N

N

Integrated Framework for Model-Driven Systems
Engineering: A Research Roadmap

Hamzat Olanrewaju Aliyu, Mamadou Kaba Traoré

» To cite this version:

Hamzat Olanrewaju Aliyu, Mamadou Kaba Traoré. Integrated Framework for Model-Driven Systems
Engineering: A Research Roadmap. TMS/DEVS Symposium on Theory of Modeling & Simulation
(TMS/DEVS 2016) 2016 Spring Simulation Multi-Conference (SpringSim’16), Apr 2016, Pasadena,
CA, United States. 10.23919/TMS.2016.7918834 . hal-01825992

HAL Id: hal-01825992
https://hal.science/hal-01825992
Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-01825992
https://hal.archives-ouvertes.fr

archives-ouvertes

Integrated Framework for Model-Driven Systems
Engineering: A Research Roadmap

Hamzat Olanrewaju Aliyu, Mamadou Kaba Traoré

» To cite this version:

Hamzat Olanrewaju Aliyu, Mamadou Kaba Traoré. Integrated Framework for Model-Driven Systems
Engineering: A Research Roadmap. TMS/DEVS Symposium on Theory of Modeling & Simulation
(TMS/DEVS 2016) 2016 Spring Simulation Multi-Conference (SpringSim’16), Apr 2016, Pasadena,
CA, United States. 10.23919/TMS.2016.7918834 . hal-01825992

HAL Id: hal-01825992
https://hal.archives-ouvertes.fr /hal-01825992
Submitted on 15 Oct 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche frangais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.archives-ouvertes.fr/hal-01825992
https://hal.archives-ouvertes.fr

Integrated Framework for Model-Driven Systems
Engineering: A Research Roadmap

Hamzat Olanrewaju Aliyu'2
1School of Info. & Communication Technology
Federal University of Technology Minna,
Gidan-Kwanu Campus, Minna, Nigeria
hamzat.aliyu @futminna.edu.ng

ABSTRACT

In recent decades, Model-Driven Engineering (MDE) prac-
tices have continuously aided the adoption of system analysis
approaches like simulation, formal analysis and enactment by
non-expert users. However, due to limited portability of mod-
els between different approaches, exhaustive analysis of com-
plex systems still depend largely on creating disparate mod-
els designated for different analysis goals to get complemen-
tary solutions to the problem. Productivity and efficiency of
the process can be greatly improved by integrating the differ-
ent approaches in a framework which offers a unified model-
ing interface and automated synthesis of all required artifacts.
This paper suggests a framework as a roadmap for further re-
search towards realizing this goal. First we present the archi-
tecture of the framework, then we present the steps to build
the syntax of the unified formalism at its kernel and an illus-
trative case study as a proof of concept for the proposal.

Author Keywords
SimStudio; HiLLS; Language Integration; Model-Driven
Systems Engineering.

ACM Classification Keywords

1.6.2 SIMULATION AND MODELING (Simulation Lan-
guages, Model Validation and Analysis, Simulation Support
Systems): .

1. INTRODUCTION

Efficient d esigns o f c omplex s ystems r equire i terative pro-
cesses of modeling, performance evaluation, logical analysis
and implementation for run-time testing [17]. Evaluation and
analysis methodologies such as simulation, Formal Methods
(FM) and enactment are often used to study different aspects
of systems to mine subtle realities about properties of interest.
For example, simulation studies may be used to predict sys-
tem’s performance, identify problems and their causes, and so
on [7, 24]. Uses of FM include rigorous and exhaustive ex-
ploration of model properties like completeness, consistency,
safeness, liveness to give the assurance that a system will al-
ways produce desired results [9, 39]. Enactment [10, 15],
applied to a Discrete Event System (DES) may be described

Mamadou Kaba Traoré?
2LIMOS CNRS UMR 6158
Université Blaise Pascal, Clermont-Ferrand 11,
Campus des Cézeaux, Aubire CEDEX, France
traore @isima.fr

Simulation
DEVS, Petri Nets, ...

Formal Methods
Z,VDM, B, ...

Software system for enactment
UML, SysML, ...

A

Figure 1. World view of model-based analysis methodologies.

as the execution of its software prototype using the physical
clock time as the operational reference for the scheduling and
execution of events. An enactment model should practically
stand in for the real system in a physical environment by act-
ing out its expected characteristics. Enactment can be used as
a proof that a certain theory or concept or technology works
or otherwise [16].

Since no one analysis methodology can sufficiently investi-
gate all aspects of a system, there is need for collaborations
between tools that provide best answers to different questions.
In principle, these approaches are practised in isolation as de-
picted by the orthogonal planes described in Figure 1. There-
fore, there are little chances of portability of models between
development environments. Arguably, this phenomenon is
not sustainable as the burden of learning many formalisms to
create and update multiple models of yet the same system can
be too much to bear especially for non-expert users.

In recent decades, there have been considerable research ef-
forts to establish transformations between models in separate
planes. For instance, research efforts to combine DEVS sim-
ulation models and FM include [20, 34, 36, 40]. Also, combi-
nation of FM and software models have been proposed in [6,
21, 22] while [26, 27, 38] present some of the efforts to in-
tegrate simulation and software development. However, lit-
tle progress has been made in making elements of the three
orthogonal planes available in a framework which offers a
unified formalism to integrate model-based engineering tools
and facilitate communications among practitioners with di-
verse interests and concerns.

An overview of a recently published edited series of model-
based systems engineering articles [13] suggests that the need
for combining systems engineering processes with system
architecture languages and simulation methods is gradually
gaining recognition among researchers. In a similar con-

text, we propose a roadmap to achieve the consistent coexis-
tence of the three disparate model-based systems engineering
methodologies in Figure 1 within a unified framework.

