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of forces by interactions and friction is rather complex. When 

colloids #ow in a narrow channel, non-equilibrium interplay 

between colloid-interface interactions and hydrodynamics 

controls the transport ef"ciencies: (i) the mass transport ef"-

ciency, which governs the colloid transmission through the 

channels and (ii) the mixture (colloids and liquid) transport 

ef"ciency, which determines the energy required for the liquid 

to #ow through the channel.

A way to progress toward a better understanding of this 

complex interplay is to develop model and simulation tools 

that unravel the mechanisms taking place in such a process. 

The transport of colloids in narrow channels involves non 

equilibrium forces balance and exchanges of forces between 

the colloids and the solvent molecules. Such entanglement 

can be described at different levels with different simula-

tion methods. At the molecular level, dynamic molecular 
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1. Introduction

The transport of colloids inside narrow channels is not only an 

interesting scienti"c question but also a challenge in man y pro-

cesses in various "elds of application. Flow through pores is 

a common process in living bodies (kidneys, membrane cells, 

etc), in natural systems (aquifers) and in industrial applica-

tions ("ltration, desalting, etc) [1]. Beyond these applications, 

the recent development of micro#uidic experiments and the 

nano-scale engineering of interfaces have revived the question 

of the effect of colloid-interface interactions on transport in 

con"ned channels and through small ori"ces [2, 3].

The impact of physicochemical parameters on transport 

properties needs to be better understood if industrial or natural 

applications are to be improved but the problem of a ternary 

system (colloids, liquid and interface) with a strong exchange 
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simulations [4] can describe the effect of interaction forces 

between molecules on the dynamic transport properties. 

However, colloid particles are much bigger than solvent 

molecules and, for this reason, dynamic simulation cannot 

be applied to a large system involving a strong colloid con-

centration gradient. The coupling between resolved colloidal 

particles and #uid #ow can be modelled with a mesoscopic 

approach considering the solvent molecules as a continuum 

phase: a lattice Boltzmann (LB) method [5, 6], dynamical den-

sity functional theory (DDFT) [7] or a force coupling method 

(FCM) [8, 9]. In the last decade, these ‘dynamical forces’ 

methods have allowed fast progress to be made in the under-

standing of the role played by colloidal interaction on the #ow 

at local scale but they are still limited to several hundred parti-

cles. In contrast, the thermodynamical approach (for example, 

the non-equilibrium thermodynamics approach of Kedem and 

Katchalsky [10]) allows a large number of particles to be pro-

cessed statistically; the colloid and the #uid phase are both 

treated as continuum phases. This type of approach is then 

classically used to describe osmosis as driven by a gradient 

of water chemical potential. But osmosis is a far-from-equi-

librium phenomenon, so an approach based on local equilib-

rium thermodynamics is not always valid. Furthermore, such 

an approach cannot take dissipation via local #uid #ow into 

account. Consequently, a complete theoretical description of 

#ow driven by hydrodynamics and several thousands of multi-

body interfacial interactions is still lacking.

From a soft matter point of view, progress has recently been 

made in modelling the role played by colloid–colloid interac-

tions but a better understanding of interfacial phenomena could 

be achieved by considering the mechanical role played by col-

loid-interface interactions. This role was qualitatively pointed 

out in the earlier works on Brownian diffusion at the interface 

[11–13]. In the 1970s, several authors [14, 15] put forward 

theoretical models to quantify the role of colloid-interface 

interactions on the transport. However, these models were not 

really developed and integrated in simulation code. In the past 

ten years, several authors have again pointed out the impor-

tant effects of solute or colloid-wall interactions on transport 

through a narrow channel [16–19]. Recently, a two-#uid model 

has been proposed that introduces nanometric scale colloid-

interface interactions in momentum and mass balances [20]. 

The two-#uid model or suspension balance model [21, 22] is 

based on solving the "eld equations written from the volume 

averaging of the governing equations  (local momentum and 

mass balances) on the two phases: colloids and solvent mol-

ecules. The novelties of the approach is to solve the two-#uid 

model on an energy landscape that represents the interfacial 

interactions. A 1D application of the model has been devel-

oped [23] by considering an energy landscape that represents 

the overall energy barrier (induced by colloid-interface inter-

actions) to cross the interface. It proves how the colloid-inter-

face interaction drives the osmotic #ow. For limiting cases, it 

underlines the compatibility of this mechanical approach with 

NET approaches describing the transport of colloid and sol-

vent. Such models can help to elucidate the ‘strange’ transport 

mechanism of #uids at the nano-scale [24] (recently high-

lighted in micro#uidic experiments or with nanotubes [25], 

aquaporins, etc) and therefore to help progress by designing 

speci"c nanoscale molecule/pore interactions within arti"cial 

nano-pores in order to optimize the transport [26].

The aim of this paper is to investigate how the interfacial 

interactions exerted by walls on colloids interplay with the 

colloid and solvent #ows through a narrow channel constric-

tion. The novelty is to represent the narrow channel shape by 

a 2D energy map that describes the landscape of colloid-wall 

interactions encountered by colloids for each position in the 

channel. This new 2D approach also relies on a strong cou-

pling between the Stokes equation and the mass balances. The 

advantages of this work compared to previous simulations [20, 

23] are to account for the effect of con"nement on the inter-

facially driven #ows that, at the end, reveal local secondary

#ow superimposed on the primary #ow. The paper is organized

as follows. Section 2 introduces the numerical model. In sec-

tion 3, a limiting case, for a closed channel, is "rst investigated

to analyse a pure interfacially driven transport controlled by a

diffusion-osmosis phenomenon [17]. In section 4, the #ow of a

colloidal dispersion through a channel is simulated to explore

the strong coupling between the #ow and the colloid-wall

interaction and their consequences on transport ef"ciencies.

