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Abstract

In the paper, the global optimization of hybrid electric vehicle (HEV) compo-

nents and control is performed using genetic algorithm and dynamic program-

ming. Reluctance network modelling (RNM) is used to describe the behaviour of

the electrical machine (EM). The pole number is considered as a design variable

in the EM model. A software component is built from this model and is used in

Matlab for a sizing by optimization. The influence of the EM pole number on

the system optimization is analysed. Contrary to the low differences observed

on the energy efficiency of the vehicle, the machine shape is highly impacted.

Keywords: Hybrid Electric Vehicle, global optimization, Interior Permanent

Magnet Synchronous Machine, pole number, Reluctance Network Model,

software component.

1. Introduction

Nowadays, transportation is one of the main sources of greenhouse gas emis-

sions [1] and pollutants. Hybrid electric vehicles (HEV) are a serious alternative

to reduce the emissions of the conventional vehicles. Energy recovery at braking

can indeed save up to 30% fuel on urban driving conditions.
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However, HEV are complex systems because the energy management, the

size of the components and the driving conditions are strongly linked [2]. For

instance, it is difficult to size separately the electrical machine (EM) because its

own operating cycle depends on the other component sizing and on the energy

management of the HEV. The EM operating cycle has to be predetermined from

the vehicle cycle with considerations on the management of the system. Besides,

the characteristics of the components may influence the energy management.

For example the management can be adapted to the best efficiency area of the

EM [3, 4].

The approach used in the paper considers the entire system with these inter-

actions. As shown in Fig. 1, the paper deals with a parallel hybrid architecture

of HEV. A global optimization process [3] is used to minimize the fuel con-

sumption of the vehicle over a driving cycle. The components and their energy

management are sized by this process thanks to the combination of two opti-

mization algorithms: non-dominated sorting genetic algorithm (NSGA-II) and

dynamic programming. This kind of approaches have been reviewed [5] and

used [6, 7, 8, 9].

Battery Converter EM

ICE Clutch 2 Coupling Clutch 1 Gear box Gear

Figure 1: Hybrid parallel architecture with two clutches.

A specific electromagnetic model based on reluctance network modelling

(RNM) is used to size precisely the electrical machine. This kind of model

has a low computation time which is necessary in the context of a systemic

optimization. CADES [10] framework is used to build a software component

(MUSE standard [11]) containing the reluctance network model obtained from

a reluctance schematic. This software component is a black box model which

can be plugged inside several software tools. In our case, Matlab is used as the
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upper level and calls the model during the global optimization process. The

number of calls can be very high (about 20 million for the process). The RNM

running time becomes then a key point when running the global optimization

many times. Therefore, the simplification of the RNM thanks to symmetries

and periodicities is considered.

First, the paper presents the global optimization process. NSGA-II and

dynamic programming algorithms are introduced. Then, the EM model using a

reluctance network is presented and compared to a finite element analysis. The

building of the software component and its use in the global sizing process are

also introduced. Finally, the comparative study discussing the influence of the

pole number is detailed.

2. Optimization process

2.1. Description

In this work, the HEV is considered as a system described by 16 variables,

where 11 deals with a geometrical description of the EM (Fig. 2), including the

pole number. The other 5 are used to describe the remaining components such

as gear ratios, the internal combustion engine (ICE), etc.

Figure 2: EM sizing variables.

The sizing process leads to the minimization of the fuel consumption of
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the vehicle on the Hyzem urban driving cycle [12]. This is achieved by the

combination of the component sizing and their optimal energy management.

As presented in Fig. 3, the multi-objective algorithm NSGA-II [13] is used to

explore the domain of feasible solutions. The energy management is considered

as a sub-problem, and is solved by Dynamic Programming [14] at each step of

the optimization process.

Sizing problem
NSGA-II

Building of the EM efficiency map

from the reluctance network model

Control problem
Dynamic Programming

HEV sizing

(16 variables)

Minimizing HEV fuel 

consumption over the driving cycle

Multi-objective optimization :

Number of batteries vs. consumption

Figure 3: Optimization process.

2.2. NSGA-II

The non-dominated sorting genetic algorithm (NSGA-II) [13] is chosen to

solve the sizing problem. This stochastic-based algorithm is well suited to solve

non-convex problems with few variables. NSGA-II is a multi-objective algo-

rithm, looking for a global solution, allowing to find a trade-off between several

objectives.

