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Email: benoit.miramond@unice.fr

Author version - HAL-01826263 - CC-BY 4.0 International

Abstract—Self-organization is a bio-inspired feature that has
been poorly developed when it comes to talking about hardware
architectures. Cellular computing approaches have tackled it
without considering input data. This paper introduces the SOMA
architecture, which proposes an approach for self-organizing
machine architectures. In order to achieve the desirable features
for such machine, we propose PCSOM, a bio-inspired approach
for self-organizing cellular hardware architectures in function of
input data. PCSOM is a vector quantization algorithm defined as
a network of neurons interconnected through synapses. Synapse
pruning makes it possible to organize the cellular system archi-
tecture (i.e. topology and configuration of computing elements)
in function of the content of input data. We present performance
results of the algorithm and we discuss the benefits of PCSOM
compared to other existing algorithms.

I. INTRODUCTION

Neuro-biological systems have been a source of inspiration
for computational science and engineering. The rapid improve-
ments of digital computing devices may soon reach their tech-
nological and intellectual limits. This has motivated the emer-
gence of alternative computing devices based on bio-inspired
concepts. Moreover, by evolving from a personal computing
usage to an ubiquitous computing paradigm computing and
computers deserve now to be rethought : how to represent
complex information, how to handle this information, why
dissociating data and computation?

In front of such issues, the brain still remains our best
source of inspiration. It offers us a different perspective on
the organization of computing systems to meet the challenges
of the increasing complexity of current and future devices.
Several current issues such as analysis and classification
of major data sources (sensor fusion, big data, Internet of
things), and the need for adaptivity in many application areas
(autonomous drones, driving delegation in automotive systems,
space exploration...), lead us to study a desirable property from
the brain that encompasses all others: the cortical plasticity.

This term refers to one of the main developmental properties
of the brain where the organization of its structure (structural
plasticity) and the learning of the environment (synaptic
plasticity) develop simultaneously toward an optimal com-
puting efficiency. Such developmental process is only made

possible by some key features: focus on relevant information,
representation of information in a sparse manner, distributed
data processing and organization fitting the nature of data,
leading to a better efficiency and robustness.

The work presented in this paper makes part of the SOMA
project (Self-Organizing Machine Architecture), which aims
to define an original brain-inspired computing system to be
prototyped onto FPGA devices. Its architecture is organized
as a decentralized neural network interleaved into a set of
many-core cellular computing resources. Neurons learn data
to develop the computing areas related to the incoming data in
a cortical way. In a previous project [1], we have studied how
neural self-organizing maps (SOMs) may control the devel-
opment of these computing areas in the manycore substrate,
thus applying synaptic plasticity to hardware configuration.
The central issue addressed by the SOMA project is how the
communications within and between the dynamic computing
areas self-organize by means of a particular type of dynami-
cally reconfigurable Network-on-Chip (NoC) controlled by the
neural network, thus transposing structural plasticity principles
onto hardware.

To reach this goal, the SOM that controls the computing
resources must be able to learn its underlying topology while
learning to represent the incoming data, and this underlying
topology must reflect the hardware constraints of the NoC.
This paper presents the Pruning Cellular Self-Organizing
Maps (PCSOM) algorithm, which makes use of bio-inspired
mechanisms in order to better fit application requirements,
combining synaptic and structural plasticity. Section II will
introduce previous works done towards self-organizing hard-
ware approaches; section III describes the cellular hardware
architecture on which our algorithm will evolve, it will im-
pose the constraints for the PCSOM algorithm presented in
section IV. Finally, section V will describe how the algorithm
has been tested and the obtained results.

II. HARDWARE SELF-ORGANIZATION

Reconfigurable computing devices are the core implementa-
tion platforms for the so-called adaptive architectures. Several
works have tackled this issue. For example the NAPA adaptive
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architecture [2] provides an adaptive datapath in the form of
a coprocessor to be controlled by a processor. The PRISM-
II processor [3] includes new hardware instructions to the
processor instruction set in order to adapt to the code at
hand. Other approaches handle the adaptability at compilation-
time [4] to generate a hardware architectures that better fits
a previously coded execution task. Nevertheless, all these
approaches still depend on a previous specification of the
problem at hand.

