3)

3 and inset for its phase).

a hump happening both for the third and for the fifth order in the same parametric
regime, contrarily to the experimental results of Ref. [50]. This very recent calcu-
lation of fifth order susceptibility [62] reinforces the point of view of the Toy and
Pragmatical models, which do predict a hump occurring at the same frequency and
temperature due to their two key assumptions (Ncorr and crossover to trivial nonlin-
ear responses at low frequencies). This can be understood qualitatively: because the
Toy model predicts [58] an anomalous contribution Xglass

2k+1 ∼ [Ncorr]
k, provided that

Ncorr is large enough, the magnitude of this contribution is much larger than that of
the small trivial contribution X triv.

2k+1 ∼ 1, and the left side of the peak of |X2k+1| arises
just because the Toy model enforces a crossover from the large anomalous response
to the small trivial response at low frequencies f � fα . As for the right side of the
peak, it comes from the fact that |X2k+1| → 0 when f � fα for the simple reason
that the supercooled liquid does not respond to the field at very large frequencies.

4.2 Entropic effects

A contribution to nonlinear responses was recently calculated by Johari in Refs [63,
64] in the case where a static field Est drives the supercooled liquid in the nonlinear
regime. Johari’s idea was positively tested in the corresponding χ

(1)
2;1 experiments in

Refs [65, 66, 67, 68] -see however Ref. [69] for a case where the agreement is not
as good-. It was then extended to pure ac experiments -and thus to χ

(3)
3 - in Refs.

[70, 71]. The relation between Johari’s idea and Ncorr was made in Ref. [48].
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4.2.1 When a static field Est is applied

Let us start with the case of χ
(1)
2;1 experiments, i.e. with the case where a static field

Est is superimposed onto an ac field E cos(ωt). In this case, there is a well defined
variation of entropy [δS]Est

induced by Est , which, for small Est and a fixed T , is
given by:

[δS]Est
≈ 1

2
ε0

∂∆ χ1

∂T
E2

sta
3, (14)

where a3 is the molecular volume. Eq. (14) holds generically for any material. How-
ever, in the specific case of supercooled liquids close enough to their glass transition
temperature Tg, a special relation exists between the molecular relaxation time τα

and the configurational contribution to the entropy Sc. This relation, first anticipated
by Adam and Gibbs [21], can be written as :

ln
τα(T )

τ0
=

∆0

T Sc(T )
(15)

where τ0 is a microscopic time, and ∆0 is an effective energy barrier for a molecule.
The temperature dependence of T Sc(T ) quite well captures the temperature varia-
tion of ln(τα), at least for a large class of supercooled liquids [72].

Following Johari [63, 64] let us now assume that [δS]Est
is dominated by the

dependence of Sc on field, –see the Appendix of Ref. [48] for a further discussion of
this important physical assumption-. Combining Eqs. (14) and (15), one finds that a
static field Est produces a shift of ln(τα/τ0) given by:

[δ lnτα ]Est
=− ∆0

T S2
c
[δS]Est

(16)

As shown in Ref. [48] this entropic effect gives a contribution to X (1)
2,1 , which we call

J(1)2,1 after Johari. Introducing x = ωτα , the most general and model-free expression

of J(1)2:1 reads:

J(1)2,1 =−kB∆0

6S2
c

[
∂ ln(∆ χ1)

∂T

][
∂

χlin
∆ χ1

∂ lnx

]
∝

1
S2

c
(17)

where χlin is the complex linear susceptibility.
Eq. (17) deserves three comments:

1. |J(1)2,1 | has a humped shaped in frequency with a maximum in the region of ωτα '
1, because of the frequency dependence of the factor ∝ ∂ χlin/∂ lnx in Eq. (17).

