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We study entanglement-related properties of random quantum states which are unitarily invariant, in the sense that their
distribution is left unchanged by conjugation with arbitrary unitary operators. In the large matrix size limit, the distribution of
these random quantum states is characterized by their limiting spectrum, a compactly supported probability distribution.We prove
several results characterizing entanglement and the PPT property of random bipartite unitarily invariant quantum states in terms
of the limiting spectral distribution, in the unbalanced asymptotical regime where one of the two subsystems is fixed, while the
other one grows in size.

1. Introduction

In quantum information theory, when one needs to under-
stand properties of typical density matrices, it is necessary
to endow the convex body of quantum states with a natural,
physically motivated probability measure, in order to com-
pute statistics of the relevant quantities. Since the late 1990s,
there have been several candidates for such measures: the
induced measures [1, 2], the Bures measure [3], or random
matrix product states [4], just to name a few.

The induced measures, introduced by Zyczkowski and
Sommers [2], but already studied by Page [1], have received
the most attention, mainly due to their simplicity and to
their natural physical interpretation: a density matrix from
the induced ensemble is obtained by tracing an environment
system of appropriate dimension out of a random uniform
bipartite pure state (the latter being distributed along the
Lebesgue measure on the unit sphere of the corresponding
complex Hilbert space).

In [5], Aubrun studied bipartite random quantum states
from the induced ensemble, and determined which values
of the ratio environment size/system size the random states
are, with high probability, PPT (i.e., they have a positive
semidefinite partial transpose). Aubrun’s idea was developed

and generalized in many directions, for other entanglement-
related properties and in different asymptotic regimes in the
following years [6–13]. One of the most notable results in
this framework is the characterization of the entanglement
threshold from [14], in which the authors determine, up to
logarithmic factors, how large should the environment be in
order for a random bipartite quantum state from the induced
ensemble to be separable.

In this work, we consider random quantum states which
have the property that their distribution is left unchanged by
conjugation with arbitrary unitary operations; we call them
unitarily invariant.These distributions are characterized only
by their spectrum, andwe consider sequences of distributions
with the property that their spectra converge towards some
compactly supported probability measure 𝜇 on the real
line. In particular, the family of distributions we consider
generalizes the induced ensemble, which corresponds to a
Marčenko-Pastur limiting spectral distribution. We provide
conditions such that the quantum state corresponding to
a random unitarily invariant matrix will be, with large
probability, PPT, separable, or entangled. We shall ask that
the conditions be simple and only depend on the asymptotic
spectrum of the random matrices. We state now an informal
version of some of the main results contained in this paper;
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we refer the reader toTheorem 10 and Propositions 15 and 23
for the exact results.

Theorem 1. Let 𝑋𝑑 ∈ M𝑛(C) ⊗ M𝑑(C) be a sequence of
unitarily invariant randommatrices converging “strongly” to a
compactly supported probability measure 𝜇; here, 𝑛 and 𝜇 are
fixed. Assume that the limiting spectral measure 𝜇 has average𝑚 and variance 𝜎2 and is supported on the interval [𝐴, 𝐵] ⊆[0,∞). Then,

(i) if the following condition holds, then sequence (𝑋𝑑)𝑑 is
asymptotically PPT:

𝑛 (𝑚 − 2𝜎) > 𝐵 − 𝐴 + 2𝜎; (1)

(ii) if one of the two following conditions hold, then
sequence (𝑋𝑑)𝑑 is asymptotically separable:

(𝑛2 + 𝑛 − 1)𝐴 > 𝐵 + 𝑚(𝑛2 − 2) + 2𝜎√𝑛2 − 2
𝐴 > (𝑛2 − 2) (𝐵 − 𝑚) + 2𝜎√𝑛2 − 2; (2)

(iii) if the following condition holds, then sequence (𝑋𝑑)𝑑 is
asymptotically entangled:

𝐵𝑚 < 1 + 𝑛 𝜎2𝑚2
− 2 𝜎𝑚√𝑛 − 1. (3)

The paper is organized as follows: Sections 2, 3, and
4 contain facts from the theories of, respectively, unitarily
invariant random matrices, free probability, and entangle-
ment, which are used later in the paper. Section 5 contains
a strengthening of a result about block-modifications of
random matrices which allows us to study the behavior of
the extremal eigenvalues of such matrices. Sections 6, 7, and
8 contain the new results of this work, spectral conditions
that unitarily invariant randommatricesmust satisfy in order
to, respectively, have the PPT property, to be separable, or
to be entangled. Moreover, Section 8 contains results about
the asymptotic value the 𝑆(𝑘) norms introduced by Johnston
and Kribs take on unitarily invariant random matrices.
Finally, in Section 9, we show that shifted GUE matrices
are PPT and have Schmidt number that scales linearly with
the dimension of the fixed subsystem in the unbalanced
asymptotical regime.

2. Unitarily Invariant Random Matrices and
Strong Convergence

In this work, we shall denote by M𝑑(C) (Msa
𝑑 (C), resp.) the

set of 𝑑 × 𝑑 complex matrices (self-adjoint matrices, resp.)
and by U𝑑 the group of 𝑑 × 𝑑 unitary operators. We shall
be concerned with unitarily invariant randommatrices: these
are self-adjoint random matrices 𝑋 ∈ Msa

𝑑 (C) having the
property that, for any unitary matrix 𝑈 ∈ U𝑑, the random
variables 𝑋 and 𝑈𝑋𝑈∗ have the same distribution. From
the invariance of the Haar distribution on U𝑑, it follows
that, given a deterministic matrix 𝐴 ∈ Msa

𝑑 (C) and a Haar-
distributed random unitary matrix 𝑈 ∈ U𝑑, the distribution
of the random matrix 𝑋 fl 𝑈𝐴𝑈∗ is unitarily invariant;

this is the most common construction of unitarily invariant
ensembles.

Themost well-studied ensembles of randommatrices are,
without a doubt, Wigner ensembles [15]: these are random
matrices 𝑋 ∈ Msa

𝑑 (C) having independent and identically
distributed (i.i.d.) entries, up to the symmetry condition𝑋𝑗𝑖 = 𝑋𝑖𝑗; see [16, Section 2]. At the intersection of Wigner
and unitarily invariant ensembles is the Gaussian unitary
ensemble (GUE). A random matrix 𝑋 ∈ Msa

𝑑 (C) is said to
have GUE𝑑 distribution if its entries are as follows:

𝑋𝑗𝑘 =
{{{{{{{{{{{{{{{{{

1√𝑑𝐴𝑗𝑘 if 𝑗 = 𝑘
1√2𝑑 (𝐴𝑗𝑘 + 𝑖𝐵𝑗𝑘) if 𝑗 < 𝑘
1√2𝑑 (𝐴𝑘𝑗 − 𝑖𝐵𝑘𝑗) if 𝑗 > 𝑘,

(4)

where 𝐴𝑗𝑘, 𝐵𝑗𝑘 are i.i.d. real, centered standard Gaussian
random variables.

The celebrated Wigner theorem states that GUE random
matrices converge in moments, as 𝑑 → ∞ towards the
semicircle law; see [15].

Theorem 2. Let 𝑋𝑑 be a sequence of GUE random matrices.
Then, for all moment orders 𝑝 ≥ 1, we have

lim
𝑑→∞

E
1𝑑 tr 𝑋𝑝

𝑑 = ∫𝑥𝑝𝑑 SC0,1 (𝑥)
= {{{

Cat𝑝/2 if𝑝 is even,
0 if𝑝 is odd,

(5)

where Cat𝑝 are the Catalan numbers and SC𝑎,𝜎 is the semicir-
cular distribution with mean 𝑎 and variance 𝜎2:

SC𝑎,𝜎 = √4𝜎2 − (𝑥 − 𝑎)2
2𝜋𝜎2 1[𝑎−2𝜎,𝑎+2𝜎] (𝑥) 𝑑𝑥. (6)

Note that the above theorem only gives partial infor-
mation about the behavior of the extremal eigenvalues (or
about the operator norm) of 𝑋𝑑. For example, convergence
in distribution implies that the largest eigenvalue of 𝑋𝑑 is at
least 2 (which is the maximum of the support of the limit
distribution SC0,1). The fact that the largest eigenvalue of 𝑋𝑑
converges indeed to 2 requires much more work; see [17]
for the case of Wigner matrices. In their seminal paper [18],
Haagerup and Thorbjørnsen have further generalized these
results to polynomials in tuples of GUE matrices and called
this phenomenon strong convergence.