Though different from self-organization properties, self-
replication and self-reparation are two other bio-inspired prin-
ciples that are still far from being satisfactorily implemented in
engineered systems. They have been studied in projects such
as Embryonics [5], POEtic [6], and PERPLEXUS [7]. The
Embryonics project is an emblematic project giving birth to
a whole new computing paradigm which borrows inspiration
from the genome interpretation done by each cell composing
living beings, thus enabling self-repair and self-replication in
robust integrated circuits that perform cellular computations.
The POEtic and Perplexus projects have pushed forward
these initial ideas by including dynamic routing and enhanced
computation abilities. In spite of these efforts, there are still
many scalability problems concerning the dynamic routing and
the overall system synchronization.

The self-organizing mechanisms to be deployed on our
architecture have to extract meaningful representations from
online data in order to guide the definition of the hardware
architecture. Such property is based on vector quantization
(VQ) capabilities. This must be done while avoiding an over-
fitting of the architecture to the input data. Even though
different algorithms are able to partly deal with this issue1,
the self-organizing map (SOM) algorithm is certainly the most
popular in the field of computational neurosciences because
it gives a plausible account on the organization of receptive
fields in sensory areas where adjacent neurons share similar
representations. However, the stability and the quality of such
self-organization depends on a decreasing learning rate as well
as a decreasing neighbourhood function. SOMs have been and
are still used in a huge number of works in image and signal
processing, pattern recognition, speech processing, artificial
intelligence, etc. Hundreds of variants of the original algorithm
exist today [13], [14] but few of them have been deployed in
hardware [15]–[17].

The major problems of most neural map algorithms is
the necessity to have a finite set of observations to perform
adaptive learning starting from a set of initial parameters
(learning rate, neighbourhood or temperature) at time ti down
to a set of final parameters at time tf . In the framework of
signal processing or data analysis, this may be acceptable
as long as we can generate a finite set of samples in order
to learn it off-line. However, from a more general point of
view, it is not always possible to have access to a finite
set and we must face on-line learning. The question is thus
how to achieve both stability and reactivity? We answered

1such as variations of the k-means method [8], Linde–Buzo–Gray (LBG)
algorithm [9] or neural network models such as the self-organizing map (SOM,
a priori topology) [10], neural gas (NG, no topology) [11] and growing neural
gas (GNG, a posteriori topology) [12]

this question by introducing a variant of the original SOM
learning algorithm (Dynamic SOM algorithm, DSOM) where
the time dependency has been removed [18]. Based on several
experiments in both two-dimensional, high-dimensional cases
and dynamic cases, this new algorithm defines an on-line and
continuous learning that ensures anytime a tight coupling with
the environment that can be dynamic. It is to be noted that
the resulting codebook does not fit data density as expected
in most vector quantification algorithms. This could be a
serious drawback in the framework of signal processing or
data compression but we rather think this must be decided
explicitly depending on the task.

III. THE SOMA ARCHITECTURE

The neural-based mechanism responsible of the self-
organization is integrated into a cellular processing archi-
tecture. It is decomposed in four distinct layers intended to
provide the hardware plasticity targeted by the SOMA project.
These layers are: (1) data acquisition, (2) pre-processing,
which can be in the form of feature extraction, (3) self-
organization of computation and communications, and (4)
computation in the form of a reconfigurable computation unit
(FPGA or processor). These four architecture layers have
been presented in [19] and we already designed preliminary
versions of the three first layers in [20], [21].

The proposed self-organizing mechanisms will be exploited
by user-defined applications running on a multicore array
in the form of a NoC-based manycore system. The SOMA
architecture will define the computing nodes of the NoC
as either General Purpose processors or application specific
computation nodes. Such a NoC will provide different features
such that computation nodes may:

• Communicate between neighboring and remote compu-
tation nodes in the manycore array.

• Communicate to the underlying self-organizing layer in
order to influence the self-organization. In this way the
self-organization mechanism will gather information from
the computation in order to self-adapt to the distributed
computation requirements.

• Get inputs from the self-organization layer. The main goal
of the project is to adapt the computation execution on
the diverse computation nodes in order to adapt to the
nature of the task at hand. This mechanism will be able
to drive the computation from the self-organization and
thus close the loop with the previous item.