2. The temperature variation of J(1)2,1 is overwhelmingly dominated by that of S−1
c

because Sc ∝ (T −TK) -with TK the Kauzmann temperature-.
3. The smaller Sc, the larger must be the size of the amorphously ordered domains

-in the hypothetical limit where Sc would vanish, the whole sample would be
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trapped in a single amorphously ordered sate and Ncorr would diverge-. In other
words, there is a relation between S−1

c and Ncorr, which yields [48]:

J(1)2,1 ∝ Nq
corr, (18)

where it was in shown in Ref. [48] that:

a. the exponent q lies in the [2/3;2] interval when one combines the Adam-Gibbs
original argument with general constraints about boundary conditions [48].

b. the exponent q lies in the [1/3;3/2] interval [48] when one uses the RFOT
and plays with its two critical exponents Ψ and θ . Notably, taking the “recom-
mended RFOT values” -Ψ = θ = 3/2 for d = 3- gives q = 1, which precisely
corresponds to BB’s prediction. In this case, entropic effects are a physically
motivated picture of BB’s mechanism -see [48] for a refined discussion-.

4.2.2 When a pure ac field E cos(ωt) is applied

Motivated by several works [65, 66, 67, 68] showing that Johari’s reduction of en-
tropy fairly well captures the measured χ

(1)
2;1 in various liquids, an extension of this

idea was proposed in Refs. [70, 71] for pure ac experiments, i.e. for χ
(3)
3 and χ

(1)
3 .

This has given rise to the phenomenological model elaborated in Refs. [70, 71]
where the entropy reduction depends on time, which is nevertheless acceptable in
the region ωτα ≤ 1 where the model is used. Fig. 14 shows the calculated values for
|χ(3)

3 | at three temperatures for glycerol. The calculation fairly well reproduces the
hump of the modulus observed experimentally -the phase has not been calculated-.
As very clearly explained in Ref. [71], the hump displayed in Fig. 14 comes directly
from the entropic contribution and not from the two other contributions included in
the model (namely the “trivial” -or “saturation”- contribution, and the Box model
contribution -see Section 4.3 below-).

Summarizing this section about entropy effects, we remind the two main as-
sumptions made by Johari: (i) the field-induced entropy variation mainly goes into
the configurational part of the entropy; (ii) its effects can be calculated by using the
Adam-Gibbs relation. Once combined, these two assumptions give a contribution
to χ

(1)
2;1 reasonably well in agreement with the measured values in several liquids

[65, 66, 67, 68]. An extension to χ
(3)
3 is even possible, at least in the region ωτα ≤ 1

and fairly well accounts for the measured hump of |χ(3)
3 | in glycerol [70, 71] -a fig-

ure similar to Fig. 11 for |χ(5)
5 (ω)/χ

(5)
5 (0)| is even obtained in Ref. [71]-. As shown

in Eq. (18), this entropy contribution to cubic responses is related to Ncorr, which
is consistent with the general prediction of BB. Additionally, because Sc is a static
quantity, Eq. (18) supports the interpretation that the various cubic susceptibilities
χ3 are related to static amorphous correlations, as discussed in Section 3.3.
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Fig. 14 From Ref. [71]. The model elaborated in Refs. [70, 71] includes three contributions -
entropy reduction, Box model, and trivial-. It predicts for |χ(3)

3 | the solid lines which account very

well for the measured values in glycerol in frequency and in temperature. The peak of |χ(3)
3 | arises

because of the entropy reduction effect (noticed “sing. Tf ic.”) which completely dominates the two
other contributions in the peak region, as shown by the inset.