Definition 3. A sequence of 𝑘-tuples of GUE distributed
random matrices (𝑋(1)

𝑑 , 𝑋(2)
𝑑 , . . . , 𝑋(𝑘)

𝑑 ) ∈ Msa
𝑑 (C)𝑘 is said

to converge strongly towards a 𝑘-tuple of noncommuta-
tive random variables (𝑥1, 𝑥2, . . . , 𝑥𝑘) living in some 𝐶∗-
noncommutative probability space (A, 𝜏), if they converge
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in distribution: for all polynomials 𝑃 in 2𝑘 noncommutative
variables,

lim
𝑑→∞

E
1𝑑 tr 𝑃 (𝑋(1)

𝑑 , 𝑋(1)∗
𝑑 , . . . , 𝑋(𝑘)

𝑑 , 𝑋(𝑘)∗
𝑑 )

= 𝜏 [𝑃 (𝑥1, 𝑥∗1 , . . . , 𝑥𝑘, 𝑥∗𝑘 )]
(7)

and, moreover, for all 𝑃 as above, we also have the conver-
gence of the operator norms:

almost surely, lim
𝑑→∞

𝑃 (𝑋(1)
𝑑 , 𝑋(1)∗

𝑑 , . . . , 𝑋(𝑘)
𝑑 , 𝑋(𝑘)∗

𝑑 )
= 𝑃 (𝑥1, 𝑥∗1 , . . . , 𝑥𝑘, 𝑥∗𝑘 ) .

(8)

Collins and Male generalized in [19] the result above to
arbitrary unitarily invariant random matrices, by dropping
the GUE hypothesis and asking that individual matrices𝑋(𝑗)
𝑑 converge strongly to their respective limits 𝑥𝑗; see [19,

Theorem 1.4].Their result will be crucial to the present paper,
since it will allow us to prove that the extremal eigenvalues
have indeed the behavior suggested by the convergence in
distribution (i.e., they converge to the extrema of the support
of the limiting eigenvalue distribution, in the single matrix
case 𝑘 = 1).
3. Some Elements of Free Probability

We recall in this section the main tools from free probability
theory needed here. The excellent monographs [20–22] con-
tain detailed presentations of the theory, with emphasis on
different aspects.

In free probability theory, noncommutative random vari-
ables are seen as abstract elements of some 𝐶∗-algebra
A, equipped with a trace 𝜏 which plays the role of the
expectation in classical probability.The notion of distribution
of a family of random variables (𝑥1, . . . , 𝑥𝑘) is the set of all
evaluations (𝑃(𝑥1, 𝑥∗1 , . . . , 𝑥𝑘, 𝑥∗𝑘 ))𝑃, where 𝑃 runs through
all polynomials in 2𝑘 noncommutative variables (see also
Definition 3). In the case of a single self-adjoint variable 𝑥 =𝑥∗, the distribution is given by the sequence of moments

𝑚𝑝 (𝑥) fl 𝜏 (𝑥𝑝) , 𝑝 ≥ 1. (9)

The notion of free cumulants introduced by Speicher in
[23] plays a central role in the theory, in the sense that
it characterizes free independence. In the case of a single
variable, one can express the moments in terms of the free
cumulants by themoment-cumulant formula:

𝑚𝑝 (𝑥) = ∑
𝜎∈NC𝑝

𝜅𝜎 (𝑥) . (10)

Above, NC𝑝 denotes the set of noncrossing partitions on 𝑝
elements [21], and the free cumulant functional 𝜅 is defined
multiplicatively on the blocks of the noncrossing partition 𝜎:

𝜅𝜎 = ∏
𝑐 block of 𝜎

𝜅|𝑐|. (11)

Let us briefly discuss two examples. First, it is easy to see
that the semicircular distribution introduced in Theorem 2
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Figure 1:The density of the Marčenko-Pastur distributions MP𝑐 for
different values of the parameter 𝑐.

has free cumulants 𝜅1(SCa,𝜎) = 𝑎, 𝜅2(SCa,𝜎) = 𝜎2, while𝜅𝑝(SCa,𝜎) = 0, for all 𝑝 ≥ 3. The vanishing of free cumulants
of order 3 and larger characterizes the distribution which
appears in the free central limit theorem (exactly as in the
classical situation; see [21, Lecture 8]).

Another remarkable family of distributions in free prob-
ability theory are the Marčenko-Pastur distributions MP𝑐,
where 𝑐 > 0 is a positive scalar. The distribution MP𝑐 is
defined by the very simple property that all its free cumulants
are equal to 𝑐: 𝜅𝑝(MP𝑐) = 𝑐, ∀𝑝 ≥ 1. Using the moment-
cumulant formula and Stieltjes inversion, one can compute
the density of MP𝑐:

MP𝑐 = max (1 − 𝑐, 0) 𝛿0
+ √(𝑏 − 𝑥) (𝑥 − 𝑎)2𝜋𝑥 1(𝑎,𝑏) (𝑥) 𝑑𝑥, (12)

where 𝑎 = (1−√𝑐)2 and 𝑏 = (1+√𝑐)2. This density is plotted
in Figure 1 for different values of parameter 𝑐.

With the help of free cumulants, we can introduce the
free additive convolution of compactly supported probability
measures, a notion which will play a key role in what follows.
Given two compactly supported probability measures 𝜇, ],
define 𝜇 ⊞ ], the free additive convolution of 𝜇 and ], as the
unique probability measure having free cumulants:

𝜅𝑝 (𝜇 ⊞ ]) = 𝜅𝑝 (𝜇) + 𝜅𝑝 (]) ∀𝑝 ≥ 1. (13)

For a given measure 𝜇, one can define iteratively its free
additive convolution powers as

𝜇⊞𝑛 fl 𝜇 ⊞ ⋅ ⋅ ⋅ ⊞ 𝜇⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑛 times

, (14)

for any integer 𝑛 ≥ 1. As it was shown by Nica and Speicher
in [24], this semigroup extends from positive integers to all
real numbers 𝑇 ≥ 1. This semigroup plays an important
role in what follows, mainly due to the connection to block-
modifications of random matrices (see Section 5); for now,
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it is important to remember that the measures 𝜇⊞𝑇 are
characterized by their free cumulants:

𝜅𝑝 (𝜇⊞𝑇) = 𝑇𝜅𝑝 (𝜇) ∀𝑝 ≥ 1, ∀𝑇 ∈ [1,∞) . (15)

It is in general very hard to get a grip on the support
of the elements of the free additive convolution semigroup𝜇⊞𝑇. Although there exist implicit algebraic characterizations
of the support of the measures 𝜇⊞𝑇 in terms of the support
of 𝜇 and 𝑇, it is only in very simple circumstances that one
can write down explicit formulas for the support. We recall
below an approximation result obtained in [25, Lemma 2.3
andTheorem 2.4].

Proposition 4. Let 𝜇 be a probability measure having mean𝑚 and variance 𝜎2, whose support is contained in the compact
interval [𝐴, 𝐵]. Then, for any 𝑇 ≥ 1, we have

supp (𝜇⊞𝑇) ⊆ [𝐴 + 𝑚 (𝑇 − 1) − 2𝜎√𝑇 − 1, 𝐵
+ 𝑚 (𝑇 − 1) + 2𝜎√𝑇 − 1] . (16)

4. The Separability Problem

We review in this section the notions of separability and
entanglement from quantum information theory, as well as
several important known results from this field. An excellent
review of these notions is [26]; for connections with random
matrix theory, see [27].