The NoC architecture we currently use is based on the HER-
MES routing architecture [22] for inter-node communication,
for which we previously proposed an adapted version of the
NoC architecture to support dynamic reconfiguration [21]. The
main novelty concerns the coupling with the self-organizing
mechanism [23]. Figure 1 illustrates a 2-D version of the
SOMA cellular architecture composed of a reconfigurable
computation layer and a routing self-organizing layer. We only
use two layers here in order to highlight the role of the self-
organizing layer which is the central part of the work presented
in this paper.

The self-organizing layer is responsible of coordinating with
neighbor nodes in order to decide which node must deal with
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Fig. 1: 2-D SOMA architecture

new incoming data in a completely decentralized manner. It
will also be able to reconfigure the computing layer in order
to better fit the hardware to the nature of incoming data. The
proposed architecture will permit also 1-D and 3-D physical
connectivity, increasing the possibilities of the platform.

The detailed hardware mechanisms permitting to deal with
the computation reconfiguration is out of the scope of this
paper. Here, we will mainly focus on the self-organizing mech-
anism and the interactions between such distributed nodes to
coordinate themselves in order to permit them to make further
decisions about the type of computation to be done. This
functionality is provided in the form of a self-organizing map.

IV. THE PRUNING CELLULAR SELF-ORGANIZING MAP
ALGORITHM - PCSOM

PCSOM is a vector quantization algorithm which aims to
represent a probability density function into a set of prototype
vectors. Is is a neural network, composed of an n-dimensional
array of neurons. In the particular case of the SOMA archi-
tecture n refers to the dimensionality of the NoC. A neuron
will be thus associated to a computation element and it will
determine the computation to be executed by this element.
The probability density of input data will thus drive the type
of hardware to be deployed on the NoC computation elements.
A typical dimensionality would be a 2-dimensional processor
array; however, the SOMA architecture will also support 3-
dimensional connectivity. In the case of this paper we will
only consider the case of the 2-dimensional architecture.

Each neuron has an associated weight vector, or prototype
vector, representing a set of input vectors. This is an m-
dimensional vector where m is dissociated from n. It is defined
by the nature of input data.

Each neuron has also a number of associated synapses
that define which neuron will have an influence on which
other. Synapses can be seen as interconnection matrices. In the
case of the SOMA architecture, we will naturally assume that
synapses are initially interconnecting every neuron to its four
physical neighbors. Afterwards, during the network lifetime,
some of these synapses will be pruned in order to allow
the prototype vectors to better fit the density function. The
goal here is to remove useless synapses that will prevent the
network to achieve optimal performance. Moreover, removed
connections can be further used for other purposes or for
creating new synapses. Such re-utilization is not discussed
in this paper. Given its incremental approach, learning is

performed for every new input vector. The PCSOM algorithm
is described as follows:

Initialize the network as an array of neurons. Each neuron
n is defined by a m-dimensional weight wn and a set of
synapses defining connections to other neurons.
for every new input vector v do

Compute winner s as the neuron n with wn closest to v.
Update the weight of the winner ws :

ws = ws + α(v − ws)||v − ws|| (1)

where α is the learning rate.
for every other neuron in the network do

Update weights as follows:

wn = wn + α(wi − wn)e
(− 1

η
hops

||wn−wi||)
) (2)

where wn is the weight of the neuron to be updated,
hops is the number of propagation hops from the
winner, wi is the weight of the influential neuron 2,
η is the elasticity of the network.

end for
for every synapse in the network do

Apply pruning following the probability:

Pij = e
(− 1

ω
1

||wi−wj ||)titj
)

(3)

where Pij is the probability of pruning the synapse
interconnecting ni and nj , ω is the pruning rate, and
ti is the time from the last winning of neuron ni 3.

end for
end for
The principle of the algorithm is that when a prototype

vector, represented as a weight ws of a neuron, is the closest
to a new input vector v, it is considered to be the winner and
it will adapt its weight according to equation 1. This means
that the weight update will be performed towards the new
vector, and the magnitude of the update is proportional to the
difference between ws and v.