4.3 Box model

4.3.1 Are nonlinear effects related to energy absorption ?

The “Box model” is historically the first model of nonlinear response in supercooled
liquids, designed to account for the Nonresonant Hole Burning (NHB) experiments
[73]. When these pionneering experiments were carried out, a central question was
whether the dynamics in supercooled liquids is homogeneous or heterogeneous. In
the seminal ref. [73] it was reported that when applying a strong ac field E of angular
frequency ω , the changes in the dielectric spectrum are localised close to ω and that
they last a time of the order of 1/ω . These two findings yield a strong qualitative
support to the heterogenous character of the dynamics, and the Box model was
designed to provide a quantitative description of these results. Accordingly, the Box
model assumes that the dielectric response comes from “domains” -that will be later
called Dynamical Heterogeneities (DH)-, each domain being characterized by its
dielectric relaxation time τ and obeying the Debye dynamics. The distribution of
the various τ’s is chosen to recover the measured non Debye spectrum by adding the
various linear Debye susceptibilities χ1,dh = ∆ χ1/(1− iωτ) of the various domains.
For the nonlinear response, the Box model assumes that it is given by the Debye
linear equation in which τ(T ) is replaced by τ(Tf ) where the fictive temperature
Tf = T +δTf is governed by the constitutive equation -see e.g. [28, 77]-:

cdh
∂ (δTf )

∂ t
+κδTf =

1
2

ε0χ
′′
1,dhωE2 (19)
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with cdh the volumic specific heat of the DH under consideration, κ the thermal
conductance (divided by the DH volume v) between the DH and the phonon bath,
τtherm = c/κ the corresponding thermal relaxation time. In Eq. (19), only the con-
stant part of the dissipated power has been written, omitting its component at 2ω

which is important only for χ
(3)
3 -see e.g. [77]-. From Eq. (19) one easily finds the

stationary value δT ?
f of δTf which reads:

δT ?
f =

τtherm

τ

ε0∆ χ1E2

2cdh

ω2τ2

1+ω2τ2 (20)

As very clearly stated in the seminal Ref. [73] because the DH size is smaller than
5nm, the typical value of τtherm is at most in the nanoseconds range: this yields,
close to Tg, a vanishingly small value of τtherm/τ , which, because of Eq. (20), gives
fully negligible values for δT ?

f . The choice of the Box model is to increase τtherm
by orders of magnitude by setting τtherm = τ , expanding onto the intuition that this
is a way to model the “energy storage” in the domains. The main justification of
this choice is its efficiency: it allows to account reasonably well for the NHB ex-
periments [73] and thus to bring a strong support to the heterogeneous character of
the dynamics in supercooled liquids. Since the seminal ref. [73], some other works
have shown [28, 74, 75, 76] that the Box model efficiently accounts for the mea-
sured χ

(1)
3 ( f > fα) in many glass forming liquids. It was shown also [77] that the

Box model is not able to fit quantitatively the measured X (3)
3 (even though some

qualitative features are accounted for), and that the Box model only provides a van-
ishing contribution to X (1)

2,1 – see [19].
The key choice τtherm = τ made by the Box model has two important conse-

quences for cubic susceptibilities: it implies a) that χ
(1)
3 mainly comes from the

energy absorption (since the source term in Eq. (19) is the dissipated power) and
b) that χ

(1)
3 does not explicitly depend on the volume v = Ncorra3 of the DH’s (see

[28, 77]). However, alternative models of nonlinear responses are now available
[58, 60] where, instead of choosing τtherm, one directly resolves the microscopic
population equations, which is a molecular physics approach, and not a macroscopic
law transferred to microscopics. The population equations approach is equivalent to
solving the relevant multidimensional Fokker-Planck equation describing the col-
lective tumbling dynamics of the system at times longer than the time between two
molecular collisions (called τc in Appendix 3). By using this molecular physics ap-
proach one obtains that χ

(1)
3 is governed by Ncorr and not by energy absorption. For

χ
(1)
3 , writing loosely P(1)

3 ≈ ∂P1/(∂ lnτ)δ lnτ , one sees that the pivotal quantity is
the field induced shift of the relaxation time δ lnτ . Comparing the Box model (BM)
and, e.g., the Toy model (TM), one gets respectively:

δ lnτBM '−
1
2

χT
ε0∆ χ1E2

cdh
; δ lnτT M '−

3
2

Ncorr

T
ε0∆ χ1E2

kB/a3 (21)
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where we remind our definition χT = |∂ lnτα/∂T | and where the limit ωτ � 1,
relevant for the χ

(1)
3 ( f > fα) was taken in the Box model, while the simplest case

(symmetric double well with a net dipole parallel to the field) was considered for
the Toy model. Eq. (21) deserves two comments:

1. one sees that the two values of δ lnτ are similar provided Ncorr and T χT are
proportional – which is a reasonable assumption as explained above and in Refs.
[4, 22, 23]. Taking reasonable values of this proportionality factor, it was shown
in Ref. [48] that χ

(1)
3 ( f > fα) is the same in the two models. This sheds a new

light on the efficiency of the Box model and on consequence b).
2. Let us shortly discuss consequence a). In the Toy model, δ lnτ directly expresses

the field induced modification of the energy of each of the two wells modeling a
given DH. It comes from the work produced by E onto the DH and this is why it
involves Ncorr: the larger this number, the larger the work produced by the field
because the net dipole of a DH is ∝

√
Ncorr and thus increases with Ncorr. It is

easy to show that the dissipation -i.e. the “energy absorption”- is not involved
in δ lnτ because dissipation depends only on χ ′′1 , which in the Toy model does
not depend on Ncorr. In the Toy model, as in the Pragmatical model [60] and the
Diezemann model [61], the heating is neglected because at the scale of a given
DH it is vanishingly small as shown above when discussing τtherm. Of course,
at the scale of the whole sample, some global heating arises for thick samples
and/or high frequencies because the dissipated power has to travel to the elec-
trodes which are the actual heat sinks in dielectric experiments [11]. This purely
exogeneous effect can be precisely calculated by solving the heat propagation
equation, see e.g. ref.[11] and Appendix 2, and must not be confused with what
was discussed in this section.

4.3.2 Gathering the three measured cubic susceptibilities

As explained above, in Refs. [70, 71], the three experimental cubic susceptibilities
have been argued to result from a superposition of an entropic contribution and of
an energy absorption contribution coming from the Box model (plus a trivial con-
tribution playing a minor role around the peaks of the cubic susceptibilities). More
precisely, the hump of |X (1)

2,1 | and of |X (3)
3 |would be mainly due to the entropy effect,

contrarily to the hump of |X (1)
3 | which would be due to the Box model contribution.

As noted in Ref. [48], this means that very different physical mechanisms would
conspire to give contributions of the same order of magnitude, with phases that have
no reason to match as they do empirically, see Eqs. (9) and (10): why should X (1)

3

and X (3)
3 have the same phase at high frequencies if their physical origin is different?

This is why it was emphasized in Ref. [48] that there is no reason for such a sim-
ilarity if the growth of X (1)

3 and X (3)
3 are due to independent mechanisms. Because

entropic effects have been related to the increase of Ncorr -see Eqs. (17) and (18)-,
everything becomes instead very natural if the Box model is recasted in a frame-
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work where X (1)
3 is related to the glassy correlation volume. As evoked above, a first

step in this direction was done in Ref. [48] where it was shown that the Box model
prediction for X (1)

3 at high frequencies is identical to the above Toy model predic-
tion, provided Ncorr and T χT are proportional. In all, it is argued in Ref. [48] that
the only reasonable way to account for the similarity of all three cubic susceptibili-
ties, demonstrated experimentally in Figs. 8 and 9, is to invoke a common physical
mechanism. As all the other existing approaches, previously reviewed, relate cubic
responses to the growth of the glassy correlation volume, reformulating the Box
model along the same line seems to be a necessity.