We denote byM+
𝑑(C) the cone of 𝑑 × 𝑑 complex positive

semidefinite matrices. The separable cone is a subcone of the
set of bipartite positive semidefinite matrices of size 𝑑1 ⋅ 𝑑2
defined by

SEP𝑑1,𝑑2

fl { 𝑘∑
𝑖=1

𝐴 𝑖 ⊗ 𝐵𝑖 : 𝐴 𝑖 ∈ M
+
𝑑1
(C) , 𝐵𝑖 ∈ M

+
𝑑2
(C)} . (17)

Quantum states (separable quantum states, resp.) are
elements ofM+

𝑑(C) (SEP𝑑1,𝑑2 , resp.) with unit trace; however,
it is clear from the definition of separability that the trace
normalization is of little importance, so we shall work with
the conic versions of these notions to avoid technicalities.

Deciding whether a given positive semidefinite matrix𝑋 ∈ M+
𝑑1𝑑2

(C) is separable is an NP-hard problem [28],
when formulated as a weak membership decision problem.
A simple solution exists only in small dimensions 𝑑1𝑑2 ≤ 6, a
fact due to the simple structure of the cone of positive maps𝑓 : M𝑑1

(C) → M𝑑2
(C). Indeed, any such positive map can

be decomposed as follows (see [29]):

𝑓 = 𝑔 + ℎ ∘ ⊤, (18)

where 𝑔, ℎ are completely positivemaps and⊤ is the transposi-
tion operator. Maps which can be written as above are called
decomposable; Woronowicz’s result from [29] shows that, in
the case 𝑑1𝑑2 ≤ 6, any positive map is decomposable; this
fact is no longer true in larger dimensions; see [30].

The cone of separable matrices and the cone of positive
maps,

POS𝑑1 ,𝑑2 fl {𝑓 : M𝑑1
(C) → M𝑑2

(C) : 𝐴 ≥ 0
⇒ 𝑓 (𝐴) ≥ 0} , (19)

are dual to each other [30]:
𝑋 ∈ SEP𝑑1,𝑑2 ⇐⇒

(𝑓 ⊗ id𝑑2) (𝑋) ≥ 0, ∀𝑓 ∈ POS𝑑1 ,𝑑2 . (20)

As we have already seen, the transposition map plays a
special role in the theory. We introduce thus the cone PPT of
matrices having a positive partial transpose:

PPT𝑑1 ,𝑑2 fl {𝑋 ∈ M
+
𝑑1𝑑2

(C) : (⊤𝑑1
⊗ id𝑑2) (𝑋) ≥ 0} . (21)

It is an intermediate cone, sitting between the separable cone
and the positive semidefinite cone:

SEP𝑑1,𝑑2 ⊆ PPT𝑑1 ,𝑑2 ⊆ M
+
𝑑1𝑑2

(C) . (22)

In what follows, we shall write𝑋Γ fl (⊤𝑑1
⊗ id𝑑2)(𝑋).

5. Strong Convergence for Block-Modified
Random Matrices

In this section we recall a result about the limiting distri-
bution of random matrices obtained by acting with a given
linear map on each block of a unitarily invariant random
matrix [31]. We then upgrade this result to take into account
strong convergence; the result will be used many times in the
subsequent sections.

The setting for block-modified random matrices is as
follows. Consider a sequence of bipartite random matrices𝑋𝑑 ∈ Msa

𝑛𝑑(C) converging strongly as 𝑑 → ∞ to a compactly
supported probability measure 𝜇 (𝑛 being a fixed parameter).
Given a (fixed) function 𝜑 : M𝑛(C) → M𝑛(C) preserving
self-adjoint elements, define themodified random matrix:

𝑋𝜑
𝑑 fl (𝜑 ⊗ id𝑑) (𝑋𝑑) ∈ M

sa
𝑛𝑑 (C) , (23)

obtained by acting with 𝜑 on the 𝑛×𝑛 blocks of𝑋𝑑. Note that
in [31] the more general situation where 𝜑 could change the
size of blocks is considered, but this more general setting is
not needed here. We also require that the function 𝜑 satisfies
the following technical condition (again, weaker conditions
were considered in [31]; the situation here is closer to the
results in [11]); see [31, Definition 4.7].

Definition 5. Define the Choi matrix of the linear map 𝜑:
M

sa
𝑛2 (C) ∋ 𝐶𝜑 fl

𝑛∑
𝑖,𝑗=1

𝜑 (𝐸𝑖𝑗) ⊗ 𝐸𝑖𝑗. (24)

Map 𝜑 is said to satisfy the unitarity condition if every
eigenprojector 𝑃 of 𝐶𝜑 satisfies the condition that (id⊗ tr)(𝑃)
is proportional to the identity operator 𝐼𝑛.

Under this assumption on 𝜑, we have the following result,
which upgrades [31, Theorem 5.1] to strong convergence.



Advances in Mathematical Physics 5

Theorem 6. Consider a sequence of bipartite unitarily invari-
ant random matrices 𝑋𝑑 ∈ Msa

𝑛𝑑(C) converging strongly to a
compactly supported probability measure 𝜇. Let 𝜑 : M𝑛(C) →
M𝑛(C) be a hermiticity-preserving linear map satisfying the
unitarity condition from Definition 5. Then, the sequence of
block-modified randommatrices𝑋𝜑

𝑑 = (𝜑⊗id𝑑)(𝑋𝑑) converges
strongly to the probability measure:

𝜇𝜑 = ⊞𝑠𝑖=1 (𝐷𝜆𝑖/𝑛
𝜇)⊞𝑟𝑖 , (25)

where 𝜆𝑖, 𝑟𝑖 are the eigenvalues of the Choi matrix𝐶𝜑 and their
multiplicities, respectively.

Proof. The convergence in distribution has been shown in
[31, Theorem 5.1]. The strong convergence follows from [19,
Theorem 1.4] and the decomposition

𝑋𝜑
𝑑 = 𝑛∑

𝑖,𝑗,𝑘,𝑙=1

𝑐𝑖𝑗𝑘𝑙 (𝐸𝑖𝑗 ⊗ 𝐼𝑑)𝑋𝑑 (𝐸𝑘𝑙 ⊗ 𝐼𝑑) , (26)

where 𝑐𝑖𝑗𝑘𝑙 = ⟨𝐸𝑖𝑙 ⊗ 𝐸𝑗𝑘, 𝐶𝜑⟩. Indeed, the dilated matrix units𝐸𝑖𝑗⊗𝐼𝑑 are strongly asymptotically free from𝑋𝑑, and the result
follows.

6. The Partial Transposition

As an application of Theorem 6, we consider in this section
the operation of partial transposition. Recall that transposi-
tion operation has the flip operator as its Choi matrix: 𝐹 :
C𝑛 ⊗ C𝑛 → C𝑛 ⊗ C𝑛,

𝐹𝑥 ⊗ 𝑦 = 𝑦 ⊗ 𝑥, ∀𝑥, 𝑦 ∈ C
𝑛. (27)

The flip operator is unitary, having eigenvalues +1, −1 with
respective multiplicities 𝑛(𝑛 + 1)/2, 𝑛(𝑛 − 1)/2 (the eigen-
values have as eigenspaces the symmetric and the antisym-
metric subspace, resp.). Below, we denote by minsupp(])
(maxsupp(]), resp.) theminimum (maximum, resp.) element
of the support of the measure ].

Proposition 7. Let 𝑋𝑑 ∈ M+
𝑑𝑛(C) be a sequence of unitar-

ily invariant random matrices as in Definition 3 converging
strongly to a compactly supported probability measure 𝜇 ∈
P([0,∞)); here, 𝑛 and 𝜇 are fixed. Define

𝜇Γ fl (𝐷1/𝑛𝜇)⊞𝑛(𝑛+1)/2 ⊞ (𝐷−1/𝑛𝜇)⊞𝑛(𝑛−1)/2 . (28)

If minsupp𝜇Γ > 0 then, almost surely as 𝑑 → ∞, 𝑋𝑑 ∈
PPT𝑛,𝑑. In particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ PPT𝑛,𝑑) = 1. (29)

Proof. Using Theorem 6, the smallest eigenvalue of the par-
tially transposed randommatrix𝑋Γ

𝑑 converges, almost surely
as 𝑑 → ∞, towardsminsupp𝜇Γ, which is positive. Hence, the
randommatrices𝑋Γ

𝑑 are asymptotically positive definite.