This winning neuron will influence lateral neurons directly
connected to it through synapses. Equation 2 updates the
weight of neighboring neurons wn by attracting their weight
towards the winning neuron ws. In this particular case the
number of hops is 1 because they are directly connected to
the winner. After being updated, these neighboring neurons
will update their neighbor neurons as well by following the
same equation 2. This will result in a gradient permitting
the overall network weights to get influenced by every new
input vector. A similar principle can be found in other self-
organizing map models like SOM and DSOM. However, the
main novelty of the PCSOM algorithm until this point is the
fact that the influence of one neuron to another depends on
the network connectivity: the network can be described as a
graph with any arbitrary topology. In SOM and DSOM, on

2 An influential neuron is defined as the neuron from which wn received
the propagation signal. For a neuron with hops = h, the influential neurons(s)
will be every connected neuron with hops = h− 1.

3At initialization, it is assumed that all neurons won at iteration −1 in order
to avoid early synaptic prune
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Fig. 2: The three density functions used to test the performance
of the PCSOM algorithm.

the other hand, the influence is determined by a position of
a neuron on an n-dimensional space (usually 2-dimensional).

This graph oriented model permits us to think about modi-
fying the network topology in order to better fit the incoming
probability density function. Synaptic pruning and sprouting
are two biological mechanisms permitting structural plasticity.
In the case of the PCSOM algorithm presented here, we are
only using pruning through the equation 3, which defines the
probability of a synaptic connection to be removed. A useless
synapse connects two neurons whose activities are poorly
correlated. Such poor correlation is expressed in equation 3
as a high distance between vectors wi and wj , and a very low
activity (winning) of neurons ni and nj which reflects a poor
capability of the prototype vector to represent the probability
density function. All these factors are modulated by a pruning
rate and determine the probability of a given synapse to be
removed.

Neuron activity in this context is represented by ti and tj ,
which represent the time from the last winning of neurons i
and j. Time-scale is an important issue in on-line learning
because data arrive according to the time-scale of the physical
system. In the case of the experiments presented in this paper,
time represents the number of iterations of the algorithm, in
other words it is increased by 1 at every new input vector. In
a real embedded system it may use a real notion of time. In
any case, it is the pruning parameter ω that will modulate the
time-scale issue as well as the pruning intensity.

V. EXPERIMENTAL SETUP AND RESULTS

A. Quantization of 2D distributions

We have tested our algorithm by presenting a set of input
vectors in 2 dimensions. We have analyzed the behavior and
the performance of our approach on 3 different types of density
functions. These functions are illustrated on figure 2, they rep-
resent three different scenarios where pruning may be useful.
The first function, generated as a uniform random sampling
bounded between 1 and 7 for each of the components of input
vectors, represents a function where pruning does not provide
any advantage. For the second function a slight pruning may
be useful for better fitting the probability function. And finally,
the third function may require a much higher level of pruning.

1) Experiments: In order to perform our experiments, sev-
eral parameters have been fixed in an arbitrary manner. The
network topology has been initially defined as a 2-D array
mesh of 8x8 neurons. Each neuron has 4 synapses connected
to neighbor neurons. Weights have been uniformly initialized

2 0 2 4 6 8 10
2

0

2

4

6

8

10

Fig. 3: Neuron’s weights linked through synapses

with values from (0,0) to (8,8). The graph in figure 3 illustrates
such initial network, weights are represented by the position of
nodes, and lateral synapses by the links between these nodes.
Parameters like learning rate and elasticity have been fixed to
α = 0.2 and η = 0.6 while pruning rate ω has been modified
in order to analyze the effects of pruning.

The performance is measured by the average quantization
error (AQE)4. This error represents the loss of information
induced by the vector quantization on the overall vector
sampling. It is usually computed as the mean quadratic error:

AQE =
1

p

p∑
k=1

min
1≤i≤N

(dist(vk, wi))
2 (4)

Where p is a number of input vectors used as reference for
computing the AQE, vk is one of the p vectors to be used for
computing the AQE, and N is the total number of neurons.
dist(vk, wi) is the distance between the weight of neuron i and
the input vector vk. Only the minimum distance is considered
for AQE computation because this is the prototype vector
representing the incoming data. p can be the complete vector
training set or a subset of it. Using a subset is mandatory when
the number of input vectors not known in advance or when
the system runs online. In the experiments presented here, p
has been fixed to 500.