Its main drawbacks are a high computation time caused by a high number of

calls of the model and its difficulty to deal with numerous constraints. Table 1

presents the parameters chosen to get the best compromise between accuracy

and computation time for the studied application. The other settings of the

algorithm have quite no influence on the results.
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Table 1: NSGA-II settings.

Parameter Value

Population size 100

Number of iteration 200

Crossover/Mutation rate 90%/10%

As described in [13], NSGA-II is not adapted to discrete variables. In a

first approach, a closed set of pole number values around the reference1 is used:

[2; 4; 6; 8; 10; 12]. The pole number values are considered sequentially. For

each value, the optimization of all other variables is carried out. Hence, the

non-continuous problem is replaced by 6 continuous problems: for each value

of the pole number, an NSGA-II process is performed for the 15 remaining

variables, where 10 are dedicated to the geometry of the EM and 5 to the other

components of the HEV which are presented in section 3.2.

After the initialization of a random population of HEV, the algorithm follows

several steps at each iteration:

• some individuals are selected trough a non-domination sorting process;

• then, those individuals are used in an evolution process: a cross-over (90%

of the cases) or a polynomial mutation (10%) is applied, to maintain the

diversity in the evolving population;

• each individual of the resulting offspring population is evaluated regarding

the objectives: the sizing of the battery pack (number of modules) and

the fuel consumption assess on driving cycle considering optimal energy

management (Fig. 4);

• finally the best solutions from the initial and the offspring populations are

saved to be used during the next iteration.

1The 8-pole interior permanent magnet synchronous motor of the 2004 Toyota Prius

(THSII) [15] is considered as the reference for the EM of the system. It has a rated power of

50 kW.
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Ibat(t) : battery current [A]   
U1(t) : propulsion mode   

J1 : HEV fuel consumption over 
       the driving cycle [l/100km] 

Nbat : Number of batteries of the HEV   

EM feasability
ex: saturation bridge width xBr, etc.

ICE working point
ex: maximal torque, etc.

SoC (tf) = SoC (t0)
for cycle reproducibility 
& consumption comparison

0 to 100 km/h acceleration time: t0-100 < 12 s
80 km/h truck overtaking time: tdep < 9 s
HEV maximal speed: Vmax > 140 km/ h
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Figure 4: Summary of the optimization problem.

2.3. Dynamic Programming

The energy management is considered as a sub-problem, working on fixed

values for the size of the components. A comparison of different sizing requires:

• an optimal energy management, to get a minimal fuel consumption for

each sizing;

• a charge sustaining constraint on the cycle, to ensure neutral effect of the

battery energy on the fuel consumption.

Dynamic programming [14] is well adapted for this case. The control problem

is translated into a trajectory problem in a discretized space (state of charge

(SoC) vs time). In fact, the knowledge of Ibat(t) (battery current) and u1(t)

(propulsion mode: hybrid or full electric) at each time step of the cycle, defines

the entire system state [16]. So, the control problem is represented in Fig. 5 as

the trajectory of the battery state of charge during the cycle. The solution is

the trajectory that minimizes the HEV fuel consumption. Note that the initial

and final SoC are equal as defined by the charge sustaining constraint.
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Figure 5: The control problem.

Fig. 4 summarizes the studied optimization problem. The EM and HEV

models used in the process are more precisely described in the next sections.

3. Modelling

3.1. Electrical machine modelling

3.1.1. Description of the reluctance network model

The EM model developed in [3] is semi-analytical and quasi-static. A re-

luctance network modelling (RNM) is used. This approach is based on an

equivalence between magnetic and electrical phenomena. The path of the mag-

netic flux through the EM can be represented by an equivalent electrical circuit.

Cades-Reluctool software [17] is used to design the parametrized reluctance net-

work. A non-linear model is used to represent the magnetic saturation in the

iron parts (Fig. 6). The RNM is then solved thanks to a Newton-Raphson

algorithm [18]. The main output is the static torque which is computed from

the several inputs including:

• XEM : the EM variables described in Fig. 2 and the pole number;

• the stator current IEM ;

• the control angle ψ.
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Figure 6: General shape of the curve linking the magnetic flux density B and the magnetic field

intensity H in iron parts. µ0 and µr are the free space and the material relative permeability

respectively, and Js is the magnetic polarization.