This paper combines and elaborates on our previous sugges-
tions in [3, 4] on how to build a unified framework for Model-
Driven Systems Engineering (MDSE). We suggest a frame-
work that has at its kernel, a generic modeling language that
is used at its front-end for model specification. i.e., a lan-
guage that is not particularly dedicated to any of the three
methodologies but which is expressive enough to unambigu-
ously capture the details required by each methodology and
communicable enough to enhance fruitful discussions among
experts from all sides.

The idea is inspired by the fact that, observably, nearly the
same set of DES concepts are described in the different planes
but in different forms and at different levels of refinement.
For example, in all cases, a DES description specifies con-
cepts like state, state transition, input, output, components,
exchange of messages/events, etc. while a few more unique
concepts may be added in each case to be able to answer spe-
cific questions. Thus, we can arguably say that, essentially,
the main disparities are created by the languages used and
their associated semantics. Therefore, it would be fair to pro-
vide a common representation of the concepts in a way to
foster communication among experts of the different fields
and support automated generation of the models required by
their tools. We envisage that this approach will lead to reduce
cost and improved productivity in Model-Driven Systems En-
gineering (MDSE). The next section provides backgrounds
in some techniques to be applied in subsequent sections to
develop our proposal. Then we present the proposed frame-
work in Section 3 and its unified language in Section 4. We
provide a case study in Section 5 as a proof of concept. Sec-
tion 6 compares our approach with related work. Finally, we
provide concluding remarks and perspectives in Section 7.

2. BACKGROUND

2.1 Discrete Event System Specification (DEVS)

As part of the background to later sections of this paper, we
assume the reader has at least a minimum idea of DEVS,
hence we do not dwell on it. If necessary, the reader may
consult [41] for an introduction to the formalism.

2.2 Object-Z

Object-Z [30] is an Object-Oriented extension of the Z spec-
ification language [31]. It adopts the concept of class in Ob-
ject Orientation to add structure, modularity and clarity to Z
specifications. The main units of specification in Z are the
schemas. i.e., state schemas that declare state variables with
possible invariants and operation schemas that manipulate the
state schema(s) to produce state transition events. On top of
the Z’s notion of schema, Object-Z introduces the concept of
class to describe a system as enclosing a state schema and all
the operation schemas that manipulate and/or use its declared
variables. Object-Z class also exhibits Object-Orientation
properties like inheritance, encapsulation and polymorphism.

_Class Name[Parameter 1, ..., Parameter n]__
[Visibility List]
[Iriherited Class

Inherited Class]
[Local Definition

Local Definition]
[Stare]

[ITritial State]
[Operation

Operation)

Figure 2. Template of Object-Z class.

Figure 2 is a template for specifying an Object-Z class, the ba-
sic building block for system specification in Object-Z, show-
ing its possible elements and the orders in which they may
appear.

e Class Name is the class’ identifier in a specification. The
header may also specify some generic parameters.

e Visibility list of class elements that can be accessed from
outside the class in similitude to public attributes and meth-
ods in Object-Orientation.

o An Inherited Class designates an existing class whose def-
inition is imported for reuse.

e A Local Definition may be a local type or constant defini-
tion (usually specified in an axiomatic schema) or a refer-
ence to another class.

e The state schema declares the system’s state variables and
invariants (if any). This may be followed by a specification
of the system’s initial/starting state.

e Operations specify the computations that use and/or ma-
nipulate other elements of the class

2.3 Model-Driven Engineering/Architecture (MVDE/MDA)
Model-Driven Engineering (MDE) [5, 18, 28] is a modern
Software Engineering approach that considers everything as
a model in similitude to the way everything is considered
an object in Object-Oriented approaches. Governed by the
slogan Model once, generate any where, MDE’s vision is a
world of software development in which models can be used,
at different phases, to communicate and understand problems
and, subsequently, to drive the synthesis of executable pro-
gram codes.

Model-Driven Architecture (MDA) [19] is a realization of
MDE initiated by the Object Management Group (OMG).
MDA introduces a conceptual framework, with a set of stan-
dards at different layers, to define models, and transforma-
tions between models. The top layer of MDA contains the
Platform-Independent Model (PIM) which specifies the func-
tions of a system under without paying attention to technol-
ogy platforms that will be used for implementation. The PIM
may be used to drive the generation of one or more Platform-
Specific Models (PSMs) in the next layer. Each PMS is ex-
pected to contain some technical details about the platform
to be used for implementation. Finally, each PSM drives the
synthesis of program codes at the lowest layer.

MDA approaches enable modelers to separate essential busi-
ness concerns from the details of implementation platforms;
thereby enhancing efficient solution designs, increased pro-
ductivity and reduced development time.

2.4 Meta-model Integration Techniques

In MDE, the syntax of a modeling language is defined by a
meta-model. In essence, it defines the concepts described in a
language and the relationships between them. In this subsec-
tion, we give brief descriptions of three techniques, presented
in [11], for integrating meta-models to define new languages.
These techniques will be applied in Section 4.1 to define a
modeling language.

Meta-model merge

The meta-model merge is used to combine integrate inde-
pendent meta-models that share some common abstractions
of real world entities - a phenomenon referred to as concept
collision. The common concepts are used as the seam(s) to
merge them into a unified whole. It is similar to the pack-
age merge mechanism [42] that recursively take the unions of
model elements (in different packages) matched by name and
meta-type. Meta-model merge is, however, different in two
ways: (1) it occurs at class level instead of package level, and
(2) Common concepts do not necessarily have to match by
name in meta-model merge. Once matching classes are iden-
tified, the two classes cease to exist but merge into a new class
in the integrated meta-model; the new class encompasses all
attributes and associations of the source classes. An illus-
tration of the application of meta-model merge is given in
Figure 3(a). Considering that classes A and P in separate
meta-models have been identified to match, then they can be
merged into class AP as described in the figure

Meta-model Interfacing

Meta-model interfacing is employed to combine two meta-
models describing distinct but related domains in order to
explore the relationships between them. Its implementa-
tion requires the introduction of new classes and relations
(that do not necessarily belong to either of the two source
meta-models) which serve as the interface between the dis-
tinct meta-models through associations. The technique is
described in Figure 3(b) with MM and MM?2 representing
classes in separate meta-models and MM _int representing the
interface class introduced to establish relationships between
them.