Let us discuss now some implications of these results.
First, let consider some basic examples. Since GUE matrices

are both unitarily invariant and Wigner, the result above
applies to them, and we have the following remarkable
equality (D= denotes equality in distribution):

𝑋𝑑
D= 𝑋Γ

𝑑
(30)

for a GUE matrix 𝑋𝑑 ∈ Msa
𝑛𝑑(C). In particular, we have that,

for all𝑚 ∈ R and 𝜎 ≥ 0, SCΓ
𝑚,𝜎 = SC𝑚,𝜎. We show in the next

lemma that semicircular measures are the only compactly
supported probability measures enjoying this property.

Lemma 8. Assume 𝑛 ≥ 2 and let 𝜇 be a compactly supported
probability measure such that 𝜇Γ = 𝜇. Then, 𝜇 is semicircular.

Proof. Let 𝜅𝑝 be the free cumulants of the distribution 𝜇 (see
Section 3) and

𝑅 (𝑧) = ∞∑
𝑝=0

𝜅𝑝+1𝑧𝑝 (31)

be its 𝑅-transform [21, Lecture 12]. The equality of the two
measures from the statement together with (28) gives

𝑅 (𝑧) = 𝑛 + 12 𝑅(𝑧𝑛) − 𝑛 − 12 𝑅(−𝑧𝑛) , (32)

where we have used the fact that the 𝑅-transform is additive
with respect to the free convolution. On the level of the free
cumulants, the equality above means that 𝜅𝑝+1 = 0 whenever

𝑛 + 12𝑛𝑝 − (−1)𝑝 𝑛 − 12𝑛𝑝 ̸= 1. (33)

Since 𝑛 ≥ 2, the above relation holds for all 𝑝 ≥ 2, so
it must be that 𝜇 has the property that 𝜅𝑝(𝜇) = 0 for all𝑝 ≥ 3. This property characterizes semicircular distributions
(see [21, Example 11.21]), so the conclusion follows.

Remark 9. It would be interesting to see if there are any other
probability measures, with unbounded support, which are
invariant by the partial transposition operation, see [32].

Another interesting example for which one can perform
computations is the case of theMarčenko-Pastur distribution
MP𝑐, for some parameter 𝑐 > 0. This case has been studied in
[8, Theorem 6.2], where it has been shown that the measure
MPΓ𝑐 has positive support iff

𝑐 > 2 + 2√1 − 1𝑛2 . (34)

As a remark, note that, in the limit 𝑛 → ∞, we recover
Aubrun’s threshold value of 𝑐 = 4 from [5, Theorems 2.2 and
2.3].

We prove next the main result of this section, a sufficient
condition for themodifiedmeasure 𝜇Γ to be supported on the
positive half-line.

Theorem 10. Let 𝜇 be a probability measure having mean 𝑚
and variance 𝜎2, whose support is contained in the compact
interval [𝐴, 𝐵]. Then, provided that 𝑛(𝑚 − 2𝜎) > 𝐵 − 𝐴 + 2𝜎,
we have supp(𝜇Γ) ⊂ (0,∞).



6 Advances in Mathematical Physics

Proof. We start by rewriting (28) as

𝐷𝑛𝜇Γ = 𝜇⊞𝑛(𝑛+1)/2 ⊞ 𝐷−1𝜇⊞𝑛(𝑛−1)/2
= (𝜇⊞1+𝜀 ⊞ 𝐷−1𝜇)⊞𝑛(𝑛−1)/2 , (35)

where 𝜀 = 2/(𝑛 − 1) such that

(1 + 𝜀) 𝑛 (𝑛 + 1)2 = 𝑛 (𝑛 − 1)2 . (36)

Let us denote by ] the measure 𝜇⊞1+𝜀⊞𝐷−1𝜇 and try to obtain
bounds for its support. First, using Proposition 4 for𝑇 = 1+𝜀,
we get

supp (𝜇⊞1+𝜀) ⊆ [𝐴 + 𝑚𝜀 − 2𝜎√𝜀, 𝐵 + 𝑚𝜀 + 2𝜎√𝜀] . (37)

Thus, the support of ] is bounded from below by

𝐴] fl 𝐴 + 𝑚𝜀 − 2𝜎√𝜀 − 𝐵. (38)

Moreover, by direct computation, we have

𝜅1 (]) = 𝑚𝜀
𝜅2 (]) = 𝜎2 (2 + 𝜀) . (39)

Applying again Proposition 4 for ] and 𝑇 = 𝑛(𝑛 − 1)/2, we
deduce that the support of𝐷𝑛𝜇Γ is bounded from below by

𝐴Γ = 𝐴 − 𝐵 + 𝑚𝜀 − 2𝜎√𝜀 + 𝑚𝜀 (𝑛 (𝑛 − 1)2 − 1)
− 2𝜎√2 + 𝜀√𝑛 (𝑛 − 1)2 − 1

= 𝑛𝑚 − (𝐵 − 𝐴)
− 2𝜎(√ 2𝑛 − 1 + √ (𝑛 − 2) 𝑛 (𝑛 + 1)𝑛 − 1 ) .

(40)

The conclusion 𝐴Γ > 0 follows from the upper bound:

√ 2𝑛 − 1 + √ (𝑛 − 2) 𝑛 (𝑛 + 1)𝑛 − 1 < 𝑛 + 1, (41)

which is satisfied for all 𝑛 ≥ 2.
This result gives rather rough bounds for the semicircular

andMarčenko-Pastur distributions. For example, in the latter
case, we obtain the condition 𝑐 > (2 + 6/𝑛)2, which is off by a
factor of roughly 2 from the exact bound (34).

7. Sufficient Conditions: The
Depolarizing Map

There are very few sufficient conditions for the separability
of a positive semidefinite matrix (or quantum state). For
quantum states, the most famous one is the purity bound
of Gurvits and Barnum [33, Corollary 3], corresponding to
the fact that the in-radii of the convex sets of quantum states

and separable states are identical. For the separable cone,
this criterion reads that given a positive semidefinite matrix𝑋 ∈ M𝑑𝑛(C),𝑋 ̸= 0:

tr (𝑋2)
(tr𝑋)2 ≤ 1𝑛𝑑 − 1 ⇒ 𝑋 ∈ SEP𝑛,𝑑. (42)

Note however that the condition above is very restrictive: by
the Cauchy-Schwarz inequality, we always have

1𝑛𝑑 ≤ tr (𝑋2)
(tr𝑋)2 . (43)

In particular, if we consider a sequence of random matrices
converging strongly (as in Definition 3) to a probability
measure 𝜇, the only case in which the Gurvits-Barnum
condition would hold is when 𝜇 had 0 variance; that is, 𝑋
would be closer to a multiple of the identity matrix.

We consider next a more powerful separability criterion,
given by the depolarizing channel. Recall that the depolarizing
channel of parameter 𝑡 ∈ [−1/(𝑛2 − 1), 1] is the completely
positive, trace preserving map Δ 𝑡 : M𝑛(C) → M𝑛(C) given
by

Δ 𝑡 (𝑋) = 𝑡𝑋 + (1 − 𝑡) 𝐼𝑛𝑛 . (44)

It is known that the quantum channel Δ 𝑡 is entanglement
breaking iff 𝑡 ∈ [−1/(𝑛2 − 1), 1/(𝑛 + 1)] [34, Section 5].
This means that when the parameter 𝑡 lies inside the above
specified range, we have, for all positive semidefinite input
matrices 𝑌 ∈ M+

𝑛𝑑(C),(Δ 𝑡 ⊗ id) (𝑌) ∈ SEP𝑛,𝑑. (45)

Using this observation, we obtain the following sufficient
separability conditions.