2. Theoretical background and model development

The model is based on a two-#uid model. The two-#uid model 

(or mixture model or suspension balance model) [22, 27, 28] 

allows the velocities of the colloid phase, uc, of the #uid 

phase, uf  and of the mixture phase, um (coming from volume 

averaging, φuc + (1 − φ) uf)) to be determined, together with 

the volume fraction of the colloid phase, φ. Solving it thus 

relies on the application of the momentum and mass bal-

ances written for the colloid phase, for the #uid phase and, 

by addition, for the mixture phase. In a previous paper, such 

a two #uid model was adapted to implement the colloid/col-

loid interactions (via the osmotic pressure) and the colloid/

interface interactions (via an energy map) [20]. The following 

sections establish the model (section 2.1), present the conse-

quence of the balance between pressure and colloid-interface 

interactions (section 2.2) and describe the simulation condi-

tions used in the paper (section 2.3).

2.1. Transport of colloids and "uid near interfaces

When colloids #ow close to an interface, multi-body interac-

tions occur between colloidal particles and between the colloids 

and the interface. Classically, colloid–colloid interactions are 

accounted for by the osmotic pressure, Πcc, which is a pres-

sure (an energy per unit volume) that includes the entropic 

contribution and multibody interactions. The gradient of the 

osmotic pressure leads to a thermodynamic force. This force 

is responsible for the Brownian diffusion (for the entropic part 

of the force) and for an interaction-induced diffusion (for the 

colloid–colloid contribution), both of which are represented 

by the generalized Stokes–Einstein law. On the other hand, 

the colloid/interface interactions can be de"ned as an energy 

required to access a spatial position close to the interface. These 



interactions can be represented by an energy landscape, Πic, that 

can be spatially mapped. Physically, this landscape [29] maps 

the colloid-interface interaction energy per unit volume that 

expresses the Gibbs free energy changes caused by the interac-

tions (similarly to the ∆G caused by a reaction), which is also 

the additional free energy for the introduction of a colloid inside 

the interfacial layer. This map represents the overall interactions 

between the colloids and the interface (for example, DLVO and 

hydration forces [30, 31]). This colloid/interface interaction 

energy per unit volume, Πic, is also a pressure and is thus a 

complement to the osmotic pressure accounting for the colloid/

colloid interactions, Πcc. The gradient of the energy map, ∇Πic, 

gives the force experienced by the colloid close to the interface. 

The product of the colloid volume fraction by the force, φ∇Πic, 

represents the density of the interfacial force between the col-

loids and the interface in newtons per unit volume and can be 

integrated in mechanical approaches [32, 33]. Summarizing, 

the descriptors of colloidal forces are:

•  for colloid/colloid forces, the gradient of osmotic pres-

sure, ∇Πcc, where Πcc is a colligative property (a function

of the volume fraction of the dispersion, φ)

•  for colloid/interface forces, the density of colloid-inter-

face forces, φ∇Πic, where Πic is a map of energy per unit

volume (a function of the spatial positions, x, y and z).

The suspension balance model consists of momentum 

and mass balances written for the #uid, the colloids and the 

mixture phases (equations (1)–(6)). The delicate part of the 

model is the writing of the momentum exchanges between the 

phases that govern the rheological response of the system and 

the coupling between colloidal and hydrodynamic forces. A 

physics-grounded expression thus considers that [20]:

•  for colloid/colloid forces, a reversible exchange of

momentum, ∇Πcc, operates between the #uid (equation

(1)) and the colloid phase (equation (2)) to be consistent

with the #uctuation-dissipation theorem for Brownian

objects. The colloid/colloid forces thus do not appear in

the mixture balance (equation (3)).

•  for colloid/interface forces, by the action/reaction prin-

ciple, the momentum due to the force, φ∇Πic, in the

colloid phase (equation (1)) is counterbalanced by a force

applied to the interface. In this case, Newton’s third law

is broken for the colloid/#uid mixture. There is thus no

counteracting force on the #uid (equation (2)). For these

reasons, the colloid/interface force appears in the mixture

balance (equation (3)).

For these reasons, only the colloid/interface interactions 

appear in equation  (3) as an external force induced by the 

presence of the wall (the wall can be considered as an external 

third phase for the two-#uid model in a con"ned environ-

ment). With these considerations, the set of Eulerian equa-

tions is given below for a colloidal dispersion with a volume 

fraction, φ, that corresponds to a particle number density, n. 

The set of equations  below is close to the one already dis-

cussed in the 1D framework [23]: the only change is that the 

global permeability representing the viscous dissipation in 

one direction is here replaced by a local viscous dissipation, 

ηm∇
2um, as in the Stokes #ow equation.