84
=a bb = ERL . EL]
= b - — = a
—+ =|ck o d2 |
= e qq 0.
[EP] aq [Ea] — 1
= c 0.1

(a) An illustration of meta-model merge.

[H MmM1 | [EMM_int | ref | H Mmz |
I 1 [| 0% |

(b) An illustration of meta-model interfacing.

E AbstractConce containmentRef B DE’IaI'EdDESCrIFIIIDr1
I 1 [1

(c) An illustration of class refinement.

Figure 3. Metamodel integration techniques.

Class refinement

Class refinement is used to establish relationships between
closely related (or in fact, same concepts) expressed at dif-
ferent levels of refinement in two independent meta-models.
Specifically, a hierarchical containment relationship is cre-
ated between the two meta-models fragments (as described
in Figure 3(c)) with the more abstract fragment as the con-
tainer(s) of the more detailed descriptions provided by the
other.

3. ANINTEGRATED FRAMEWORK FOR MODEL-DRIVEN
SYSTEMS ENGINEERING

3.1 Overview of SimStudio

The SimStudio was first proposed in [35] to bridge the gap
between theoretical advancement in simulation modeling and
prospective end users. The idea was to aggregate technologi-
cal implementations of the theories of modeling and Simula-
tion and formal analysis of simulation results in one platform
and establish collaborations between tools through model
transformations. Further work on the project [33] proposed to
use DEVS Markup Language (DML) [32], an XML markup
language for DEVS, at the kernel of the framework as a stan-
dard for model representation. The choice of DEVS as the
principal formalism is premised on its expressiveness and
universality for simulation modeling [37] which also makes
it suitable for establishing interoperability between heteroge-
neous simulation models; this is achieved by translating mod-
els created using other formalisms into DML which is subse-
quently used to drive the generation of DEVS-based simula-
tion codes.

3.2 SimStudio Il

SimStudio, in its current state, is more focused on simulation-
based approach to model-based systems engineering. The
SimStudio II extends the current solution to encompass for-
mal analysis and enactment for exhaustive analysis of sys-
tems without complicating the modeling process. As a
roadmap for this ongoing research, we have discussed a sum-
mary of our proposal in [3]; the rest of this paper elaborates
on the framework’s architecture and suggests guidelines for
realizing its components.

Figure 4 shows the architecture of SimStudio II vis-a-vis the
MDA framework. The left part of the diagram depicts the
MDA framework described previously in Section 2.3. As
a basic tenet of model-driven developments, every model
is created with a specification (modeling) language; thus, a
model conforms to the language that produced it. In the PIM
layer, the PIM conforms to PIMSL. Similarly, every PSM
conforms to its PSMSL. It is also reasonable to say that the
model transformation from the PIM to any PSMn is an in-
stance of the model transformation specification from PIMSL
to PSMSLn. Finally, program codes are synthesized from the
PSMs for their respective target platforms. It is important to
note that the term “Platform” in PIM and PSM is contextual;
i.e., it may refer to operating system, programming language,
hardware, etc. it is used in the context of the SimStudio II
architecture to mean any of the three model-based analysis
methodology (i.e., simulation, formal analysis or enactment).

________ s> Conforms to __..-> Code sjnthesis

———= Model transformation

——————— =

Model transformation specification

MDA Framework

PV PIMSL

layer

PSML
layer

Code

layer

PINM: Platform-Independent Model

PIMSL: Platform-Independent Model Specification Language

PSM: FPlatform-Specific Model;

PSMSL: Platform-Specific Model Specification Language

Exec: Executable

DSL: Domain-Specific Language; DSM: Domain-Specific Model
HiLLS: High Level Language for Systems Specification

DEVS: Discrete Event System Specification
z: Z specification language
UML: Unified Modeling Language

Figure 4. Architecture of SimStudio II framework.

The SimStudio II architecture is described on the right side of
Figure 4. It takes cue from the MDA framework by defining
three layers each describing the same category and standard
of models as proposed in MDA framework. In the PIM layer,
we propose a PIMSL called HiLLS (High Level Language for
System Specification) to define discrete event system models
- HILLS model - that are not meant solely for any of the three
analysis approaches discussed in this paper. Further details
on HiLLS are provided in the next section.

In the PSM layer, we propose to use DEVS, Z and UML as
PSMSLs for simulation, formal analysis and enactment mod-
els respectively. Our choices of these formalisms are based
on three premises: Firstly, the considered universality of each
of them in its domain. For instance, DEVS has been proven
to be a common denominator for simulation formalisms by
Vangheluwe [37], Z is considered suitable for modeling a
wide range of state-based systems for formal analysis and
UML currently still the choice of the majority for object-
oriented software design communication. Secondly, they all
allow for separation of modeling and implementation con-
cerns, i.e., models can be defined by concentrating on the
problems without being influenced by the operational imple-
mentation of the solutions. Lastly, they all enjoy diversified
tool supports; hence, we can reuse existing tools in our frame-
work.

With the model transformation specifications from HiLLS to
the three PSMSLs in the PSM layer, it is considered that
HiLLS is expressive enough to coherently represent all in-
formation required by the three target platforms. Therefore, a
HiLLS model is separately translated into simulation, formal
analysis and enactment models that are instances of DEVS, Z
and UML respectively. Subsequently, executable codes (code
layer) will be synthesized from the PSMs based on the target
programming environment supported by the language tools.