5 Conclusions

We have reviewed in this chapter the salient features reported for the third and fifth
harmonic susceptibilities close to the glass transition. This is a three decades long
story, which has started in the mid-eighties as a decisive tool to evidence the solid,
long range ordered, nature of the spin glass phase. The question of whether this
notion of “amorphous order” was just a curiosity restricted to the -somehow exotic-
case of spin glasses remained mostly theoretical until the seminal work of Bouchaud
and Biroli in 2005. This work took a lot from the spin glass physics, and by taking
into account the necessary modifications relevant for glass forming liquids, it has
anticipated all the salient features discovered in the last decade for the three cubic
susceptibilities X3. This is why, in most of the works, the increase of the hump of X3
upon cooling has been interpreted as reflecting that of the glassy correlation volume.
Challenging alternative and more specific interpretations have been proposed, but
we have seen that most -if not all- of them can be recasted into the framework of
BB. The avenue opened by BB’s prediction was also used to circumvent the issue
of exponentially long time scales -which are the reason why the nature of the glass
transition is still debated-: this is how the idea of comparing the anomalous features
of X3 and of X5 has arisen. The experimental findings are finally consistent with the
existence of an underlying thermodynamic critical point, which drives the formation
of amorphously ordered compact domains, the size of which increases upon cooling.
Last we note that this field of nonlinear responses in supercooled liquids has been
inspiring both theoretically [79, 5] and experimentally, e.g. for colloidal glasses: the
very recent experiments [6] have shed a new light on the colloidal glass transition
and shown interesting differences with glass forming liquids.

All these progresses open several routes of research. On the purely theoretical
side, any prediction of nonlinear responses in one of the models belonging to the
Kinetically Constrained Model family will be extremely welcome to go beyond
the general arguments given in Refs. [50]. Moreover, it would be very interesting
to access χ3 (and χ5) in molecular liquids at higher temperatures, closer to the
Mode Coupling Transition temperature TMCT , and/or for frequencies close to the
fast β process where more complex, fractal structures with d f < d may be antici-
pated [80, 81]. This will require a joined effort of experimentalists -to avoid heating
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issues- and of theorists -to elicit the nature of nonlinear responses close to TMCT -.
Additionally, one could revisit the vast field of polymers by monitoring their non-
linear responses, which should shed new light onto the temperature evolution of the
correlations in these systems. Therefore there is likely much room to deepen our un-
derstanding of the glass transition by carrying out new experiments about nonlinear
susceptibilities.
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6 Appendix 1: making sure that exogeneous effects are negligible

We briefly explain how the nonlinear effects reported here have been shown to be
-mainly- free of exogeneous effects:

1. The global homogeneous heating of the samples by the dielectric energy dissi-
pated by the application of the strong ac field E was shown to be fully negligible
for X (3)

3 as long as the inverse of the relaxation time fα is≤ 1 kHz, see Ref. [11].

Note that these homogeneous heating effects contribute much more to X (1)
3 : to

minimize them, one can either keep fα below 10 Hz [4], and/or severely limit the
number n of periods during which the electric field is applied -see, e.g., [28, 78]).

2. The contribution of electrostriction was demonstrated to be safely negligible in
Refs. [74, 4], both by using theoretical estimates and by showing that changing
the geometry of spacers does not affect X (3)

3 .
3. As for the small ionic impurities present in most of liquids, we briefly explain

that they have a negligible role, except at zero frequency where the ion contri-
bution might explain why the three X3’s are not strictly equal, contrarily to what
is expected on general grounds -see, e.g., Figs. 8 and 9-. On the one hand it was
shown that the ion heating contribution is fully negligible in X (1)

2,1 (see Ref. [19]),
on the other hand it is well known that ions affect the linear response χ1 at very
low frequencies (say f/ fα ≤ 0.05): this yields an upturn on the out-of-phase
linear response χ ′′1 , which diverges as 1/ω instead of vanishing as ω in an ide-
ally pure liquid containing only molecular dipoles. This may be the reason why
most of the χ3 measurements are reported above 0.01 fα : at lower frequencies the
nonlinear responses is likely to be dominated by the ionic contribution.
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7 Appendix 2: Trivial third and fifth harmonic susceptibilities

As explained in the main text, in the long time limit -i.e. for f/ fα � 1-, the liquid
flow destroys the glassy correlations, making each molecule effectively independent
of others. This is why we briefly recall what the nonlinear responses of an ideal
gas of dipoles are, where each dipole is independent of others, and undergoes a
Brownian rotational motion -of characteristic time τD- due to the underlying thermal
reservoir at temperature T . The linear susceptibility of such an ideal gas of dipoles
is given by the Debye susceptibility ∆ χ1/(1− iωτD), hence the subscript “Debye”
in the Eq. (22) below. By using Refs. [17], and following the definitions given in the
main text, as well as Eqs. (5)-(8) above, one gets for the dimensionless nonlinear
responses of such an ideal gas, setting for brevity x = ωτD:

X (3)
3,Debye =

(
−3
5

)
3−17x2 + ix(14−6x2)

(1+9x2)(9+4x2)(1+9x2)

X (5)
5,Debye =

432(72−2377x2−1979x4 +2990x6)

1680(1+ x2)(4+ x2)(9+4x2)(1+9x2)(9+16x2)(1+25x2)

+i
432x(246−737x2−1623x4 +200x6)

560(1+ x2)(4+ x2)(9+4x2)(1+9x2)(9+16x2)(1+25x2)
(22)

In Ref. [50] the trivial response combined the above X (k)
k,Debye with a distribution

G (τ) of relaxation times τ chosen to account for the linear susceptibility of the
supercooled liquid of interest. In Refs [58, 19] a slightly different modelization was
used since G (τ) was replaced by the Dirac delta function δ (τ − τα), i.e. τD was
simply replaced by τα for the cubic trivial susceptibilities.

8 Appendix 3: Derivation of the Toy model from Langevin
Fokker- Planck considerations

In this section we shall rederive the phenomenological Toy model of Ladieu et al.
[58] starting from the Langevin-Fokker-Planck equation, which is the starting point
of Bouchaud and Biroli when they illustrate their general theoretical ideas in the
last part of Ref. [9]. We shall idealize the supercooled state of a liquid as follows. At
high temperatures, the liquid is made of molecules the interactions between which
are completely negligible. On cooling, the molecules arrange themselves in groups,
called “dynamical heterogeneities” (DH), between which there are no interactions.
Inside a typical group, specific intermolecular interactions manifest themselves dy-
namically, by which we mean that in a time larger than a characteristic time τα ,
such interactions lose their coherence and the typical behavior of the liquid is that
of an ideal gas. Before and around τα , these interactions manifest themselves in a
frequency range ω ≈ 1/τα . Thus, stricto sensu, our modelling of this specific pro-
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cess pertains to the behavior of the various dielectric responses of a DH, linear and
nonlinear, near this frequency range. This indeed implies that information regard-
ing the “ideal gas” phase must be added to fit experimental data. It may be shown
on fairly general grounds that either for linear and non-linear responses, such extra
information simply superposes onto the specific behavior that has been alluded to
above [82]. Now, we consider that a) a given DH has a given size at temperature
T , b) that a DH is made of certain mobile elements that do interact between them-
selves, c) that there are no interactions between DHs, d) that the dipole moment of a
DH is µd = µ

√
Ncorr, and e) that all constituents of a DH are subjected to Brownian

motion.
In order to translate the above assumptions in mathematical language, we assign to
each constituent of a DH a generalized coordinate qi(t), so that each DH is described
by a set of generalized coordinates q at temperature T, viz.

q(t) = {q1 (t) , . . . ,qn (t)}

Inside each DH, each elementary constituent is assumed to interact via a multidi-
mensional interaction potential Vint(q) that possesses a double-well structure with
minima at qA and qB, and are sensitive both to external stresses and thermal agita-
tion. The equations of motion may be described by overdamped Langevin equations
with additive noise, viz.

q̇i =−
1
ζ

∂VT

∂qi
(q, t)+Ξi (t) (23)

where ζ is a generalized friction coefficient, VT = Vint +Vext , Vext is the potential
energy of externally applied forces and the generalized forces Ξi (t) have Gaussian
white noise properties, namely

Ξi (t) = 0,Ξi (t)Ξ j (t ′) =
2kT

ζ
δi jδ

(
t− t ′

)
(24)