Momentum balance

On the dispersed phase

+nFdrag −∇Πcc − φ∇Πic = 0. (1)

On the #uid

−nFdrag −∇p + ηm∇
2um +∇Πcc = 0. (2)

On the mixture

−∇p + ηm∇
2um − φ∇Πic = 0. (3)

Mass balance

On the dispersed phase

∂φ

∂t
= −∇ · (φuc) . (4)

On the #uid

∂ (1 − φ)

∂t
= −∇ · ((1 − φ) uf ) . (5)

On the mixture

0 = ∇ · um. (6)

For the drag force representing the forces due to the friction 

induced by the relative velocity between the phases and the 

colloid mobility, m:

Fdrag =
um − uc

m (φ)
. (7)

By combining equations  (1)–(7), a "nal set of three equa-

tions can be obtained:

∇ · um = 0 (8)

−ηm∇
2um +∇p + φ∇Πic = 0 (9)

∂φ

∂t
= −∇ · (φum + m (φ)Vp (−∇Πcc − φ∇Πic)) (10)

where equation (8) expresses the conservation of the volume 

for an incompressible mixture consisting of #uid and colloid; 

equation  (9) describes the viscous dissipation of the #ow, 

−ηm∇
2um, driven by the release of #uid pressure, ∇p, and

of colloid-interface interactions, φ∇Πic; and equation  (10)

relates the colloid #ow driven by the mixture #ow, the col-

loid–colloid interaction and the colloid-interface interactions.

According to the original formulation of the model, the pres-

sure p used in these equations refers to the product (1 − φ) p

where p is the static pressure. For simplicity and because the

pressure is not a parameter modifying the simulations, the

term p will be used along the paper to represent (1 − φ) p.

The coupling of the mass #ux terms (equation (10)) helps 

to describe the main mechanisms that occur during transport 

of colloids through a narrow channel:



–  the coupling of convective, φum, and diffusive #uxes,

−mVp∇Πcc, describes the accumulation of concentration

[34, 35] that takes place when colloids accumulate at the

channel bottleneck

–  the coupling of convective #ux and migration induced by

colloid-interface interactions, −mVpφ∇Πic, describes the

heterogeneous critical #ux phenomena [36, 37]: a critical

convective drag force needed to overcome the colloid-

interface repulsion and then to lead to a deposit at the

interface (heterogeneous liquid–solid transition)

–  the coupling of diffusive #ux and migration induced by

colloid-interface interaction describes the Boltzmann

exclusion at equilibrium that is due to the colloid-interface

interaction [23]

However, a strong difference with conventional approaches 

can be seen in the momentum balance (equation (9)). The vis-

cous dissipation term is expressed here as the combination of 

the applied static pressure with the density of colloid-interface 

forces, φ∇Πic, as previously discussed by Anderson [32]. This 

coupling allows consistency to be maintained for the descrip-

tion of the equilibrium: in the absence of drag force (i.e. at 

equilibrium, um = uc in equation  (7)), equation  (1) leads to 

φ∇Πic = −∇Πcc and the momentum equation (equation (9)) 

thus matches the description of the equilibrium between the static 

pressure and the osmotic pres sure, ∇p = −φ∇Πic = ∇Πcc. 

In non-equilibrium conditions, the density of colloid interface 

forces plays the role of a forcing term (or a local resistance) 

on the momentum equations of the #uid #ow, similarly to the 

ones appearing in the FCM used to describe multi-phase #ows 

[8, 9, 38]. It will be shown in the next sections that this cou-

pling allows the interfacially driven transport to be described as 

diffusio-osmosis and Marangoni #ows.

2.2. Interfacial pressure and interfacially driven transport

The key point discussed in this paper is the coupling of the 

near-wall colloid and solvent transport phenomena. The cou-

pling between mass and momentum balances is classically 

taken into account by the viscosity function that encompasses 

the #uid/colloid interactions. Here, such coupling also comes 

from the colloid-interface interactions that appear in the 

momentum (equation (9)) and mass balance (equation (10)) 

with the mathematical contribution, φ∇Πic (the interfacial 

force density in N m−3):

–  in the mass balance, these interactions induce an addi-

tional mass transport due to the forces between the

colloids and the wall

–  in the momentum, the interaction with the interface

changes the momentum of the colloids and thus contrib-

utes to a change in the mixture momentum

The mixture momentum (equation (9)) is a balance between 

a viscous dissipation term and two elastic terms: the pressure 

gradient and the term coming from the colloid-interface inter-

action, φ∇Πic. For greater clarity, the balance between the 

elastic contributions, ∇p = −φ∇Πic, can be considered "rst. A 

change in colloid-interface interactions can thus be associated 

with a #uid pressure change. If the colloid-interface interactions 

are repulsive, (Πic increases when approaching the interface), 

these interactions lead to a decrease in the #uid pressure close 

to the interface. Physically, this means that the #uid loses the 

mechanical reaction force (resulting from the action force of 

the colloid on the interface), which is dissipated in the inter-

face (in absence of elastocapillary effect) [23]. This decrease in 

#uid pressure at the interface allows the total pres sure applied 

on the interface to be kept constant: the loss in #uid pressure is 

equated to the pressure due to the normal force exerted by col-

loids on the interface. This contrib ution of the colloid-interface 

interaction to the #uid pressure can be computed as the integra-

tion of the force density from the bulk to a position A in the 

system, pint = −

´ A

∞
φdΠic, the so called ‘interfacial pressure’.

Repulsion (attraction) with the interface leads to a negative 

(positive) interfacial pressure that can be associated with a local 

decrease (increase) in #uid pressure close to the interface.