As the principal formalism at the kernel of SimStudio II,
HiLLS offers a highly communicable graphical concrete syn-
tax for model editing and communication among stakehold-

ers. This is also in line with MDE’s principle of “model once
and generate anywhere” and we envisage that with this ap-
proach, model-based systems engineering can replicate the
feats of productivity and timeliness achieved in software en-
gineering through the use of MDE.

In addition to being the glue for integrating the disparate anal-
ysis approaches, HiLLS also serve as the extension point or
interface through which the framework may provide compu-
tational analysis support different domains such as business
processes, healthcare systems analysis, communications, etc.
This is illustrated by the Domain-Specific Modeling Frame-
work built on top of SimStudio II framework in Figure 4. If
the domain concepts can be described as discrete event sys-
tems, then there is likelihood that model transformation rules
can be specified between the DSL and HiLLS so that any
model, DSM, of the domain can be translated to HiLLS mod-
els to take benefits of the computational supports possible in
SimStudio II. We will discuss the specification of HiLLS in
the next section.

4. HILLS

In order to be expressive enough to actualize the visions of
SimStudio II, the HIiLLS’ syntax describes an integrated set
of constructs for modeling systems for its three target plat-
forms. The build up to the syntax is shown in Figure 5. Start-
ing from the bottom (purposes) row, we identified the con-
ventional approach to model systems for each purpose in the
“Approaches” row. Next we selected considerably universal
formalisms for each approach in the second row.

HiLLS Integrated
formalisms
DEVS — Universal
Object - formalisms
Discrete Event - Object-
Systems o Orientation Approaches
Simulation Formal ysi E purposes

Figure 5. Build up to HiLLS’ abstract syntax.

We discussed the premise for choosing DEVS in the previ-
ous sub-section. We also discussed the universality of Z for
formal methods, the basis for choosing Object-Z for the com-
bined logic and object-orientation approaches is that Object-
Z already integrates Z and object-oriented concepts as de-
scribed previously in Section 2.2. Therefore, the abstract
syntax of HiLLS is derived from the integration of DEVS
and Object-Z concepts using the meta-model integration tech-
niques introduced in Section 2.4

4.1 Abstract Syntax

We present a simplified HILLS’ abstract syntax in Figure 6.
It integrates system-theoretic concepts from DEVS and soft-
ware engineering concepts from Object-Z to produce a co-
herence whole. Interestingly, the set of concepts described by
the two formalisms have a significant amount of intersection;
for instance, they both describe the concepts of state, state
transition, input, output, hierarchical compositions and con-
nections between components, albeit in different ways and
at different levels of refinement. Therefore, the set of con-
cepts described in HiLLS is just a union of those described
in DEVS and Object-Z while we use the meta-model merge
and meta-model refinement techniques (see Section 2.4) to
address the concept collisions and refinement gaps respec-
tively. The dashed box at the south-east of Figure 6 contains
most of the abstract system-theoretic concepts adopted from
DEVS. A system is described by the class HSystem which
is composed of configurations, transitions, couplings, ports,
and hComponents. Using the meta-model merge and inter-
facing techniques, class HClassifier serves as the bridge be-
tween the DEVS and Object-Z concepts. Through HClas-
sifier, HSystem inherits the Object-Z concepts StateSchema

T B ClassferRet
JHEm'ssmm'ypa <<arxmer3ﬂ0n> HHeperition opposie yC.|
Ed\n.og\c 2 gestiption: ESrng H Heference
o = nare; ST .
o g = comarment: Ebeclean| | e
i © lowerBounc : Ent 2l
El o ppebound : 2t el
Qe -
4H:‘< 7 e Sing 0 meitadClasses| | gre-ater
pored Wlastier TReferercs less
1} X o\ entes taget o = greater or equa
e 0. dedlarations 0, HHC\as‘H = less or equal
B i
E : X B Helosfir] = not equd
0.4 = menker_of
decarston £ omaisoema B Operdien upe:atcns_ _ 'F: _________ - ot meher o |
o ; El
L % ‘ camporents (,* e
2 cabss | < lowe-Bound : 2
Elg SaleSeNa) s ey g-——‘y—1 £ Hysen ol = upperbound : Ert
=1 l0-
preconditions |0‘ s
axmg” “‘ST U'Justcu difors mg_l [Eraey K [
g L V0 n []
% predicate A

T 2 1
|aHPrc}:en¥é~s properie YT sender) recevr

| cenfguralions B nitalconf
dasse | | = |
—

J Cofreton — statingCorfig
S Jebe : EString L
dsusgww]aJseZ Zﬁ subConfiguration : Q\r;uthuphnd\Q\rtema\caup\nd\QOLtwtCuunhm‘
| Il |
e BT |
" ansfiors T avert|
i farget o OUTEVETE) et

[NegatecPred [inplebred ca
! by o
B Complepediae iteziins s ‘A»Mmmm‘ ‘Q ConfquratonTianston 3|3 BtemalTrasiion WWS, £ Message \
1| |]]

 neg: Unary.ogic < aperacr:Rel
A
= cornedtie : lagic adites QL; ot 0“1 1
onfluzntTransiion oy
W\S M o 0 _ B TensenCongursion H FiiteConfigu] i T
2.1 sejourtine

e . Higger
AL Begein [+ g &
s 0 I L e

Figure 6. Simplified HILLS’ abstract syntax.

o

to formally declare state variables, and Operation to encap-
sulate computation algorithms. Moreover, using meta-model
refinement, Object-Z’s Predicate and Expression are used to
provide detailed specifications of the property and sojourn-
Time respectively of configuration where a configuration is a
set of states that satisfy the same constraints called proper-
ties. Similarly, the concept Declaration in Object-Z refines
the definition of Port. HiLLS’ syntax is described in greater
details in [2].