Two different experiments have been carried out on these
functions. The first one analyzes the effect of pruning on
the worst case scenario (the third density function), and how
AQE behaves under different pruning conditions. The second
experiment aims to analyze the behavior of the best network
of the first experiment when applied to two other probability
functions.

2) The effect of pruning: The first experiment aims to
observe how a network evolves under different values of ω.
Figure 4 illustrates the behavior of PCSOM with 8 different
values of ω applied on the third density function of figure 2.
Each curve in the figure represents the average of 48 runs of
the algorithm with the same parameters. In this figure it can
be observed the evolution of the network in terms of the total

4Another error measure for self-organizing maps is often used, the dis-
tortion measure. For each input, a gaussian-weighted average of quantization
errors is computed around the best matching unit. The distortion is the average
over all inputs of all these computed weighted averages. This error measure
reflects how much neighbouring neurons have learned similar prototypes.
Since our model modifies the underlying topology, this error measure can not
be satisfactorily applied to compare the performance of SOMs and PCSOMs.
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Fig. 6: Probability density function and weights after training
the network with ω = 0

number of synapses over time. Figure 5 illustrates the AQE
measured during the network’s lifetime. The color code of the
two figures corresponds to the same evaluated pruning rates.

It can be observed that when ω = 0, meaning that no
pruning is performed, the number of synapses remains constant
at 112. It can also be observed that with ω = 0 the AQE
converges quickly to a suboptimal value. Figure 6 illustrates
a typical resulting network when pruning is disabled (ω = 0).
It can be observed that learning has optimized the AQE by
fitting the probability function. However, the network elasticity
(the influence of lateral neurons) has prevented the network
to correctly fit the function. Of course, a solution could be
to reduce the elasticity, reducing in this manner lateral neuron
influence. However, this solution would have other undesirable
side effects like slowing down learning.

We observe in the other extreme case, with ω = 3e − 05,
a network with a very high probability of pruning synapses.
It results in a network that gets unconnected very quickly,
and has not enough time to take advantage of the elasticity
mechanism proposed by the algorithm and the measured AQE
converges quickly to a very poor value. This is an extreme case
of over-pruning. Another case of overpruning is with (ω =
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Fig. 7: Results after training with ω = 1e− 05
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Fig. 8: Results after training with ω = 3e− 07

1e−05) the network is unable to converge to a stable structure
and the over-pruning ends up eventually by disconnecting the
whole network. Figure 7b shows a network suffering of over-
pruning. The very early synapse removal makes the network
converge to a sub-optimal solution. Elasticity becomes useless
and lateral influence is not present anymore.

The best solution is obtained with ω = 3e−07. The number
of neurons converges to the optimal value achieving the best
possible AQE for this probability function. It can also be
observed that networks tested with the values ω = 3e−08 and
ω = 1e− 07 converge to almost the same number of neurons
and almost the same AQE, the final result is thus as good as
the best solution; however, they require a much higher number
of iterations, making the learning unnecessarily slower.

An example of a resulting network using the pruning rate
achieving the best performance can be observed in Figure 8b.
In this network the useless synapses highlighted in figure 6
have been removed, and only useful connections are main-
tained. The formed sub-network naturally represents the four
data clusters on the input data-set. Other pruning rate values
like ω = 1e − 06 and ω = 3e − 06 converge to sub-optimal
AQE values. In spite of the over-pruning, the network manages
to stabilize its structure. However, given early synapse removal
it is impossible to achieve the best performance.

In conclusion, the pruning mechanism is able to reduce
AQE when used with the correct pruning rate parameter.
If the pruning rate results to be smaller than the optimal
value, it still converges to an optimal solution but learning
is slower. On the other hand, if the pruning rate is higher,
the network will fail to converge to the optimal solution.
Excessive removal of synapses reduces the influence of a
neuron on other neurons and reduces the capability of the
SOM to work as a collaborative network. The other extreme -
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Fig. 9: Resulting neural network with the 1st probability
density function
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Fig. 10: Network evolution for the 1st Probability Density
Function (PDF) and Average Quantization Error (AQE)

without pruning - will maintain the original network with even
useless connections, that may prevent the network to converge
to optimal solutions.