Proposition 11. Let 𝑋 ∈ M+
𝑛𝑑(C) be a positive semidefinite

operator. If any of the following two conditions is satisfied, then𝑋 ∈ SEP𝑛,𝑑:

(𝑛 + 1)𝑋 ≥ 𝐼𝑛 ⊗ (tr𝑛 ⊗ id𝑑) (𝑋) (46)

(𝑛2 − 1)𝑋 ≤ 𝑛𝐼𝑛 ⊗ (tr𝑛 ⊗ id𝑑) (𝑋) . (47)

Proof. For a given 𝑋, let us solve (Δ 𝑡 ⊗ id)(𝑌) = 𝑋. Writing𝑌2 fl (tr𝑛 ⊗ id𝑑)(𝑌) for the partial trace of 𝑌 with respect to
the first tensor factor, we have

𝑡𝑌 + 1 − 𝑡𝑛 𝐼𝑛 ⊗ 𝑌2 = 𝑋. (48)

Taking the partial trace of this equation with respect to the
first factor, we get𝑋2 = 𝑌2. Plugging this in, we finally obtain

𝑡𝑌 = 𝑋 − 𝐼𝑛𝑛 ⊗ 𝑋2. (49)

If 𝑡 = 0, the condition above implies that 𝑋 is of the form𝑋 = 𝐼𝑛/𝑛 ⊗ 𝑋2. For 𝑡 > 0, asking that 𝑌 ≥ 0 amounts to
having

𝑋 ≥ (1 − 𝑡) 𝐼𝑛𝑛 ⊗ 𝑋2. (50)
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The weakest necessary condition is obtained when 𝑡 takes
the largest possible value (for which Δ 𝑡 is still entanglement
breaking); that is, 𝑡 = 1/(𝑛 + 1). The condition reads then

(𝑛 + 1)𝑋 ≥ 𝐼𝑛 ⊗ (tr𝑛 ⊗ id𝑑) (𝑋) , (51)

which is the first condition announced. To recapitulate, for𝑋 satisfying the condition above, there exists a positive
semidefinite matrix 𝑌 such that𝑋 = (Δ 1/(𝑛+1) ⊗ id)(𝑌). Since
the quantum channel Δ 1/(𝑛+1) is entanglement breaking [34,
Section 5], the output matrix 𝑋 is separable. Similarly, for
negative values of 𝑡, we obtain condition (47), finishing the
proof.

Before we move on, let us present a second point of view
on condition (46). Note that

2𝑛 + 1 ∫
‖𝑥‖=1

⟨𝑥,𝑋𝑥⟩ |𝑥⟩ ⟨𝑥| 𝑑𝑥 = 1𝑛 + 1 (𝑋 + 𝐼𝑛)
= Δ 1/(𝑛+1) (𝑋) . (52)

Obviously, the left-hand side of the equality above defines an
entanglement breaking channel; one can generalize this idea,
by considering the more generalmeasure and prepare map:

MP𝑝 (𝑋) = ∫
‖𝑥‖=1

⟨𝑥,𝑋𝑥⟩𝑝 |𝑥⟩ ⟨𝑥| 𝑑𝑥, (53)

for some positive integer 𝑝 ≥ 1. It is clear that the (nonlinear)
map (id⊗MP𝑝) has a separable range (when restricted to the
PSD cone). It is however more challenging to invert this map;
as an example, we have, for 𝑝 = 2,

MP2 (𝑋) = [tr (𝑋2) 𝐼𝑛 + tr (𝑋)𝑋 + 𝑋2]
3 . (54)

Such maps appear in the context of quantum de Finetti the-
orems [35, 36] and the exchangeability separability hierarchy
[37].

Theorem 12. Let 𝑋𝑑 ∈ M+
dn(C) be a sequence of unitar-

ily invariant random matrices as in Definition 3 converging
strongly to a compactly supported probability measure 𝜇 ∈
P([0,∞)); here, 𝑛 and 𝜇 are fixed. Define

𝜇Δ+ fl 𝐷(𝑛2+𝑛−1)/𝑛𝜇 ⊞ (𝐷−1/𝑛𝜇)⊞(𝑛2−1) (55)

𝜇Δ− fl 𝐷2−𝑛2𝜇 ⊞ 𝜇⊞(𝑛2−1). (56)

Ifminsupp𝜇Δ+ > 0 orminsupp𝜇Δ− > 0 then, almost surely as𝑑 → ∞,𝑋𝑑 ∈ SEP𝑛,𝑑; in particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 1. (57)

Proof. The proof uses conditions (46) and (47) and
Theorem 6. Let us work through the first case, the
second one being similar. The sufficient condition (46)
for separability is equivalent to (𝜑+ ⊗ id𝑑)(𝑋𝑑) ≥ 0, for the
map 𝜑+ : M𝑛(C) → M𝑛(C) given by

𝜑+ (𝑋) = (𝑛 + 1)𝑋 − (tr 𝑋) 𝐼𝑛. (58)

This map satisfies the unitarity condition from Definition 5,
where the Choi matrix of 𝜑+ has eigenvalues:𝑛 (𝑛 + 1) − 1, with multiplicity 1

−1, with multiplicity 𝑛2 − 1. (59)

Hence, by Theorem 6, the random matrices (𝜑+ ⊗ id𝑑)(𝑋𝑑)
converge strongly, as 𝑑 → ∞, towards the probability
measure 𝜇Δ+ from (55). The positivity of the support of𝜇Δ+ ensures that the random matrices (𝜑+ ⊗ id𝑑)(𝑋𝑑) are
asymptotically positive definite.

Let us consider some examples. For the semicircular
distribution with mean 𝑚 and variance 𝜎2, we get by direct
computation SCΔ±

𝑚,𝜎 = SC𝑚,𝜎±
with

𝜎+ = 𝜎√𝑛4 + 2𝑛3 − 2𝑛𝑛 ,
𝜎− = 𝜎√2𝑛2 − 3.

(60)

In this case, since both modified measures are semicircular
and have the same average, the criterion is stronger when the
standard deviation is smaller. In the range 𝑛 ≥ 2, we have𝜎+ ≤𝜎− iff 𝑛 ≥ 3. Indeed, the inequality simplifies to 𝑛3−2𝑛2−3𝑛+2 ≥ 0. The above polynomial changes signs 3 times between
the values −2, 0, 2, 3, thus proving the claim (the actual roots
of this polynomial are approximately−1.34292, 0.529317, and2.81361). In the case 𝑛 = 2, 𝜎+ > 𝜎− = 𝜎√5. For shifted GUE
random matrices, we have the following result.

Corollary 13. Let𝑌𝑑 = 2𝐼𝑛𝑑+𝛼𝑋𝑑 ∈ 𝑀sa
𝑛𝑑(C) be a sequence of

random matrices, where 𝑋𝑑 is a standard GUE and 𝛼 ∈ (0, 1)
is a fixed parameter. Then, provided that

𝛼 < {{{{{{{

1√5, if 𝑛 = 2
𝑛√𝑛4 + 2𝑛3 − 2𝑛 , if 𝑛 ≥ 3, (61)

the random matrices 𝑌𝑑 are almost surely asymptotically 𝑛 ⊗ 𝑑
separable. In particular.

lim
𝑑→∞

P (𝑌𝑑 ∈ SEP𝑛,𝑑) = 1. (62)

Let us now applyTheorem 12 to the case of theMarčenko-
Pastur distribution. Although we are not able to deter-
mine analytically the support of the probability distributions
MPΔ±𝑐 , we present some useful bonds.

Corollary 14. Let 𝑋𝑑 ∈ 𝑀sa
𝑛𝑑(C) be a sequence of unitar-

ily invariant random matrices as in Definition 3 converging
strongly to the Marčenko-Pastur probability distribution of
parameter 𝑐 ≥ 1. Then, provided that

√𝑐 > 1 + √𝑛2 + 𝑛 − 1√𝑛2 + 𝑛 − 1 − √𝑛2 − 1 ∼ 2𝑛, (63)

the randommatrices𝑋𝑑 are almost surely asymptotically 𝑛⊗𝑑
separable. In particular.