4.2 Concrete Syntax

Figure 7(a-h) presents the graphico-textual notations for rep-
resenting HiLLS models. We adopt UML-like notations to
represent the structures of models so as to take advantage of
the popularity of the later to ease the learning of the language.

An HSystem (b) is denoted by a box similar to the UML class
except that it has a stack of four compartments as against three
in UML class and that the second compartment of HSystem
has interfaces containing input and output ports to its left and
right sides respectively. The second compartment contains
the state schema and axiomatic schema within which state
variables and system parameters respectively are declared.
The third compartments contain the definitions of operations
respectively. The system’s behavior is described by the con-
figuration transition diagram in the fourth compartment. Fig-
ures 7(c - e) denote the configurations. The symbol fc in the
third compartment of finite configuration (d) holds the expres-
sion that produces its sojourn time. Passive (c) and transient
(e) configurations have predefined sojourn times positive in-
finity and zero respectively; hence they are not explicitly rep-
resented in the model. The three kinds of configuration tran-
sitions are denoted by the different labeled arrows in (g) with

HClassName[params] [HSystemName[params] I
Ao
m.n | {declarations H_l_dnclnmllaﬂs "g"f declarations |declarations E‘W“
predicates _ [predicates : ||predicates | predicates |
: B o
E nit—— &
E | Predicate { nit:
£ | H+Hlopn 1lparams]itypel— it predicates
S Declarations 22 [+|-lopn 1[params]|[type]—
- predicates a Declarations
- £ predicates
B & -
M aciatons o | ° E*\ Jopn ilparamsiitype} §
ar: S x I
predicatos m..n Declarations E
predicates 13
5
— Te—— Q
a. HClass) . |
I |
| tri 1, .tri
[trigger 1, .trigger n [rigger W’\;{]Ie\
- -F-_LM_ Py o8 [
properties — = reparties
— =™ Activities o fe
sub- Activities
gurat - sub-
Prigger 1, .trigger n] configurations
1 [trigger 1. .frigger n| !

. d. Finite Configuration

h. Conditional transitions

¢. Passive Configuration
e. Transient Configuration

f. initial configuration

—W‘T‘“ﬁnﬂx-b ConfluentTransition

Mﬁ Internal Transition
—Cﬂph—““—m!—binnmaﬂmnsilhn
g. Configuration Transitions

Figure 7. HIiLLS’ concrete notations.

the computation expressions accompanying the transitions as
the labels of the arrows.

We are unable to provide detailed mappings of HiLLS’ con-
cepts to the target languages (semantics domains) due to
space constraint; we will illustrate the essential correspon-
dences with a case study in the next section. We have pre-
sented the simulation semantics in [2, 23] and the formal and
enactment semantics will be reported in future publications.

5. CASE STUDY: THE TRAFFIC LIGHT SYSTEM

As a proof of concept of the work presented in this paper, we
provide a small case study to illustrate model-driven systems
engineering in the SimStudio II. Figure 8 shows a HiLLS
specification of a traffic light system and the corresponding
simulation, formal analysis and enactment models obtained
from the HiLLS specification.

5.1 HILLS Specification of Traffic Light PIM
The HiLLS model at the north-west region of Figure 8
presents a platform-independent model of a simple traffic

TLight |

f: 2
f2:2 timeSlice:Z [
fie(lz out: String

f2<{0.1} timeSlice > 0

nit[]][]
timeSlice = 2

= 3*timeSii -

light system. In this example, we only consider the basic op-
eration of the traffic light, extra functionalities such as call
buttons for pedestrians are not considered. The system has no
input port; it, however, has an output port, out, of type String.
It has two state variables f1 and f2 both of type integer with
their possible values constrained as specified in the predicate
part of the state schema. A constant parameter timeSlice of
type integer is also defined with its value initialized in the init
operation.

The system’s behavior is modeled by the configuration tran-
sition diagram in the lower compartment of the diagram. It
has three configurations: brake, stop and move. They are
assumed respectively only when the predicates f1 == 2,
fl==1Af2==0,and f1 == 1A f2 == 1 are true.
They are all finite configuration; hence, the sojourn time of
each configuration is specified by the expression assigned to
the symbol f# in the third compartment of the configuration
figure. For instance, ft = 1.5 % timeSlice for brake. The
starting configuration is brake. The labeled arrows model the
transitions between configurations with the labels specifying

Enactment model TLight java
import enactment. AtomicSystem: //other impe
public class TLight extends AtomicSystem {
private int fl; private int {2: private int timeSlice;
private enum Configs{brake ., stop. move}:
private Configs phase;
public TLight(Stri
super (name); registerPorts(): init() fl = 2; f2=1;
i

private void registerPorts(){
try { addOutputPort (" out new String ()}
} catch (DuplicateldException e){e.printStackTrace():

addOutputPort | name

out!"yellow™; f1'=2; f2'=1;
stop
out!“red”; F1'=1; |f1==1 A f2==0

brake
out!” ellow”; f1==2

‘1 =2, 1221, lff="15"timeSiice move
fl==1 A f2==1
=S TmesT

outl“green”; f1'=1;
outl“yellow”; f1'=2; f2'=0;

~ HIiLLS model (PIM)

Formal Analysis model

— TLightState

1
- @Override

protected void dolnternalTranssition () {
if (phase==Configs. brake && f2==0) phase=Configs.stop;
else if(phase==Configs.brake &b f2!=0)
phase = Configs.move:
else phase = Configs.brake:
}
@Override
protected long computeLifeSpanFunction() {
long sojournTime: //sojournTime is in milliseconds

if {phase = Configs.brake)

sojournTime = (long) (1.5+timeSlice«1000):
else if(phase =— Configs.move)

sojournTime = {long) (5=timeSlice=1000};

else sojournTime {long) (3*timeSlice=1000);

return sojournTime:;

Simulation model

_ TLight_8ine_to Brake
ATLigthState
out! : String

phase = stop v phase = move

out! = “yellow” A phase’ = brake A f = 2
__ TLight_#8,,,_brake2stop.