Local changes in the interfacial pressure can appear because 

of variation in the colloid volume fraction, φ, or variation in 

the colloid-interface interaction, Πic. If such variations occur 

along an interface, a pressure gradient develops along the sur-

face which, in turn, induces a #ow called interfacially driven 

transport. Such phenomena are sketched for the cases of attrac-

tive and repulsive colloid-interface interactions in "gures 1(a) 

and (b), respectively. In the case of attractive interaction ("gure 

1(a)), the presence of colloids interacting with the wall induces a 

liquid overpressure. In this case, the increase in colloid concen-

tration induces an increase of #uid overpressure. A #ow is then 

induced from the high pressure (high concentration) zone to the 

low concentration zone. This #ow corresponds to a Marangoni 

effect (also called capillary driven #ow) that drives the #ow to 

low surface tension (where there is a large number of colloids 

having an af"nity with the interface i.e. acting as a surfactant) to 

high surface tension (where there are few surfactant-colloids). 

In the case of repulsive interactions, "gure 1(b), the interfacial 

interactions induce a decrease in the interfacial pressure in the 

region with a high concentration of colloids. This pressure gra-

dient drives a #ow called diffusion-osmosis #ow in this case.

The interfacial force density, φ∇Πic, drives the #ow of 

both particles (particle exclusion in interfacial layer) and 

liquid (through interfacially driven #ows). These interfacial 

forces between the colloids and the interface strongly couple 

the near-wall colloid and solvent dynamics. These transport 

phenomena thus have a hydrodynamic character that cannot 

be explained by thermodynamic considerations. The two-

#uid model that accounts for colloid-interface interaction in 

momentum and mass balances depicts the transient initiation 

of the osmotic and Marangoni #ows and thus generalizes and 

uni"es the existing approaches.

This description also has further consequences when the 

interface is no longer a solid interface but a #uid one. From a 

thermodynamical point of view, the energy map represents the 

interfacial Gibbs free energy and, thus, the increase or decrease 

in pressure is closely related to an increase or a decrease in 

water activity, pint =
kT
Vw

ln(aw). Considering water activity 

instead of interfacial pressure, it can be noted in "gure 1 that the 

osmotic or the Marangoni #ows always develop from high to 



low water activity zones. Such local variation of water activity 

at the interface can have many consequences when evaporation 

kinetics is considered, the evaporation rate being proportional 

to the difference of water activity between the liquid interface 

and the ambient air. The local variation of water activity given 

by the model can thus help to consider the contribution of col-

loid–colloid and colloid-interface interactions on water evapo-

ration. The interaction of colloids with the interface also leads 

to an anisotropy in pressure close to the interface. This stress 

anisotropy can be normal and/or tangential to the interface [39]:

–  when there is a local pressure gradient normal to the free

#uid surface, it leads to an interfacial (capillary) stress

that leads to a surface tension. According to Kirkwood

and Buff [40], the surface tension for a #at interface is

linked to the integral of the interfacial pressure across the

interface, γ =
´

∞

−∞
pintdx.

–  when there is a pressure gradient tangential to the surface

(because of a variation of colloid volume fraction or a

variation in interactions), interfacially driven #ows (sol-

vent #ows with a component tangential to the surface) are

initiated.

2.3. Simulation of interfacially driven "ow in a narrow channel

In this paper, the set of equations  ((8)–(10)) is solved in a 

geometry representing a channel with solid (non-deformable) 

walls with a non-dimensional form:

∇ · Pe = 0 (11)

∇ · (µ̂ (φ)∇Pe) = ∇p̂ + φ∇Π̂ic + (1 − φ)∇Π̂if (12)

∂φ

∂ t̂
= −∇ ·

(

φPe + K (φ)
(

−∇Π̂cc − φ∇Π̂ic

))

. (13)

In table 1, the dimensionless variables are de"ned and their 

links with the dimensional variables are quanti"ed. The non-

dimensional terms are obtained by dividing by the diffusion 

force so that the advection term becomes a Péclet number 

in equations  (11)—(13). For the nondimensionalization, 

the diffusion coef"cient is considered at dilute condition, 

D0 = m0kT , where m0 is the mobility of colloids having a 

volume, Vp. The corresponding Reynolds number is thus the 

Péclet number divided by the Schmidt number, Sc. The set 

of data used in these simulations was de"ned to characterize 

Figure 1. Representation of the interfacially driven transport in presence of a gradient of colloid concentration tangentially to an interface. 

When the colloids are attracted by the interface (a) the colloid-interface interaction contributes to a local increase in the interfacial 

pressure contribution, −
´

φdΠic. This increase is greater when the colloid concentration is higher (bottom part of the "gure). This 
tangential pressure gradient leads to #ow directed toward the lower concentration: Marangoni #ow. For colloids experiencing repulsion 
with the interface (b), the interaction leads to a local decrease of pressure close to the interface that is more pronounced for higher colloid 
concentration. These pressure variations induce a #ow toward the higher concentration. This diffusio-osmotic phenomenon causes the 
osmotic #ows.

Table 1. The dimensionless quantities used to de"ne the dynamic osmotic problem. The correspondence with the dimensional quantities is 
given for the conditions of a  =  10−8 m, δ  =10−6 m, µ  =  0−3 Pa · s, and T  =  298 K.