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 1. (64)
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Proof. Let us consider first the criterion corresponding to
map Δ+. We are interested in the support of the probability
measure:

MPΔ+𝑐 fl 𝐷(𝑛2+𝑛−1)/𝑛MP𝑐 ⊞ (𝐷−1/𝑛MP⊞𝑛
2−1

𝑐 )
= 𝐷(𝑛2+𝑛−1)/𝑛MP𝑐 ⊞ 𝐷−1/𝑛MP𝑐(𝑛2−1). (65)

A sufficient condition for the support of MPΔ+𝑐 to be positive
is that

𝑛2 + 𝑛 − 1𝑛 minsuppMP𝑐 > 1𝑛maxsuppMP𝑐(𝑛2−1), (66)

which is equivalent to (63). A similar analysis for map Δ−
yields the sufficient condition:

√𝑐 > 1 + √𝑛2 − 2√𝑛2 − 1 − √𝑛2 − 2 , (67)

which can be seen to be weaker than (63) for 𝑛 ≥ 2, proving
the claim.

Following the proof of Lemma 8, one can easily show that
the only probability distributions which are invariant under
the Δ± modifications are Dirac masses; we leave the proof as
an exercise for the reader.

Let us now look for sufficient conditions on the proba-
bility measure 𝜇 which would ensure that the hypotheses of
Theorem 12 are satisfied. Our approach here is identical to the
one used inTheorem 10.

Proposition 15. Let 𝜇 be a probability measure having mean𝑚 and variance 𝜎2, whose support is contained in the compact
interval [𝐴, 𝐵]. Then, provided that

(𝑛2 + 𝑛 − 1)𝐴 > 𝐵 + 𝑚(𝑛2 − 2) + 2𝜎√𝑛2 − 2, (68)

we have supp(𝜇Δ+) ⊂ (0,∞). Similarly,

𝐴 > (𝑛2 − 2) (𝐵 − 𝑚) + 2𝜎√𝑛2 − 2 ⇒
supp (𝜇Δ−) ⊂ (0,∞) . (69)

In particular, if any of the conditions above hold, then, almost
surely as 𝑑 → ∞,𝑋𝑑 ∈ SEP𝑛,𝑑; in particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 1. (70)

Proof. We just prove the implication for 𝜇Δ+, the other one
being similar. Let us define

𝐴1 fl minsupp (𝐷(𝑛2+𝑛−1)/𝑛𝜇) ,
𝐴2 fl minsupp (𝐷−1/𝑛𝜇⊞(𝑛2−1)) . (71)

We obviously have𝐴1 ≥ 𝐴(𝑛2 + 𝑛 − 1)/𝑛; to lower bound𝐴2,
we use Proposition 4 for𝐷−1/𝑛𝜇, to obtain

𝐴2 ≥ −𝐵𝑛 + −𝑚𝑛 (𝑛2 − 2) − 2𝜎𝑛√𝑛2 − 2. (72)

The conclusion follows now from the previous two inequali-
ties, ensuring that 𝐴1 + 𝐴2 > 0.

8. Necessary Conditions: The
Correlated Witness

We shift focus in this section and study necessary conditions
for separability or, equivalently, sufficient conditions for
entanglement. Many such criteria (usually called entangle-
ment criteria), exist in the literature, and we shall start by
quickly reviewing them. Next, we discuss a criterion coming
from a random entanglement witness, arguing that is a very
useful one.

Given the use of entanglement for quantum tasks, and the
computational hardness of deciding separability, there exist a
plethora of criteria that permit certifying the entanglement
of a given (mixed) quantum state. Most of these criteria stem
from the following very simple observation: let 𝑓 : M𝑛(C) →
M𝑛(C) be a positive map (i.e., a map which preserves the
positive semidefinite cone). Then, for any matrix𝑋 ∈ SEP𝑛,𝑑,
we have

(𝑓 ⊗ id) (𝑋) ≥ 0. (73)

Hence, if the output (𝑓 ⊗ id)(𝑌) is not positive semidefinite,
then the input matrix 𝑌 is entangled (assuming that 𝑌 was
positive semidefinite to beginwith). Every choice of a positive
map 𝑓 yields an entanglement criterion; some of the most
studied such maps are the transposition map (giving the PPT
criterion discussed at the end of Section 5) and the reduction
map,

𝑓 (𝑋) = (tr 𝑋) 𝐼𝑛 − 𝑋, (74)

giving the reduction criterion [34, 38], which can be shown to
be weaker (i.e., it detects fewer entangled states) than the PPT
criterion, but it is interesting nonetheless for its relation to
the distillability problem.There are some other entanglement
criteria which do not fall in this framework, the most notable
being the realignment criterion [39, 40]; we shall not discuss
these criteria her; see [26] for a review and [6, 10] for results
about random quantum states.

Since the set of separable states is a closed convex cone, by
the Hahn-Banach theorem one can find, given any entangled
matrix 𝑋, a hyperplane separating 𝑋 from SEP𝑛,𝑑. In other
words, there exists a block-positive operator 𝑊 ∈ Msa

𝑛𝑑(𝐶),
called an entanglement witness, such that tr(𝑊𝑋) < 0. We
recall that an operator𝑊 is called block-positive iff

⟨𝑥 ⊗ 𝑦,𝑊𝑥 ⊗ 𝑦⟩ ≥ 0, ∀𝑥 ∈ C
𝑛, ∀𝑦 ∈ C

𝑑. (75)

In this section, we shall make a very particular choice for
the operator𝑊: we shall set, for a constant 𝛽 ∈ R,

𝑊 fl 𝛽𝐼𝑛𝑑 − 𝑋, (76)

using the following intuition: what is a better witness for a
quantum state’s entanglement than the state itself? Pursuing
this idea for unitarily invariant quantum states, we obtain the
entanglement criterion fromTheorem 19. Before we state and
prove that theorem, we need some preliminary results, which
we find interesting for their own sake.

First, let us recall the following definition from [41]; see
also [42].
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Definition 16. 𝑆(𝑘) norm of an operator 𝑋 ∈ M𝑛𝑑(C) is
defined to be

‖𝑋‖𝑆(𝑘) fl sup {|⟨V, 𝑋𝑤⟩| : SR (V) , 𝑆R (𝑤) ≤ 𝑘} , (77)

where the Schmidt rank of a vector V ∈ C𝑛 ⊗ C𝑑 is its tensor
rank:

SR (V) fl min{𝑘 ≥ 0 : V = 𝑘∑
𝑖=1

𝑥𝑖 ⊗ 𝑦𝑖} . (78)

If operator 𝑋 is normal, than one can restrict the maximiza-
tion in (77) to 𝑤 = V.

Obviously, the operator 𝑊 from (76) is block-positive
as soon as 𝛽 ≥‖ 𝑋‖𝑆(1) (moreover, if 𝑋 were positive,
then the two statements would be equivalent; see [41, Corol-
lary 4.9] for the general case of 𝑘-block-positivity). So, in
order to certify the block-positivity of bipartite operators
having a strong asymptotic limit, we need the following
result.

Proposition 17. Let 𝑋𝑑 ∈ M+
𝑑𝑛(C) be a sequence of unitar-

ily invariant random matrices as in Definition 3 converging
strongly to a compactly supported probability measure 𝜇 ∈
P(R); here, 𝑛 and 𝜇 are fixed. Then, almost surely,

lim
𝑑→∞

𝑋𝑑
𝑆(𝑘) = 𝑘𝑛 𝜇⊞𝑛/𝑘∞ , (79)

where we write ‖]‖∞ fl ‖𝐴‖𝐿∞ for some random variable 𝐴
having distribution ].