3) Validating on other probability density functions: In
order to validate the robustness of our approach, we have
tested the same network with the same parameters on different
probability density functions. We kept thus the same param-
eters described in the previous subsection and we only used
three different values for the pruning rate: the optimal value
of ω = 3e−07, a case of over-pruning with ω = 1e−05, and
without pruning ω = 0, in order to compare their performance.
Only the resulting networks with ω = 3e− 07 are represented
in figures 9 and 11 .

Figure 9b shows that almost no pruning is performed in
this function. Pruning does not contribute to minimize AQE
and the network dynamics is able to adapt to the function
characteristics. Nevertheless, given the stochastic nature of
the pruning mechanism, it can still be possible to prune
a connection (bottom right neuron in the figure), without
negative consequences in this particular case.

Figure 10 illustrates the evolution of the network with three
different values for ω over 20000 iterations. The graph repre-
sents the average of 48 runs of the algorithm. From figure 10b
it can be observed that the same parameter ω = 3e−07 found
in the first experiment as the optimal value, achieves the same
quantization error than the network without pruning. It can also
be observed that the network with very high pruning exhibits
a poor performance. From figure 10a it can be observed that
the over-pruning is even worse than the one observed in the
previous experiment (figure 4), and that the pruning performed
on the network with ω = 3e− 07 is negligible.

It is worth to comment the effect observed around to itera-
tion 1000 of figure 10b. After achieving a good quantization
error, the network isn’t able to maintain it. This is due to
the elasticity of the network regulated in equation 2 with the
parameter η. This parameter regulates the influence of the
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Fig. 11: Resulting neural network with the 2nd PDF
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Fig. 12: Network evolution for the 2nd PDF

weight of lateral neurons on the computation of each neuron
weight. A high value of η makes it possible to converge faster,
but may prevent the network to find an optimal solution at long
term (like in this case). A solution may be to decrease over
time the value of η in a similar way than SOM. However,
doing so reduces the further network capability to adapt
to different input data, making the algorithm unsuitable for
learning dynamic functions.

Figure 11 shows the result of a network with ω = 3e− 07
and the same parameters, learning the 2nd probability density
function of figure 2, which still can benefit from the pruning
mechanism. From a qualitative point of view, this figure
permits to deduce that pruning has contributed to obtain a
good solution. For a quantitative assessment, figure 12 shows
the behavior of PCSOM for 3 values of ω over 20000 iterations
(each being the average of 48 runs). Again it can be observed
that the network with a correct pruning parameter value
achieves a better performance than the ones without pruning
and with over-pruning.

From these two new probability density functions it can be
observed that parameters are rather independent of the function
at hand. The same set of parameters can be applied without
knowing the function in advance.

B. Application to image compression

A well-known application of self-organizing maps is lossy
image compression [24]. The principle is to divide the image
into small sub-images, learn a good quantization of these
sub-images, and then replace each sub-image by the index
of the closest prototype. Uncompressing the image is then
performed by replacing each index by the corresponding sub-
image prototype. Compared to other quantization techniques,
SOMs preserve topological properties, so that close parts of
an image that are often similar will be coded by neighbouring
neurons. It makes it possible to further reduce the size of the
compressed file by efficiently coding prototype indexes [25].
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In order to evaluate how PCSOM behaves in real-world ap-
plications, we have decided to choose this image compression
method as an example, performing the following steps:

1) The L × H picture is cut into I sub-images of l × h
pixels, thus I = (L/l)× (H/h).

2) A SOM and a PCSOM of n × n neurons learn these
sub-images. Each neuron has a l×h weight vector, that
can be interpreted as a sub-image prototype.

3) The compressed image starts with the size of the original
image, the size of the sub-images and the number of
neurons. Then it includes a palette of the n × n sub-
image prototypes, as learned by the SOM or PCSOM.
Then, the compressed image only contains a list of the
indexes of the winning neurons for each sub-image.

Even without further compression of the index list thanks to
topological properties of self-organizing maps, the compres-
sion ratio for a grayscale image (1 byte per pixel) is thus:

L×H
20 + (n× n× l × h) + (Ll ×

H
h × b)

where b is the minimal number of bits to code integers between
0 and n× n− 1.