ATLigths

put!

phase = brake A fz = 0

v J2
phase = brake A fa # 0
out! = “green” A phase’ = move; ff =0

it = TLight_8ny_toBroke V' TLight_5 s brakeZstop V TLight_5 p_brake2move

Init

A TLightState
timeSlice’ = 2; fi = 2; ff

- TLightprvs = (X, Y, 5, 0int. Seats dcony, A ta)

X ={}, Y = {(out, String)}, decar = {}, dcons = {},

S = {((fl . Z}. {fz Z), (timeSlice, Z), (phase, {br'u}\'('. stop, nwu«}]}|phast.’ = brake
< f1 =2, phase

64!4!(3) -

(
A(S) = < (out = “red”)
(

=stop <= fl=1A fo =0,phase = move & f1 =1AM fo = 1}
if phase = stop||phase = move

if phase = brake A fa =0

if phase = brake A\ fo # 0

(phase = brake)
(phase = stop)

(phase = move)

out = “yellow”™) if phase = stop||phase = move
if phase = brake A fo =0

out = “green”) if phase = brake N\ fz #0

1.5 x timeSlice if phase = brake

ta(S) = § 3 x timeSlice if phase = stop

5 x timeSlice if phase = move

Figure 8. Generation of equivalent models for simulation, formal analysis and enactment from a HiLLS model.

the computations accompanying them. The transition from
brake terminates on stop if the condition f2 == 0 is true;
otherwise, it terminates on move.

3712

The exclamation mark depicts an output and a primed, ’,
state variable specifies its final value after the transition. For
instance the sequence of expressions out! “red”; f1’ = 1; on
the transition to stop specify that first, the value red” is sent
on the output port out, then the value of f1 is set to 1. If the
computation algorithm is too long to be conveniently placed
on the transition arrow, the modeler can put the algorithm
in an operation and just call the operation where ever it is
needed.

5.2 Derived Simulation Model

The DEVS model derived from the HiLLS specification of
traffic light is shown in the south-east region of Figure 8.
Since the system has no components, an atomic DEVS model
is inferred. Essentially, the DEVS state set, S, is built from the
state schema, axiomatic schema and the configurations in the
HiLLS specification. They are derived as name-domain pairs
in S. A new variable, phase, is introduced whose domain is
the set of configuration names defined in the HiLLS model.
The predicate part of S is derived from the predicates of the
configurations. Configuration transitions in HiLLS map to
corresponding DEVS state transitions; hence, only DEVS in-
ternal transition function is derivable from the model. The
0;n¢ function is derived from the sources and targets of HiLLS
configuration transitions. Similarly, DEVS X function is de-
rived from the HiLLS model by mapping a configuration
name to the outputs (if any) accompanying the transition(s)
originating from the configuration. Finally, DEVS ta func-
tion derives from a mapping of configuration names to their
respective sojourn times.

5.3 Derived Formal Analysis Model

The Z model derived for formal analysis is presented in the
south-west region of Figure 8. From the HiLLS state schema,
areplica Z state schema is created with a secondary state vari-
able, phase, whose type is the finite set of configuration la-
bels specified in the HILLS model and the predicates of the
configurations are added to the predicate part of the Z state
schema so-derived. Similarly, HiLLS’ axiomatic schema is
transferred to Z as-is. Each configuration transition in HiLLS
translates to an operation schema in Z which modifies the
state schema. If a transition involves an input event (resp.
output event), an input variable (resp. output variable) corre-
sponding to the declaration and type of the port concerned is
added to the operation schema. The properties of the source
configuration (in conjunction with conditions satisfied by the
transition if any) map to the precondition of the Z operation
schema while the final values of the state variables after the
transition map to the post condition of the derived operation
schema.

5.4 Derived Enactment Model

We have proposed, in a previous work [1], an object-oriented
framework for the enactment of DES. The framework com-
bines foundational theory of DES with the observer pat-
tern [12]. Based on the template provided by the framework,

we derive an enactment model for this case study and an ex-
cerpt is shown in the north-east region of Figure 8.

6. RELATED WORK

In his Doctoral dissertation, Shuman [29] proposed a multi-
dimensional analysis framework in which the three method-
ologies integrated in SimStudio II are considered fundamen-
tal to the study of executable architectures. The thesis studied
the different dimensions in terms of they are specified and ex-
ecuted, and their underlying formal semantics in order to map
several solutions to understand which methods are mature.
SimStudio II goes further to identify the commonalities in the
abstract system concepts that can be specified in the disparate
dimensions of analysis through the chosen formalisms; using
the commonalities as seams, we derive a new meta-model to
provide a unified front-end for the three domains of analysis.

Hong and Kim [17] have canvassed for unified frameworks
with facility for iterative process of modeling, performance
evaluation, logical analysis and implementation for run-time
testing for efficient designs of complex systems. They pro-
posed the DEVS Specification Language (DEVSpecL), an
EBNF (Extended Backus-Naur Form) notation for DEVS to
drive a DEVS-based framework system design. The idea was
to translate a DEVSpecL model into Abstract Syntax Tree
(AST) through lexical and syntactic analyzers so that the DE-
VSpecL AST is used to check ill-structured coupling rela-
tions and type mismatch of states/events by a type checker.
Then the checked DEVSpecL. AST becomes the source for
the generation of different forms of codes which are exe-
cuted with various tools for model verification, logical analy-
sis, performance evaluation, and others. It is not clear, how-
ever, the technology used to generate codes for the variety of
tools. Also, DEVSpecL models are close to C++ programs;
with the current model-driven technologies, we think a high
level language should be used in the position of DEVSpecL
to improve communicability of system designs among stake-
holders and accessibility to non-expert users.