Proof. Since we are interested in the limit 𝑑 → ∞ and 𝑛
is fixed, we assume wlog that 𝑛 ≤ 𝑑. Moreover, since the
matrices𝑋𝑑 are self-adjoint, we have𝑋𝑑

𝑆(𝑘) = max (𝑚𝑑
 , 𝑀𝑑

) , (80)

where

𝑚𝑑 fl inf
V∈C𝑛𝑑 ,‖V‖=1,SR(V)≤𝑘

⟨V, 𝑋𝑑V⟩
𝑀𝑑 fl sup

V∈C𝑛𝑑 ,‖V‖=1,SR(V)≤𝑘
⟨V, 𝑋𝑑V⟩ . (81)

We relate now the above numbers to 𝑘-positivity:
𝑚𝑑 = sup {𝜆 ∈ R : 𝑋𝑑 − 𝜆 is 𝑘-positive}
𝑀𝑑 = inf {𝜆 ∈ R : 𝜆 − 𝑋𝑑 is 𝑘-positive} . (82)

The asymptotic 𝑘-positivity of strongly convergent sequences
of random matrices has been studied in [43, Theorem 4.2],
where it has been shown that, almost surely, the sequence𝑋𝑑

is asymptotically 𝑘-block-positive if supp(𝜇⊞𝑛/𝑘) ⊂ (0,∞),
and, reciprocally, it is not 𝑘-block-positive if supp(𝜇⊞𝑛/𝑘) ∩(−∞, 0) ̸= 0; note that the case where the left endpoint of
the support of 𝜇⊞𝑛/𝑘 is zero is excluded, since in this case one
needs extra information about the fluctuations of the smallest

eigenvalue. Applying this result to our setting, we obtain, say
for𝑚𝑑, almost surely,

𝑚 fl lim
𝑑→∞

𝑚𝑑

= sup {𝜆 ∈ R : supp (𝜇⊞𝑛/𝑘𝜆 ) ⊂ (0,∞)} , (83)

where 𝜇𝜆 = 𝑇−𝜆𝜇, with 𝑇⋅ denoting the translation operator.
We have obviously

(𝑇−𝜆𝜇)⊞𝑛/𝑘 = 𝑇−𝜆𝑛/𝑘 (𝜇⊞𝑛/𝑘) , (84)

and thus

𝑚 = sup {𝜆 ∈ R : supp (𝜇⊞𝑛/𝑘𝜆 ) ⊂ (0,∞)}
= sup {𝜆 ∈ R : supp (𝑇−𝜆𝑛/𝑘 (𝜇⊞𝑛/𝑘)) ⊂ (0,∞)}
= sup{𝜆 ∈ R : supp (𝜇⊞𝑛/𝑘) ⊂ (𝜆𝑛𝑘 ,∞)}
= 𝑘𝑛minsupp (𝜇⊞𝑛/𝑘) .

(85)

Similarly, we get

𝑀 fl lim
𝑑→∞

𝑀𝑑 = 𝑘𝑛maxsupp (𝜇⊞𝑛/𝑘) , (86)

finishing the proof.

Before moving on, let us discuss the value of 𝑆(𝑘) norms
for random projections. This case is important for quantum
information theory, as it was argued in [42, Section 7]; see also
[41, Theorem 4.15] for general norm bonds for projections.
We consider here a sequence of Haar-distributed random
projection operators 𝑃𝑑 ∈ Msa

𝑛𝑑(C) of ranks 𝑟𝑑 ∼ 𝜌𝑛𝑑 for
some fixed parameter 𝜌 ∈ (0, 1). Using [44, Proposition 2.9],
we obtain the following asymptotic behavior.

Corollary 18. For a sequence (𝑃𝑑)𝑑 of random projections as
above, and for any 1 ≤ 𝑘 ≤ 𝑛, we have the following almost
sure limit:

lim
𝑑→∞

𝑃𝑑𝑆(𝑘)

=
{{{{{{{{{
1, if 𝜌 > 1 − 𝑘𝑛
𝜌 + 𝑘𝑛 − 2𝜌𝑘𝑛 + 2√𝑘𝑛 (1 − 𝑘𝑛) 𝜌 (1 − 𝜌), if 𝜌 ≤ 1 − 𝑘𝑛 .

(87)

We have now all the ingredients to state and prove the
main result of this section.

Theorem 19. Let 𝑋𝑑 ∈ M+
𝑑𝑛(C) a sequence of unitarily

invariant random matrices as in Definition 3 converging to a
compactly supported probability measure 𝜇 ∈ P([0,∞)); here,𝑛 and 𝜇 are fixed, and𝑚1,2(𝜇) denote respectively the first two
moments of 𝜇. If

1𝑛maxsupp (𝜇⊞𝑛) < 𝑚2 (𝜇)𝑚1 (𝜇) (88)
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then, almost surely as 𝑑 → ∞,𝑋𝑑 ∉ SEP𝑛,𝑑. In particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 0. (89)

Proof. To show that the matrices 𝑊𝑑 from (76) are indeed
entanglement witnesses for 𝑋𝑑 (almost surely as 𝑑 → ∞),
we need to show, for an appropriate choice of the constant 𝛽,
two things:

(1) The maps𝑊𝑑 are asymptotically block-positive.
(2) lim𝑑→∞⟨𝑊𝑑, 𝑋𝑑⟩ < 0.

We use Proposition 17 with 𝑘 = 1 for the first item: 𝑊𝑑 are
asymptotically entanglement witnesses provided that

𝛽 > lim
𝑑→∞

𝑋𝑑
𝑆(1) = 𝜇⊞𝑛∞ = 1𝑛maxsupp (𝜇⊞𝑛) . (90)

The computation of the limit appearing in the second item
above is straightforward: almost surely, we have

lim
𝑑→∞

1𝑛𝑑 ⟨𝛽𝐼𝑛𝑑 − 𝑋𝑑, 𝑋𝑑⟩ = 𝛽𝑚1 (𝜇) − 𝑚2 (𝜇) . (91)

We are done: choose any 𝛽 satisfying

1𝑛maxsupp (𝜇⊞𝑛) < 𝛽 < 𝑚2 (𝜇)𝑚1 (𝜇) . (92)

As in the previous section, we consider next some
applications of the result above, which we state as corollaries.
We start with the case of shifted GUEs; see also [43,Theorem
5.4].

Corollary 20. Let 𝑋𝑑 ∈ Msa
𝑛𝑑(C) be a sequence of (normal-

ized) GUE matrices, and set 𝑌𝑑 fl 𝑚𝐼𝑛𝑑 + 𝜎𝑋𝑑, for some
constants𝑚, 𝜎 ≥ 0. If

12 < 𝜎𝑚 < 2√𝑛, (93)

then 𝑌𝑑 is asymptotically positive semidefinite, PPT, and
entangled.

Proof. Note that the sequence 𝑌𝑑 from the statement con-
verges strongly to the semicircular probability measure
SC𝑚,𝜎, which is supported on the interval [𝑚 − 2𝜎,𝑚 + 2𝜎].
Hence, if 𝜎/𝑚 > 1/2, the matrices 𝑌𝑑 are asymptotically
positive semidefinite and also PPT (since the GUE distri-
bution is Wigner). For the second inequality, use SC⊞𝑛

𝑚,𝜎 =
SC𝑚𝑛,𝜎√𝑛.

Corollary 21. Let 𝑋𝑑 ∈ M+
𝑑𝑛(C) be a sequence of unitar-

ily invariant random matrices as in Definition 3 converging
strongly to the Marčenko-Pastur probability distribution of
parameter 𝑐 > 0. If

𝑐 < (𝑛 − 1)24𝑛 (94)

then, almost surely as 𝑑 → ∞,𝑋𝑑 ∉ SEP𝑛,𝑑; in particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 0. (95)

Proof. We use the criterion in Theorem 19 to obtain the
following condition for entanglement:

(√𝑐𝑛 + 1)2𝑛 = 1𝑛maxsupp (MP⊞𝑛𝑐 ) < 𝑚2 (MP𝑐)𝑚1 (MP𝑐)
= 𝑐2 + 𝑐𝑐 .

(96)

Putting together the bounds above with the ones from
[8, Theorem 6.2] (see also (34)), we obtain the following
corollary.