Periodicities on the electrical distribution and on the geometry of the ma-

chine allow to reduce the model to a single pair of poles. This 2 poles model was

the most simple model that can be built with the previous version of Reluctool

[19]. Indeed, an anti-periodicity exists in the q-axis of the EM (Fig. 7). In fact,

d-axis q-axis

-A-B-C AB C -A-B-C AB C

I/2 I II/2 I/2 I/2-I/2-I/2 -I/2 -I/2 -I -I

 
phases

current 
orientation
and value

magnet - magnetic
  field orientation

Figure 7: Representation of a pair of poles. There is an anti-periodicity on the sources in the

q-axis. The control angle equals −π/6 in this case.

the direction of the sources (current and permanent magnet) are opposed be-

tween two poles of the same pair of poles. It induces an anti-periodicity on the

magnetic fluxes. For instance, it exists the following flux equality: F7 = −F1

(Fig. 8). So the RNM can be reduced to a single pole thanks to the dedicated

component proposed in the last version of Cades-Reluctool as shown in Fig. 8.

The simplification of the model reduces its computation time, which is more
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appropriate in an optimization context. Moreover, models with 2 poles or less

allow to work on EM with different numbers of pole pairs. Indeed, this variable

has numerous impacts in the model. First, the pole number acts on the geometry

(pole angle and number of slots as instance). Then, the current frequency and

the performances (EM and static converter losses, highest efficiency area) are

also impacted. The computation of the losses is presented in section 3.1.3 for

the EM and then in section 3.2 for the other components of the HEV.

Stator

Air gap

Rotor

1 2 3 4 5 6 7

Magnetomotive

 force sources

Tooth

Slot

Saturation

 bridge

Magnet Magnet

F1 F7

Anti-periodicity component

 

Figure 8: The RNM can be reduced to one pole thanks to the anti-periodicity component of

Cades-Reluctool.

3.1.2. Validation of the reluctance network model

The RNM is built to fit the EM behaviour in the sizing domain given by

the specifications (i.e. to respect the main paths of the magnetic flux with a

good compromise between accuracy and computation time). Finite element

simulations are used to validate the behaviour of the semi-analytical model

with different values of the pole number. Finite element modelling (FEM) is

more robust because the mesh is automatically adapted to each geometry and

a fine discretization is easy to apply.

Fig. 9 presents a comparison of the static torque of the same 8-pole machine

computed with Flux (FEM) and with Reluctool (RNM). The 8-pole interior

permanent magnet synchronous motor of the 2004 Toyota Prius (THSII) [15]
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is considered as the reference for the EM of the system. The same method is

used for a 4-pole machine in Fig. 10. The torque depends on the stator current,

the control angle, and the geometry. Results presented in Fig. 9 and 10 are

computed at 100 A.

Figure 9: Torque validation of the 8-pole reference EM.

Figure 10: Torque validation of a 4-pole EM.

The cogging torque is neglected in the reluctance network model. Other phe-

nomena such as the magnetic saturation could explain the differences2. How-

2During the driving cycle, the EM is operated at low torque and thus low current. The

saturation will then have a small effect.
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ever, Fig. 9 and 10 show that the torques computed with the reluctant model

are in good agreement with those of the FEM. The semi-analytical model fits

the average value obtain with the FEM in each case. 50 A and 200 A cases were

also treated and the results lead to the same conclusions.

Then RNM will now be used to compute the torque and the magnetic field

in each part of the EM for different values of current and control angle. Those

results are then used to assess the losses in the EM and its efficiency.

3.1.3. Building of an efficiency map of the EM

To reduce the computation time of the EM model during the optimization

process, an efficiency map in the speed-torque frame (Fig. 11) is built from the

reluctance network model. Indeed the RNM is not fast enough to be directly
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Figure 11: Efficiency map of an 8-pole EM.

used by dynamic programming. So, for each feasible EM sizing, a map is built

(800 calls to the RNM), and then used during the energy management opti-

mization thanks to linear interpolation. Dynamic programming needs in this

case about 20,000 calls to the whole HEV model, to compute fuel consumption

on each possible edge, as shown in Fig. 5, which is too expensive with direct

call to RNM. A summary of the process is presented in Fig. 12. Several steps

are followed to build the efficiency map:

11



• IEM , ψ and the speed ΩEM spaces are sampled3;

• the RNM is computed for each couple {IEM , ψ}. The magnetic fluxes and

fields are deduced for each case;

• voltages, losses and torque are computed;

• voltage constraint is introduced;

• ψ is chosen to maximise (minimize) the torque in motor (generator) phase

respectively;

• the map is finally deduced thanks to linear interpolation.