As an example, we consider a 364× 332 image subdivided
into 7553 sub-images of 4× 4 pixels. Using a 8× 8 SOM or
PCSOM (b = 6), the compression ratio reaches a very high
value of 18 (again, without the further compression of the
index list using differential and entropy coding [25]). Based
on 213 experiments using various sets of parameters, PCSOM
significantly improves the AQE (average 3.277e-2, standard
deviation 3.16e-4) with respect to standard SOMs (average
3.464e-2, standard deviation 1.49e-3). We also observe a
significant perceptual improvement of the visual result that
is partially illustrated by the usual peak signal-to-noise ratio
(PSNR) to be maximized: average 24.79 for PCSOM vs 23.54
for SOM. Figure 13 shows results obtained for 20 epochs of
7553 iterations, each one using the same pattern for SOM
and PCSOM learning though the ordering is random. Pruning
is performed after each epoch. The compression examples
correspond to the SOM or PCSOM that reaches the best
PSNR. For this PCSOM, ω = 8.10−9, resulting in 51 pruned
synapses. Most topological properties are maintained since
this pruning occurs progressively during learning. It must be
mentioned that PCSOM learning is very fast compared to
SOMS, often reaching the SOM final performance after less
than 10 epochs. Further studies need to be carried out to
analyze the precise effect of pruning in this application.

An important amount of work still needs to be carried
out so as to study how the induced self-organization of the
computing resources may take advantage of the properties
of PCSOM. In the specific case of this application to lossy
image compression, it lies in the way prototype indexes asso-
ciated to sub-images are further compressed. Following [25],
a differential coding is first performed, computing differences
between the index associated to a sub-image and the index
associated to the neighbouring sub-image in the best local
minimum gradient direction. Then these index differences
are sent to an universal entropy coder using variable length

(a) Initial image (b) SOM-based
compression

(c) PCSOM-based
compression

(d) Jpeg compres-
sion with ratio 18

(e) SOM: learned
prototypes

(f) PCSOM: learned
prototypes, pruned
synapses

Fig. 13: SOM vs PCSOM for lossy image compression

coding. Thanks to the topological preservation property of self-
organizing maps, the differential coding step mostly results in
small numbers for which entropic encoding is very compact.
Uncompression uses similar steps in a reverse order. In a
parallelized version of the whole process, computing resources
that will handle differential coding will have to communi-
cate with other computing resources so as to compute index
differences and local minimum gradient directions between
”winners” of neighbouring sub-images. When handling several
sub-images in parallel, these communications will compete for
NoC resources. The self-organization of computing resources
with respect to PCSOM will minimize traffic congestion in
the NoC, since the nodes that will often communicate will be
very close according to the NoC constraints. Details of this
work still need to be specified.

VI. CONCLUSION AND FURTHER WORK

In this paper we have presented the SOMA architecture, a
neural-based processing architecture inspired by brain plastic-
ity to tackle hardware self-organization of massively parallel
processing elements. The bio-inspired process proposed by
SOMA relies on an efficient learning of incoming data in order
to dynamically adapt the size of processing areas to stimulation
coming from the external environment. The learning process
relies on a new neural model inspired by self-organizing maps.
It has been adapted for cellular architectures and integrates
pruning capabilities: it removes useless lateral connections in
order to better fit the target probability density functions. The
results of our experiments show that the proposed pruning
mechanisms may improve the network performance by reduc-
ing the average quantization error. We have also analyzed the
effect of different values for the pruning parameter: very high
values fail to achieve optimal AQE due to over-pruning, very
low values converge to optimal solutions, but may be very
slow.
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PCSOM has been designed taking into account the con-
straints imposed by the SOMA architecture, a cellular array
of processing elements with dynamic routing and enhanced
reconfigurability capabilities. Future works will implement
PCSOM on this cellular architecture in order to drive the type
of hardware to be configured on each node.

Further work will focus on analyzing the behavior of
PCSOM on dynamic environments (i.e. probability density
functions that change over time) and on studying the interest of
including sprouting mechanisms in order to rebuild synapses
or create connections with remote neurons. Again, dynamic
routing of the underlying NoC architecture should permit
this by still imposing physical constraints due to congestion
probability.
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