Thus, the dynamics of a DH is represented by the stochastic differential equations
(23) and (24), which are in effect the starting point of the Bouchaud-Biroli theory,
as stated above. A totally equivalent representation of these stochastic dynamics
is obtained by writing down the Fokker-Planck equation [83] for the probability
density W (q, t) to find the system in state q at time t which corresponds to Eqs. (23)
and (24), namely

∂W
∂ t

(q, t) =
1

2τc
∇ · [∇W (q, t)+βW (q, t)∇VT (q, t)]

= LFP (q, t)W (q, t) (25)

where 2τc = ζ/(kT ) is the characteristic time of fluctuations, ∇ is the del operator
in q space, and LFP (q, t) is the Fokker-Planck operator. We notice that Eq. (25) may
also be written
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∂W
∂ t

(q, t) =
1

2τc
∇ ·
{

e−βVT (q,t)∇
[
W (q, t)eβVT (q,t)

]}
(26)

Now we use the transformation [84]

φ (q, t) =W (q, t)eβVT (q,t) (27)

so that Eq. (26) becomes

∂φ

∂ t
(q, t)−β

∂VT

∂ t
(q, t)φ (q, t) =

1
2τc

eβVT (q,t)∇ ·
{

e−βVT (q,t)∇φ (q, t)
}

= L†
FP (q, t)φ (q, t) (28)

where L†
FP (q, t) is the adjoint Fokker-Planck operator [83].

Next, we make the first approximation in our derivation, namely, we assume that
the time variation of VT is small with respect to that of W. If the time dependence
of VT is contained in, say, the application of a time-varying uniform AC field only,
this implies immediately that neglecting the second term in the left hand side of Eq.
(28) means that W is near its equilibrium value, so restricting further calculations to
low frequencies, ωτc << 1 (quasi-stationary condition). Hence, Eq. (28) now reads

∂φ

∂ t
(q, t)≈ L†

FP (q, t)φ (q, t) (29)

Now, the interpretation of the Fokker-Planck equation (25) (or equally well the
Langevin equations (23)) with time-dependent potential in terms of usual popu-
lation equations with time-dependent rate coefficients has a meaning, since now Eq.
(27) means detailed balancing. The polarization of an assembly of noninteracting
DH in the direction of the applied field may then be defined as

P(t) = ρ0µd

∫
cosϑ (q)W (q, t)dq (30)

where ρ0 is the number of DH per unit volume, and ϑ (q) is the angle a DH dipole
makes with the externally applied electric field. Because of the double-well structure
of the interaction potential, we may equally well write Eq. (30)

P(t) = ρ0µd

 ∫
well A

cosϑ (q)W (q, t)dq+
∫

well B

cosϑ (q)W (q, t)dq

 (31)

Now, it is known from the Kramers theory of chemical reaction rates [84] that at
sufficiently large energy barriers, most of the contributions of the integrands come
from the minima of the wells, therefore we have

P(t)≈ ρ0µd

cosϑ (qA)
∫

well A

W (q, t)dq+ cosϑ (qB)
∫

well B

W (q, t)dq

 (32)
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Now, the integrals represent the relative populations xi (t) = ni (t)/N, i = A,B in
each well (we assume that W (q, t) is normalized to unity), where ni (t) is the number
of DH states in well i, and N the total number of DH. At any time t, we have the
conservation law

xA (t)+ xB (t) = 1 (33)

Thus, Eq. (32) reads

P(t)≈ ρ0µd [cosϑ (qA)xA (t)+ cosϑ (qB)xB (t)] (34)

We assume now for simplicity that ϑ (qB) = π−ϑ (qA), so that

P(t)≈ ρ0µd cosϑ (qA) [xA (t)− xB (t)] (35)

Finally, since ρ0 = N/V where V is the volume of the polar substance made of DH
only, we obtain

P(t)≈ µd cosϑ (qA)

NυDH
[nA (t)−nB (t)] (36)

where υDH is the volume of a DH. This is the definition of the polarization in the
Toy model.
In order to determine the polarization (36), we need to calculate the dynamics of
ni (t). From the conservation law -Eq. (33)-, we have