Cetinkaya et al. [8] maintains Modeling and Simulation
(M&S) projects can be treated as software development
processes and can be facilitated by model-driven devel-
opment approaches. They proposed, therefore, Model-
Driven Development Framework for Modeling and Simula-
tion (MDD4MS) which includes an M&S life cycle, meta-
model definitions for the conceptual modeling, specification
and implementation stages, model transformations for the
suggested meta-models and a tool architecture for the over-
all process. A prototype was presented which uses a graphi-
cal editor Business Process Modeling Notations (BPMN) for
conceptual modeling. A partial model-to-model transforma-
tion between the BPMN and DEVS meta-model was also pre-
sented using ATLAS Transformation Language (ATL). The
DEVS model so generated is expected to drive the generation
of simulation code based on DEVS Distributed Simulation
Object Library (DSOL), a Java-based simulator library. Sim-
Studio II is different from MDD4MS in a number of ways.
The modeling interface provided by MDD4MS, BPMN, is
suitable to express a very restricted set of discrete event sys-
tems (DES) being a DSL. SimStudio II offers HiLLS at the

front-end which is expressive enough to describe more evolv-
ing systems; it also offers the possibility to support DSLs in-
cluding BPMN. Therefore, users can describe a mental model
of a system in HiLLS even when no DSL exists for the do-
main of the problem. Moreover, while the target of MDD4MS
is a framework to facilitate simulation modeling lifecycle,
SimStudio II seeks to offer a federation of different model-
based engineering techniques, including simulation, for ex-
haustive study of complex systems.

Mittal and Martin [25] have proposed the DEVS Unified
Process (DUNIP), a framework to integrate research find-
ings on DEVS theory to facilitate systems M&S. essentially,
DUNIP focuses interoperability at modeling level while hid-
ing the simulator engines in a net-centric environment. Like
MDD4MS, the modeling interface of DUNIP consists of DSL
model editors such as BPMN, UML, SysML at the client side
while the DEVS simulation virtual machine resides on the
server side. At the interface between the DSLs and the net-
centric simulator, there the DEVS Modeling Language (DE-
VSML) which provides a platform-independent DEVS rep-
resentation of systems that is used by the simulator middle-
ware to generate simulation codes for DEVS-based and non
DEVS-based simulation tools in different programming plat-
forms. The objectives of DUNIP highlights the verification
and validation simulation results, no further details were pro-
vided on how it may be achieved in DUNIP. Also, there is
no ambition of logical analysis of models themselves. This
marks one significant difference between DUNIP and the
work presented in this paper. Moreover, the DEVSML-based
PIM is essentially meant to foster interoperability between
M&S tools, the PIM in SimStudio II (HiLLS) is to promote
communication and collaboration among practitioners of dis-
parate model-based systems engineering methods, in addition
to tools integration. It is, however, important to mention that
while DUNIP supports model-driven systems engineering in
a net-centric environment, SimStudio II does not offer this
feature in its present stage.

7. CONCLUSIONS AND PERSPECTIVES

We propose the SimStudio II, an MDA-based framework
to integrate theoretical and technological advancements in
MDSE and make them available through a unified high-level
modeling interface to enhance communication among practi-
tioners and automated synthesis of models for studying dif-
ferent aspects of complex systems. Technically, the frame-
work has a graphical modeling language, HiLLS, at its kernel
which combines DES concepts from system theory and soft-
ware engineering to express models in a generic way to al-
low for automated synthesis of models for simulation, formal
analysis and enactment.

This paper presents the architecture of the framework and the
syntax of HiLLS. As a proof concept, we also presented a
case study to illustrate how a HiLLS model can serve as com-
mon reference to generate models conforming to disparate
formalisms for simulation, formal analysis and enactment of
DES. We expect that this work suggests a sound roadmap for,
and stimulates, further research into making theoretical ad-
vancements in model-based analysis approaches, including

simulation, easily accessible to prospective users as well as
the co-existence of disparate analysis methodologies for ex-
haustive studies of complex systems.

In an ongoing project, we are currently building an im-
plementation of the proposal using the Eclipse Modeling
Projects [14]. Particularly, a graphical model editor for
HiLLS is being developed as a plug-in for Eclipse. When
completed, we intend to use its meta-model as the source of
model transformation and code generation processes target-
ing existing simulation, formal analysis and enactment frame-
works. We expect that it will provide an environment to ac-
commodate a federation of MDSE tools to facilitate the con-
struction of high fidelity models and exhaustive analysis of
systems of diverse disciplines.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their insightful com-
ments and suggestions.

This work is supported by the Nigerian National Information
Technology Development Agency (NITDA) through a Doc-
toral grant to the first author under the NITDEF postgraduate
scholarships scheme.

REFERENCES
1. Aliyu, H. O., Maiga, O., and Traoré, M. K. A framework
for discrete event systems enactment. In Proc. ESM
2015, EUROSI-ETI (2015), 149-156.

2. Aliyu, H. O., Maiga, O., and Traoré, M. K. The High
Level Language For System Specification: A
Model-Driven Approach to Systems Engineering. Int. J.
Model. Simul. Sci. Comput (2016),
DOI:10.1142/S17939623164100389.

3. Aliyu, H. O., and Traoré, M. K. Toward an integrated
framework for the simulation, formal analysis and
enactment of discrete event systems models. In Proc.
WSC 2015, IEEE (2015), 3090-3091.

4. Aliyu, H. O., and Traoré, M. K. Towards a unified
framework for holistic study and analysis of discrete
event systems. In Proc. AUSTECH 2015, AUST (2015).