Corollary 22. For any 𝑛 ≥ 18 and 𝑐 such that
𝑐 ∈ (2 + 2√1 − 1𝑛2 , (𝑛 − 1)24𝑛 ) , (97)

a sequence of unitarily invariant random matrices 𝑋𝑑 ∈
M+

𝑑𝑛(C) converging strongly to the Marčenko-Pastur probabil-
ity distribution of parameter 𝑐 > 0 is, almost surely in the limit𝑑 → ∞, PPT and entangled.

Proposition 23. Let 𝜇 be a probability measure having mean𝑚 and variance 𝜎2, whose support is contained in the compact
interval [𝐴, 𝐵]. Assume that

𝐵𝑚 < 1 + 𝑛 𝜎2𝑚2
− 2 𝜎𝑚√𝑛 − 1. (98)

Then, for any sequence of unitarily invariant random matrices𝑋𝑑 ∈ M+
𝑑𝑛(C) converging strongly to 𝜇, we have that almost

surely as 𝑑 → ∞,𝑋𝑑 ∉ SEP𝑛,𝑑; in particular,

lim
𝑑→∞

P (𝑋𝑑 ∈ SEP𝑛,𝑑) = 0. (99)

Proof. The result follows from Theorem 19, using the upper
bound from Proposition 4.

9. PPT Matrices with Large Schmidt Number

The Schmidt number of a positive semidefinite matrix 𝑋 ∈
M𝑑1

(C)⊗M𝑑2
(C) is a discrete measure of entanglement. It is

defined for rank-one matrices as
SN (𝑥𝑥∗) = rk [id𝑑1 ⊗ tr𝑑2] (𝑥𝑥∗) (100)

and extended by the convex roof construction to arbitrary
matrices

SN (𝑋)
= min{𝑟 : 𝑋 = 𝑚∑

𝑖=1

𝑥𝑖𝑥∗𝑖 with SN (𝑥𝑖𝑥∗𝑖 ) ≤ 𝑟} . (101)

Obviously, SN(𝑋) = 1 iff 𝑋 ∈ SEP𝑑1,𝑑2 , and SN(𝑋) ≤
min(𝑑1, 𝑑2) for all positive semidefinite𝑋. It is an interesting
question whether imposing that the partial transposition of𝑋 is positive semidefinite has any implications on the range
of values that the Schmidt number can take. Very recently,
explicit examples of PPTmatrices𝑋 ∈ M𝑑(C) ⊗M𝑑(C)with
SN(𝑋) ≥ ⌈(𝑑 − 1)/4⌉ have been constructed [45, Corollary
III.3]. In the same paper, the authors show that, for large 𝑑,
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most quantum states acting onC𝑑⊗C𝑑 have Schmidt number
greater than 𝑐𝑑, for some universal constant 𝑐. Also recently,
in a breakthrough result, it has been shown [46] that all 3 × 3
PPT quantum states have Schmidt number at most 2, which
is a considerable first step in understanding the structure of
positive maps acting onM3(C).

In the unbalanced case, we show that the linear scal-
ing SN(𝑋) ≥ min(𝑑1, 𝑑2)/16 can be achieved by using
GUE random matrices. The example below complements
the construction of PPT entangled states from [43, Section
5], by providing a lower bound for the Schmidt num-
ber.

Theorem 24. For any fixed integer 𝑛 ≥ 2, consider the
sequence of self-adjoint matrices 𝑋𝑑 fl 𝑎𝐼𝑛𝑑 − 𝐺𝑑 ∈ M𝑛(C) ⊗
M𝑑(C), where 𝐺𝑑 is a GUE𝑛𝑑 random matrix. There exists
a constant 𝑎 > 0 (made explicit in the proof) such that the
following conditions hold almost surely as 𝑑 → ∞:

(i) 𝑋𝑑 is PPT: 𝑋𝑑, 𝑋Γ
𝑑 ≥ 0.

(ii) SN(𝑋𝑑) > ⌊(𝑛 − 1)/16⌋.
Proof. The asymptotic distribution of the random matrix 𝑋𝑑
is SC𝑎,1, and thus𝑋𝑑 is positive semidefinite as 𝑑 → ∞ iff

𝑎 > 2. (102)

Recall from Section 6 that the matrices 𝑋𝑑 and 𝑋Γ
𝑑 have

the same distribution, so the fact that 𝑋Γ
𝑑 is also positive

semidefinite comes at no cost (this being the reason that
shifted GUE random matrices are useful for PPT-related
questions).

Let us now show that, asymptotically, SN(𝑋𝑑) > ⌊(𝑛 −1)/16⌋. This relation is equivalent to finding a ⌊(𝑛 − 1)/16⌋-
positivemapΦ𝑑 : M𝑛(C) → M𝑑(C) such that [Φ𝑑⊗id𝑑](𝑋𝑑)
is not positive semidefinite. Let𝐶𝑑 ∈ M𝑛(C)⊗M𝑑(C) denote
the Choi matrix of the adjoint map Φ∗

𝑑 , and let us choose𝐶𝑑 = 𝑏𝐼𝑛𝑑+𝐺𝑑. Importantly, matrix𝐺𝑑 here is the same as the
one appearing in the definition of the matrix 𝑋𝑑; hence, the
random matrix 𝑋𝑑 and the random map Φ𝑑 are correlated.
Note that the distribution of the Choi matrix 𝐶𝑑 is SC𝑏,1.
By [43, Theorem 4.2]; the following holds almost surely as𝑑 → ∞: if supp(SC⊞𝑛/𝑘

𝑏,1 ) ⊂ (0,∞), map Φ∗
𝑑 (and thus Φ𝑑)

is asymptotically 𝑘-positive. Since SC⊞𝑛/𝑘
𝑏,1 = SC𝑛𝑏/𝑘,√𝑛/𝑘, this

condition is equivalent to

𝑛𝑏𝑘 − 2√𝑛𝑘 > 0. (103)

Let us now find a sufficient condition for [Φ𝑑⊗id𝑑](𝑋𝑑) ̸≥0. Denoting by Ω𝑑 the maximally entangled state in C𝑑 ⊗ C𝑑

and setting 𝜔𝑑 = Ω𝑑Ω∗
𝑑 , we have

⟨Ω𝑑, [Φ𝑑 ⊗ id𝑑] (𝑋𝑑)Ω𝑑⟩ = ⟨[Φ∗
𝑑 ⊗ id𝑑] (𝜔𝑑) , 𝑋𝑑⟩

= ⟨𝐶𝑑, 𝑋𝑑⟩ = ⟨𝑏𝐼𝑛𝑑 + 𝐺𝑑, 𝑎𝐼𝑛𝑑 − 𝐺𝑑⟩
= (𝑑 + 𝑜 (𝑑)) (𝑎𝑏 − 1) ,

(104)

where we have used that GUE matrix 𝐺𝑑 satisfies, almost
surely,

lim
𝑑→∞

1𝑑 tr𝐺𝑑 = 0,
lim
𝑑→∞

1𝑑 tr (𝐺2
𝑑) = 1. (105)

Hence, if

𝑎𝑏 − 1 < 0 (106)

the matrix [Φ𝑑 ⊗ id𝑑](𝑋𝑑) is, asymptotically, not positive
semidefinite.

We claim that if the system of equations (102), (103), and
(106) has a solution in 𝑎, 𝑏, then matrix 𝑋𝑑 is asymptotically
PPT and SN(𝑋𝑑) > 𝑘. Indeed, the claim about the Schmidt
number follows from the fact thatmapΦ𝑑 is asymptotically 𝑘-
positive and, when applied to 𝑛-part of𝑋𝑑, it yields an output
which is not positive semidefinite. Simple algebra shows that
system of 3 equations (102), (103), and (106) has a solution in𝑎, 𝑏 iff 𝑘 < 𝑛/16. Taking 𝑘 = ⌊(𝑛 − 1)/16⌋ proves the claim
about the Schmidt number and finishes the proof.
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