Quantity Dimensionless form Correspondence

Velocity Péclet Pe = umδ

m0kT
u (m) = 2.18 10−6 Pe = 0.1 Re

Reynolds Re = Pe/Sc

Viscosity µ̂ = 2a2

9δ2

µ(φ)
µ0

µ(Pa · s) = µ04.5 10+6µ̂

Pressure p̂ =
Vpp

kT
p(Pa) = 982 p̂

Time t̂ = m0kT
δ2 t t(s) = 4.58 t̂

Osmotic pressure or interfacial 

pressure
Π̂ =

VpΠ

kT
Π(Pa) = 982 Π̂

Mobility Settling hindrance coef"cient 

K (φ) = m
m0

m (kg−1
· s) = 5.31 10+9 K (φ)



a dispersion of 10 nm in diameter in a system with a charac-

teristic size (the pore size) of 1 micrometre. Such a size ratio 

ensures that the dispersion is treated as a continuous medium 

and the Eulerian approach is correctly used. Under these 

size conditions, the non-dimensional viscosity is equal to  

5.55  ×  10−6. The dependence of viscosity on the volume 

fraction is not taken into account. The osmotic pressure 

is de"ned by a van’t Hoff law for an ideal dispersion: the 

colloid–colloid interactions are not taken into account and 

the diffusion coef"cient remains independent of the col-

loid volume fraction. In these simulations, the mechanisms 

induced by colloid/colloid interactions and by the coupling 

between volume fraction and viscosity are switched off. 

Such simulations thus focus on the effect of colloid/inter-

face interactions on the #uid dynamics. These simulations 

can represent the #ow of a rather dilute colloidal dispersion 

close to an interacting interface.

Equations (11)–(13) could be solved in speci"c geometries 

by introducing solid walls as boundary conditions with no-

slipping conditions. In this paper, another approach is chosen: 

the equations are solved for the whole domain but with a local 

penalization method [41] in the Stokes equation  to account 

for the presence of solid walls. In equation (12), a term, Π̂if , 

is thus added to penalize the #ow in the solid domain. This 

term physically express the #uid-wall interaction that forces 

the #ow away from the interface. This way of writing the 

equation  has the advantage of treating the wall interactions 

similarly: the presence of the narrow channel in the #ow is 

represented through the interactions that the wall interface 

exerts on the #uid, Π̂if , together with the interaction it exerts 

on the colloids, Π̂ic. These interactions are a function of the 

distance to the wall, which is determined through a level set 

method. The penalization for the #uid is a very stiff expo-

nential function that applies in a very thin interfacial layer 

close to the interface. To be negligible, the interfacial layer for 

#uid-interface interactions is less than one tenth of the inter-

facial layer for colloid-interface interactions. The interaction 

between the colloids and the wall are also represented by an 

exponentially decreasing function similar to the one that could 

be obtained by the DLVO theory.

In this paper, the decay length is taken to be 0.1 (one tenth 

of the pore diameter) and the maximum energy at the wall is 

"xed at 100. These values were chosen to be close to those 

calculated for 10 nm spheres dispersed in 10−5 M solution 

with zeta potential of 80 mV for both particles and walls. 

The resulting colloid-interface interaction map is plotted in 

"gure 2.

The set of equations  was solved with the partial differ-

ential equation solver Fipy [42] ("nite element volume) imple-

mented on the Python platform Canopy (Enthought, Austin). 

Simulations were performed with periodic conditions on 

the top and bottom boundaries: this corresponds to the #ow 

through a network of narrow channels. Such simulations with 

periodic conditions enable the description of the possible inter-

ferences in mass accumulation between two consecutive chan-

nels. To have a complete analysis of this effect, the size ratio 

between the channel bottleneck and the pillar can be modi"ed 

by changing the geometry. The full code used for the solving 

is given in SI 6 in the supplementary information (available at 

stacks.iop.org/JPhysCM/30/294001/mmedia). Simulations are 

presented in the next sections  (i) for no net #ow conditions 

through the channel to illustrate the diffusion-osmosis phe-

nomena (section 3) and (ii) for "ltration conditions through the 

channels with a counter-osmotic pres sure (section 4).

3. Pure diffusio-osmosis in closed channel

In this section, the model is used to describe a diffusio-

osmotic #ow by simulating the #ow induced by a gradient of 

concentration. The simulations are performed in a 2D geom-

etry representing a pore closed at one end (right boundary in 

"gure 3). The global x velocity is thus zero. At the open side of 

the channel (left boundary), colloids arrive by diffusion. This 

diffusion induces a gradient of concentration along the pore 

axis that, in turn, should lead to an osmotic #ow: the so called 

diffusio-osmosis phenomenon.

Simulations allow the momentum and the mass balance 

(equations (12) and (13) respectively) to be solved and the 

continuity equation (equation (11)) to be satis"ed. The mix-

ture velocities along x and y, the pressure "eld and the volume 

Figure 2. (a) 2D representation of the narrow channel geometry (the pillars are represented in brown) and of the colloid-wall interaction 
magnitude (with the colour map) (b) colloid-wall interaction energy across the narrow channel opening for x  =  2.5.



fraction "eld are determined. The transient development of the 

diffusio-osmosis #ow are illustrated with animations showing 

the spatiotemporal evolution of these "elds (SI 1). The simula-

tions describe:

–  the generation of an osmotic #ow (with negative x veloci-

ties) when the colloid concentration reaches the pore wall

(diffusio-osmosis)

–  the coupling of the osmotic #ow with forced convection

(with positive x velocities) to keep a zero net #ow across

the pore section  (diffusio-osmotic/forced convection

secondary #ow)

–  the return to equilibrium (zero #uid velocities and zero

mass #ux) when the diffusion homogenizes the concen-

tration along the pore axis.