The EM losses computation is composed of several elements. The copper losses

are deduced from the current in the coils (Joule effect). The iron losses are

evaluated using a Bertotti model with first harmonic assumption. Thus rotor

iron losses are neglected. The mechanical losses are supposed to be dry frictions

and are proportional to ΩEM and to the square of the external radius of the

EM.

This losses model has been compared to measurements performed on the

reference EM [20]. Less than 2% of error has been observed on the whole

efficiency map.

3.1.4. Implementation

In order to simulate and optimize the HEV system, the EM model has to

be usable in Matlab. Indeed, as presented in the next section (3.2), the vehi-

cle model was historically developed in Matlab-Simulink [21]. In this way, the

building of an easy pluggable model using the MUSE standard [11] is appropri-

ate.

MUSE is a standard for interoperability, capitalization and reuse of models

and algorithms. It is more precisely called a software component. This stan-

3The maximum current is defined from magnetic and thermal limitations, and the maxi-

mum speed from the current and the available voltage.
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Dynamic Programming

XEM

800 calls

200 generations
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HEV 
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20,000 calls

X HEV

 
J1

Nbat

Efficiency 

map

Reluctance

network

Figure 12: Use of the efficiency map during the optimization process. Remember that XEM

are the EM variables (Fig. 2) and XHEV are the HEV variables (Section 3.2). J1 and Nbat

are the two objectives (Fig. 4).

dard allows a communication between models using modelling languages such

as Modelica or VHDL-AMS and standard modelling and analysis tools such as

Matlab, Flux2D/3D, etc. An example is given in [22]. It is also compatible with

the FMI standard [23].

The Cades framework, which includes Reluctool as well, is in fact the first

native MUSE platform. The building and the use of the MUSE model embed-

ding the RNM is presented in Fig. 13. Matlab can call the MUSE software

component through a specific plug-in which knows how to interact with the

model. Then, the methods embedded in the software component are usable in

Matlab.

3.2. Vehicle model

The HEV model is described in VEHlib [21], a Matlab/Simulink library

developed by IFSTTAR to simulate vehicle behaviours. A hybrid parallel archi-

tecture is chosen here, but the methodology is relevant for other architectures.

VEHlib allows backward calculation, which is used to compute the fuel con-
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CADES (v4) Matlab (R2016b 64bits)
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Network Model
 

.sml

description code
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MUSE

model

HEV

model

Optimization process

Figure 13: Implementation of the MUSE model embedding the RNM.

sumption of the HEV from the energy management and the speed imposed to

the wheels by the driving cycle. In addition to the detailed EM model, the vehi-

cle model has 5 more inputs (XHEV ). These are the most important variables

to describe such a vehicle:

• Nbat, the number of battery modules (1.05 kW and 52.5 Wh per module);

• Ubus, the DC voltage of the static converter (V);

• Pmt, the internal combustion engine (ICE) power (W);

• kcpl, the coupling ratio;

• kred, the final gear ratio.

To sum up, 16 variables are used to describe the HEV, including 11 dedicated

to a geometrical design of the EM and 5 other defining the remaining system

components.

The HEV model contains the models of all the components of the parallel

architecture, which is presented in Fig. 1:

• an analytical model is used for the batteries;

• a classical circuit model is used for the static converter. Pulse width mod-

ulation, IGBT and diode losses (conduction and switching) are considered;
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• an analytical model with constant yield is used for the mechanical trans-

mission;

• an efficiency map is used to represent the ICE;

• a classical model of the vehicle considering the drag force and the rolling

resistance is used.

Note that both the ICE and the vehicle models have been validated through the

experimental test bench at IFSTTAR [24, 25].

3.3. Computing performances

Table 2 presents some elements concerning the computing effort for the op-

timization process. The computation time considering one value of the pole

number is presented by the last column. It also shows the gain enabled by the

use of the RNM instead of the FEM. It is currently 3 times faster to build the

efficiency map thanks to the RNM (4.4 s) than to call the FEM a single time

(12 s).

Table 2: Comparison of solving times.