ẋA (t) =−ẋB (t) =
∫

well A

∂W
∂ t

(q, t)dq (37)

By using the Fokker-Planck equation (26) and limiting well A to a closed general-
ized bounding surface constituting the saddle region ∂A, we have by Gauss’s theo-
rem

ẋA (t) =−ẋB (t) =
1

2τc

∮
∂A

e−βVT (q,t)∇φ (q, t) ·νqdSq (38)

where νq is the outward normal to the bounding surface and dSq is a generalized
surface element of the bounding surface, and where we have used Eq. (27). Now,
we follow closely Coffey et al. [85] and introduce the crossover function ∆ (q, t) via
the equation

φ (q, t) = φA (t)+ [φB (t)−φA (t)]∆ (q, t) (39)

where ∆ (q, t) = 0 if q ∈ well A while ∆ (q, t) = 1 if q ∈ well B and exhibits strong
gradients in the saddle region ∂A allowing the crossing from A to B (and vice-
versa) by thermally activated escape. By combining Eqs. (38) and (39), we have
immediately
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ẋA (t) =−ẋB (t) =
φB (t)−φA (t)

2τc

∮
∂A

e−βVT (q,t)∇ [∆ (q, t)] ·νqdSq (40)

Now,

xi (t) = φi (t)xs
i (t) , xs

i (t) =
∫

well i

Ws (q, t)dq (41)

where Ws (q, t) is a normalized solution of the Fokker-Planck equation

LFP (q, t)Ws (q, t) = 2τc
∂Ws

∂ t
(q, t)≈ 0 (42)

because the frequencies we are concerned with are very small with respect to the
inverse thermal fluctuation time τc and because the time-dependent part of the po-
tential VT is much smaller than other terms in it at any time. We have

xs
A (t)+ xs

B (t) = 1 (43)

Using Eqs. (41) and (43), we may easily show that [85]

φB (t)−φA (t) =
(

1
xs

A (t)
+

1
xs

B (t)

)
[xB (t)xs

A (t)− xA (t)xs
B (t)] (44)

By combining Eqs. (38) and (44), we readily obtain

ẋA (t) =−ẋB (t) = Γ (t)(xB (t)xs
A (t)− xA (t)xs

B (t)) (45)

where the overall time-dependent escape rate Γ (t) is given by [85]

Γ (t) =
1

2τc

(
1

xs
A (t)

+
1

xs
B (t)

)∮
∂A

e−βVT (q,t)∇φ (q, t) ·νqdSq (46)

Finally, by setting

ΠAB (t) = Γ (t)xs
B (t) , ΠBA (t) = Γ (t)xs

A (t) (47)

we arrive at the population equations

ṅA (t) =−ṅB (t) =−ΠAB (t)nA (t)+ΠBA (t)nB (t) (48)

The obtaining of a more explicit formula for the various rates involved in Eq. (47)
is not possible, due to the impossibility to calculate the surface integral in Eq. (46)
explicitly, in turn due to the fact that VT is not known explicitly. Then, the rates in
Eqs. (47) and (48) are estimated using Arrhenius’s formula. All subsequent deriva-
tions regarding the Toy model of Ladieu et al. [58] follow immediately and will not
be repeated here due to lack of room and straightforward but laborious algebra.
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burning spectroscopy of supercooled liquids,J. Chem. Phys. 107, 7746 (1997).

74. S. Weinstein and R. Richert, Nonlinear features in the dielectric behavior of propylene glycol,
Phys. Rev. B 75, 064302 (2007).

75. L.-M. Wang and R. Richert, Measuring the Configurational Heat Capacity of Liquids, Phys.
Rev. Lett. 99, 185701 (2007).

76. A. Khalife, U. Pathak, and R. Richert, Heating liquid dielectrics by time dependent fields,
Eur. Phys. J. B, 83, 429, (2011).

77. C. Brun, C. Crauste-Thibierge, F. Ladieu, and D. L’Hôte, Third harmonics nonlinear suscep-
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