Figure 4 represents the velocities (presented in a non-

dimensional form as a Péclet number here) in the x direction 

("gure 4(a)) and in the y direction ("gure 4(b)) at time t  =  2 

(i.e. when the diffusio-osmosis phenomenon is at its max-

imum). The stream line representation ("gure 4(c)) illustrates 

the presence of the secondary #ow with negative x velocities 

close to the wall (the osmotic #ow) and a positive x velocity 

in the pore centre (the forced convection developing to ensure 

a zero net #ow through the pore). These secondary #ow cells 

have positive and negative y velocities at their ends ("gure 

4(b)). The #ows are characterized by stationary planes where 

the x velocities are zero. These stationary planes can be seen 

in "gure  5, which presents the x velocity pro"le along y at 

the pore entrance (x  =  3). The stationary planes are located 

at 30% and 70% of the pore diameter. These locations cor-

respond to 2−0.5 and 1 − 2−0.5 that can be determined from 

the analytical solution for an interfacial #ow combined with 

forced convection in Cartesian coordinates (as with electro-

osmosis #ow).

The secondary #ows become established progressively 

with time. Figure  6 presents the variation with time of the 

osmotic #ow rate de"ned as the integration along y of the 

negative x velocity presented in "gure 5. There is no osmotic 

#uid #ow at the initial time when the colloids are not inter-

acting with the pore wall. As soon as the colloids interact 

with the walls, the contribution of φ∇Π̂ic in the momentum 

equation leads to the osmotic #ow in the direction of higher 

φ value. The maximum #ow rate occurs for t  =  2 and there-

fore the #ow starts to decrease mainly because the concen-

tration gradient decreases along the pore axis. The volume 

fractions of colloids are given in SI 2. For longer times (i.e. 

when diffusion homogenizes the concentration) the osmotic 

#ow vanishes.

To conclude, the diffusio-osmosis test case of a pore with 

one end closed allows us to check the ability of the model 

to describe (i) how osmotic solvent #ow transiently initi-

ates from colloid/interface interactions, (ii) how interfa-

cially driven transport and forced convection act together to 

generate secondary #ows, and (iii) how the system returns 

to equilibrium. The diffusio-osmosis mechanism can be 

described according to the following steps. The diffusion of 

colloids toward the interface generates a concentration gra-

dient parallel to the pore wall. These concentration gradients 

lead to a local force density, φ∇Π̂ic (plotted in SI 3) that 

initiates the diffusio-osmotic #ows. In the case of a closed 

system, forced convection becomes established in the oppo-

site direction to satisfy the solvent continuity and, combined 

with the diffusio-osmotic #ow, leads to secondary #ows close 

to the interface.

Figure 3. Representation of the colloid-interface energy map in the semi-closed channel (axis of the channel in the x direction). The 
boundary conditions are periodic at the top (y  =  2) and bottom (y  =  0), wall conditions on the right (zero velocities and zero mass #ux at 
x  =  4) and a mass inlet with no #ow on the left (constant concentration and zero velocities at x  =  0).

Figure 4. Intensities of x velocities and y velocities (represented by a dimensionless péclet number) in (a) and (b) respectively, for a time 
t  =  2. These variations correspond to two secondary #ows with negative x velocities close to the pore walls and a return #ow (positive x 
velocites) in the pore centre. The representation of stream lines in c) highlights the two recirculation regions at the channel inlet.



Similar simulations can be run for colloid-interface attrac-

tion instead of repulsion. In this case, the secondary #ow 

appears but in the opposite direction. The liquid #ow is then 

directed toward the zone of low colloid concentration. This 

#ow is a solute-capillary Marangoni #ow with a #ow toward 

the zone where colloids having an af"nity with the interface 

are less concentrated (or zone of higher surface tension).

4. Osmotic #ows in channel during $ltration

In this section, simulations are performed with a geometry 

similar to that used in the previous section but with a #ow rate 

through the channels (the narrow channel geometry is presented 

in "gure 2(a)). In "ltration conditions, the mass boundary con-

ditions are a constant concentration on the left side (inlet of a 

#ow with a given concentration) and a concentration gradient 

at zero on the right (outlet #ow). The #ow boundary condi-

tions in the right and the left domain boundaries are a con-

stant Péclet number along x ("xing the net #ux through the 

pore) and a Péclet number along y at zero. The "xed Péclet 

number along x, Pe (also corresponding to a #uid velocity or 

a Reynolds number as presented in table 1) is then "xed by 

the boundary conditions. The boundary conditions are periodic 

on the top and bottom meshes. This corresponds to a "ltra-

tion case with a constant #ow rate through the narrow channel: 

the pressure drop thus increases if colloids accumulate at the 

pore bottleneck and offer resistance to the #ow. These simula-

tions then depict the reverse osmosis situation where a counter 

osmotic #ow acts against a forced convection. The previous 

case, described in section 3, can be seen as the asymptotic case 

for a Péclet number of zero, where diffusion-osmosis occurs in 

the absence of a net #ow through the channel.