Model used Type of computation

single call efficiency map optimization process

FEM 12 s

RNM (2 poles) .018 s 10.8 s 15 h

RNM (1 pole) .009 s 4.4 s 5 h

These results are obtained on a same personal computer (i7-4710MQ @ 2,50

GHz processor, 16 GB RAM, Windows 7 Pro, 64 bits) using parallel computing.

These values do not include the computation time to mesh the geometry in the

finite element case.
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4. Results

4.1. Fuel Consumption

This method has been applied on a parallel HEV architecture, following an

urban Hyzem driving cycle [12]. Global optimization results (pareto fronts) are

presented in Fig. 14. Each axis represents an objective (number of batteries

vs fuel consumption) and each point corresponds to an optimal solution. The

colour matches to the pole number of the EM.

Figure 14: Comparison of pareto fronts for each number of poles.

First of all, an impact of the optimization is observed. The optimal HEV

with an 8-pole EM consumes 9% less than the reference4 HEV. Moreover the

4-pole EM and 6-pole EM lead to the best HEV systems reducing by about 1%

the previous result. Fuel consumption increases in the other pole number cases

but it remains an improvement compared to the reference HEV. Table 3 gives an

4The reference HEV is built from a conventional vehicle which is hybridized by the addition

of a parallel electrical power-train, inspired from Toyota Prius 2004 data. A scaling factor

was applied to the prius EM, and the coupling gear ratio were chosen arbitrarily. It is not an

optimized sizing.
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overview of optimal systems containing 28 battery modules (i.e. about 1.47 kWh,

which is the reference HEV value), depending on the EM pole number.

Table 3: Overview of optimal systems containing 28 battery modules.

EM pole number 2 4 6 8 10 12

EM power-to-weight ratio [kW/kg] 1.6 1.42 1.04 0.85 0.64 0.69

ACM5 traction efficiency at use [%] 82 87 87 87 87 86

ACM recovery efficiency at use [%] 85 89 89 89 88 88

Coupling gear ratio 1.92 1.29 0.7 0.59 0.4 0.4

Fuel consumption [l/km] 2.62 2.5 2.5 2.52 2.54 2.56

The best performances are notably due to an increase of the EM efficiency

over the driving cycle. This reduces the energy needed to cover one kilometre.

However, the consumption differences are small because the other HEV variables

(as the coupling ratio) can change to match the optimal efficiency area of the

EM. This is illustrated in Table 4 as well, which shows the speed of the EM for

different speeds of the HEV.

Table 4: EM rotation speed at specific points of the driving cycle.

Pole number EM rotation speed [rpm]

HEV speed =

57 km/h 33 km/h 13 km/h

2 3656 3327 2379

4 2524 2297 1643

6 1302 1185 847

8 1154 1051 751

10 753 686 490

12 750 683 488

5ACM is the French acronym for the combination of the static converter and the EM.
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4.2. EM sizing

An interesting result concerns the mass and the volume of the resulting

EM with regards to the pole number. As shown in Fig. 15, in the case of

systems containing 28 battery modules, it seems that the EM mass (as well as

its volume) is reduced in systems with an EM composed of a low number of

poles. The quantities of iron and copper also follow this trend. Note that the

mass of end windings is taken into account.

In fact, the optimization converges on strictly different EM geometries if the

number of poles is under 6 or above 8. In the system approach, fewer poles

imply deep machines with a small diameter, and reciprocally, which confirms

the result presented in [26].

Figure 15: EM masses in optimal systems with 28 batteries.

5. Conclusion

In the paper, the influence of the EM pole number on optimal HEV systems

is analysed using a global system sizing approach. The EM model gives a good

approximation of the average torque. The pole number has a small influence on

the system energy efficiency. The optimizations converge to different kinds of

machines, in terms of geometry and dimensions. Smallest and lightest EM are
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found in the case of a global optimization on a HEV with 4-pole or 6-pole EM.

These two cases lead to the lowest fuel consumptions during the urban driving

cycle as well.

The approach is using a software component (MUSE standard) as the EM

model. It is embedding a fast reluctance network model designed in Cades-

Reluctool. The use of the specific anti-periodicity component allows to reduce

the model to a single pole. The resulting RNM is much faster than a FEM and

more than twice faster than the 2-poles model, which was initially used.

Future works will focus on other architectures of HEV with two EM. The

influence of the process on the design of the machines will be analysed.
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