Simulations have been performed for different Péclet num-

bers between 0.1 and 10. The full data of the transient simula-

tions are given in an animated panel presenting the evolution 

of the main parameters with time in supplementary materials 

(SI 4). To analyse the simulation results, the simulation with a 

Péclet number equal to 3 will be considered "rst. Figure 7(a) 

maps the volume fraction accumulated at the pore entrance 

for the "nal time t  =  10 (a quasi-steady state is reached at this 

time) and "gure 7(b) presents the variation of the volume frac-

tion along the channel axis with time.

Colloids accumulate because of partial retention due to the 

repulsive barrier along the wall of the pore channel ("gure 

2(a)): the water can #ow in these regions whereas the col-

loids are expelled. The accumulation takes the form of a hemi-

spherical plug at the pore bottleneck ("gure 7(a)) where the 

volume fraction of colloids can be "ve times higher than that 

coming from the bulk on the left. The plug builds up progres-

sively with time and reaches a steady state shape when the 

retro-diffusion in the bulk balances the convective mass #ux 

on the left boundary. The thickness of the upstream area thus 

acts as a mass boundary layer that is progressively "lled by 

the accumulation.

The #ow is modi"ed by the accumulation, which leads to 

a concentration gradient along the channel and then to the dif-

fusio-osmosis phenomenon. This osmotic #ow is opposite to 

the forced convection and appears as negative x velocities in 

"gure 8(a). These osmotic #ows are the direct consequence of 

the contribution of the colloid-wall interaction (term φ∇Πic in 

the momentum balance). This interfacial contribution acts as if 

there was a decrease in pressure close to the wall (where ∇Πic 

is large) or in the concentrated zone in the upstream channel 

zone (where φ is large) [23]. The map of the contribution of 

φ∇Πic is given in supplementary materials (SI 5). It should 

be noted that negative x velocities also appear where the col-

loid accumulates (around the position (1,1) in "gures 7(a) and 

8(a)). Such negative #ows are due to the strong gradients of 

colloid concentration in the zone where colloids interact with 

the interface ("gure 8(a)), which induces osmosis.

The negative osmotic #ows result in an additional pres-

sure drop that keeps the permeate #ow rate constant across the 

channel. In "gure 9, the Péclet number ("xed as a boundary 

condition) is plotted versus the pressure drop at quasi-steady 

state (determined by simulations). This plot is a non-dimen-

sional form of the classic plot of the permeate #ux versus the 

transmembrane pressure used to quantify the "ltration results. 

Figure 5. x velocity pro"le along y at the pore entrance (x  =  3) for 
different times. The stationary planes are located at 30% and 70% 
of the pore diameter.

Figure 6. Evolution of the half osmotic #ow rate (resulting from 
the integration along y of the negative x velocities at the pore 
entrance "gure 5) with time. At the beginning, when colloids are not 
interacting with the wall, the osmotic #ow rate is zero. The osmotic 
#ow is maximum when the colloid concentration gradient reaches 
the pore wall and vanishes again when the diffusion homogenizes 
the concentration in the pore.



In this kind of plot, the dotted line represents the pressure 

drop simulated for the solvent water and the horizontal gap 

between the dotted line and the one obtained when "ltering 

the colloid represents the additional counter osmotic pressure.

It can be noted that the results presented in "gure 9 when the 

accumulation is rather homogeneous at the channel entrance 

(for small Péclet number) are comparable to the one deter-

mined when the equations are solved in one dimension [23] 

and with the Non Equilibrium Thermodynamics approach 

[10]. For higher Péclet, it can be seen that the counter osmotic 

pressure does not vary monotonously when the #ow rate 

increases. For a Péclet number around 7, a maximum in the 

Figure 7. Spatiotemporal variation of colloid volume fraction at Pe  =  3. (a) Maps the volume fraction on the domain at t  =  10. (b) Presents 
the volume fraction pro"le along the channel axis, x (for y  =  1) for different simulation times with a time step of 0.25 from t  =  0 to t  =  10.

Figure 8. Intensities of x velocities and y velocities (represented by dimensionless local péclet number) in (a) and (b) respectively for a 
time t  =  10 and for a net overall Péclet number along x of 3. These variations correspond to two secondary #ows with negative x velocities 
close to the pore walls and a return #ow (positive x velocites) in the pore centre. The stream lines are represented in (c).

Figure 9. (a) Péclet number as a function of the pressure drop across the channel (full red line). The dotted line represents the same data 
when only the solvent is "ltered. (b) Colloid transmission as a function of the Pe number. The inserts represent the volume fraction map 
(details given in "gure 10).

Figure 10. Colloid accumulation for (a) Pe  =  1, (b) Pe  =  3 and (c) Pe  =  10 for a time t  =  10 corresponding to a quasi-steady state for all 
cases. The accumulation patterns are very different with (a) a homogeneous layer for low Péclet number (high diffusion that homogenizes 
the concentration along y) (b) an axial plug at the channel bottleneck for intermediate Péclet number and (c) an accumulation on the 
channel pillars with only a partial axial accumulation for high Péclet number.



counter osmotic pressure is observed, together with a marked 

increase in transmission. This change is also associated with a 

very different pattern for the colloid accumulation as sketched 

in "gure 10. The pattern of the accumulation takes different 

forms:

•  a homogeneous accumulated layer when operating at low

Péclet number. The diffusion of colloids is high enough

to homogenize the concentration along the y direction.

•  an axial plug with diffuse accumulated colloids at the

channel bottleneck for intermediate Péclet number. This

pattern is responsible for the highest accumulation and

the highest counter osmotic pressure at a Péclet number

of 7.

•  an accumulation on the channel pillars with only a partial

axial accumulation for larger Péclet numbers. These

Péclet numbers also relate to greater transmission through

the channel: the #ow is able to overcome the colloid-wall

interactions.

The transition between an axial plug ("gure 10(b)) and 

pillar accumulation ("gure 10(c)) occurs sharply above the 

threshold Péclet number of 7. A similar critical transition 

has been studied experimentally and theoretically [43] by 

researchers studying the accumulation and transmission of 

colloids across the membrane. Such a transition is responsible 

for a sudden change in the fouling regime [36, 43] or col-

loidal transmission across a pore [44]. The threshold appears 

when the drag force induced by the number of Péclet exceeds 

the repulsive force between the colloids and the wall [36, 37]. 

This paper illustrates this concept with a local 2D approach 

and examines the consequences of this imbalance on the type 

of fouling (from axial to pillar accumulation) and on trans-

mission ("gure 9(b)). The breaking of the accumulated layer 

is also observed for the same Péclet number but over time. 

Figure 11 presents the way the pillar accumulation pattern is 

initiated over time for a simulation performed with a Péclet 

number of 10. Initially, the accumulation grows in the form of 

a "lm of homogeneous thickness. With time, a thinning of the 

accumulation is observed at the edge of the conical bottleneck 

("gure 11(b)) before a breakage of the accumulation between 

an axial plug and the pillar accumulation ("gure 11(c)). For 

further time, the axial plug disappears, whereas the pillar 

accumulation becomes thicker and leads to the steady state 

accumulation presented in "gure 10(c).

These results illustrate how the coupling between diffusio-

osmosis and hydrodynamics controls the #ow in a channel. 

A complex force chain operates between the components of 

the ternary system: interface/colloid/solvent molecules [23]. 

This force chain can be summarized as follows: (i) colloids 

interact with the interface (ii) the colloid/solvent mixture loses 

momentum due to the reaction force acting on the interface 

(Newton’s third law applies for the ternary interface/colloid/

solvent system but is violated for the colloid/solvent pair) (iii) 

for colloidal particles, according to the dissipation #uctuation 

theorem, this force anisotropy normal to the interface (non-

zero transverse stress) leads to a net force density on the #uid 

near the interface. The three components of the ternary system 

are then intimately connected by the force chain: at the end, 

because of colloid/interface interactions, a net force acts on 

the solvent molecules.

From mechanical balances, the simulations show how this 

net force modi"es the Stokes #ow and thus controls the near-

wall non-equilibrium dynamics of colloids and solvent mol-

ecules. Ultimately, describing the interfacially driven #ows 

(diffusio-osmosis and Marangoni effect) appearing inside 

the liquid phase is a key point but it is also important, when 

considering boundary conditions, to depict the surface ten-

sion and evaporation kinetics. This local description of the 

#ow dynamics could also help to understand how the pore 

architecture, e.g. its hourglass shape, changes the transport 

ef"ciencies. This kind of model should be useful to depict 

other conditions where diffusio-osmosis takes place, such as 

diffusio-phoresis [45] and transport of self-propelling active 

colloids. The model could also be applied to conditions where 

a strong coupling between #ow, surface interactions and elec-

trochemical reaction can induce ion-depletion zone and allow 

membraneless seawater desalination [46]. The non-equilib-

rium conditions could also lead to Rayleigh-Taylor instabili-

ties that could be a way to decrease narrow channel fouling 

[47].

5. Conclusions

In summary, a two phase #ow model and 2D simulations 

allow the dynamics of #owing colloids to be explored when 

they interact with an interface. From mechanical balances, the 

colloid/interface interactions lead to a net force acting on the 

solvent molecules near the interface, which can be ascribed to 

an interfacial pressure gradient. Interfacially driven transport, 

like diffusion-osmosis or the Marangoni effect, originates 

from gradients in interfacial pressure along the interface, for 

example, due to a gradient in colloid volume fraction. The 

model explicitly shows how colloid/interface interactions 

initiate interfacially driven transport. The model thus gives 

Figure 11. Dynamic evolution of the accumulation (t  =  0.2, 0.3, 0.5) for Pe  =  10. Breakage of the accumulated "lm (a) to give axial plug 
(b) and accumulation on channel pillars (c). The steady state (t  =  10) accumulation on channel pillars is presented in "gure 10(c).



a clear local scale interpretation of the osmosis phenomenon 

within a mechanical approach. The comprehensive approach 

generalizes and uni"es the description of colloidal dispersion 

#ow in a con"ned system.

Interesting consequences emerge when the transport of 

colloids through a narrow channel is considered. Secondary 

#ows develop in the narrow channel bottleneck because of 

the coupling between diffusio-osmosis and forced #ow. The 

dynamics of these osmosis secondary #ows has been analysed 

here and their consequences on the counter pressure and on 

the colloid transmission through the channel discussed. These 

local #ows also control the way the colloids accumulate at 

the channel bottleneck. The simulations shed light on the 

existence of a critical Péclet number that leads to a transition 

between axial plug formation and accumulation on channel 

pillars.
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