5. Bézivin, J. In search of a basic principle for model
driven engineering. Novatica 5, 2 (2004), 21-24.

6. Bousse, E., Mentré, D., Combemale, B., Baudry, B., and
Katsuragi, T. Aligning SysML with the B method to
provide V&V for systems engineering. Innov. Sys. and
Soft. Eng. 6, 1 (2010).

7. Carson II, J. S. Introduction to modeling and simulation.
In Proc. WSC 2004, 1IEEE (2004), 9-16.

8. Cetinkaya, D., Verbraeck, A., and Seck, M. D. Mdd4ms:
A model driven development framework for modeling
and simulation. In Proc. SummerSim 2011, SCS
International (2011), 113—-121.

9. Clarke, E. M., and Wing, J. M. Formal methods: State of
the art and future directions. Computing Surveys (CSUR)
28,2 (1996), 626-643.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Dowson, M., and Fernstrom, C. Towards requirements
for enactment mechanisms. In Proc. EWSPT 1994,
Springer Berlin Heidelberg (1994), 90-106.

Emerson, M., and Sztipanovits, J. Techniques for
metamodel composition. In Proc. OOPSLA 2006 (2006),
123-139.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
Design patterns: elements of reusable object-oriented
software. Addison-Wesley, 1994.

Gianni, D., D’ Ambrogio, A., and Tolk, A. (Eds.)
Modeling and Simulation-Based Systems Engineering
Handbook. CRC Press, 2014.

Gronback, R. C. Eclipse modeling project: a
domain-specific language (DSL) toolkit. Pearson
Education, 2009.

Holmlid, S., and Evenson, S. Prototyping and enacting
services: Lessons learned from human-centered
methods. In Proc. QUIS 2007 (2007).

Holmquist, L. E. Prototyping: Generating ideas or cargo
cult designs? Interactions 12, 2 (2005), 48-54.

Hong, K. J., and Kim, T. G. DEVSpecL: DEVS
specification language for modeling, simulation and
analysis of discrete event systems. Information and
Software Technology 48, 4 (2006), 221-234.

Kent, S. Model driven engineering. In Proc. IFM 2002,
Springer (2002), 286-298.

Kleppe, A. G., Warmer, J. B., and Bast, W. MDA
explained: the model driven architecture: practice and
promise. Addison-Wesley Professional, 2003.

Kuhn, D. R., Craigen, D., and Saaltink, M. Practical
application of formal methods in modeling and
simulation. In Proc. SummerSim 2003, SCS
International (2003), 726-731.

Laleau, R., Semmak, F., Matoussi, A., Petit, D.,
Hammad, A., and Tatibouet, B. A first attempt to
combine SysML requirements diagrams and B. Innov. in
Syst. Soft. Eng..

Lano, K., Clark, D., and Androutsopoulos, K. Uml to b:
Formal verification of object-oriented models. In Proc.
IFM 2004, Springer (2004), 187-206.

Maiga, O., Aliyu, H. O., and Traoré, M. K. A new
approach to modeling dynamic structure systems. In
Proc.ESM 2015, EUROSI-ETI (2015), 141-148.

Maria, A. Introduction to modeling and simulation. In
Proc. WSC 1997, IEEE (1997), 7-13.

Mittal, S., and Martin, J. L. R. Model-driven systems
engineering for netcentric system of systems with devs
unified process. In Proc. WSC 2013, IEEE (2013),
1140-1151.

Nikolaidou, M., Dalakas, V., and Anagnostopoulos, D.
Integrating simulation capabilities in sysml using devs.
In Proc. SysCon 2010, IEEE (2010).

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

Schamai, W., Fritzson, P., Paredis, C., and Pop, A.
Towards unified system modeling and simulation with
modelicaml: Modeling of executable behavior using
graphical notations. In Proc. Modelica 2009 (2009),
612-621.

Schmidt, D. C. Guest editor’s introduction:
Model-driven engineering. Computer 39, 2 (2006),
25-31.

Shuman, E. A. Understanding the elements of
executable architectures through a multi-dimensional
analysis framework. Doctoral Dissertation, Old
Dominion University Norfolk, VA, USA, 2011.

Smith, G. The Object-Z specification language. Springer
Science & Business Media, 2012.

Spivey, J. M. Understanding Z: a specification language
and its formal semantics. Cambridge Univ. Press, 1988.

Touraille, L., Traoré, M. K., and Hill, D. R. A mark-up
language for the storage, retrieval, sharing and
interoperability of devs models. In Proc.
SpringSim-TMS/DEVS 2009, SCS (2009), p. 163.

Touraille, L., Traoré, M. K., and Hill, D. R. A
model-driven software environment for modeling,
simulation and analysis of complex systems. In Proc.
SpringSim-TMS/DEVS 2011, SCS (2011), 229-237.

Traoré, M. K. Analyzing static and temporal properties
of simulation models. In Proc. WSC 2006, IEEE (2006),
897-904.

Traoré, M. K. Simstudio: a next generation modeling
and simulation framework. In Proc. SimuTools 2008,
ICST (2008), p. 67.

Trojet, M. W., Frydman, C., and Hamri, M. E. Practical
application of lightweight z in devs framework. In Proc.
SpringSim 2009, SCS International (2009), p. 154.

Vangheluwe, H. L. Devs as a common denominator for
multi-formalism hybrid systems modelling. In Proc.
CACSD 2000, IEEE (2000), 129-134.

Viehl, A., Schonwald, T., Bringmann, O., and
Rosenstiel, W. Formal performance analysis and
simulation of uml/sysml models for esl design. In Proc.
EDAST 2006, EDAA (2006), 242-247.

Wing, J. M. A specifier’s introduction to formal
methods. Computer 23, 9 (1990), 8-22.

Yacoub, A., Hamri, M., and Frydman, C. A method for
improving the verification and validation of systems by
the combined use of simulation and formal methods. In
Proc. DSRTA 2014, IEEE (2014), 155-162.

Zeigler, B. P, Praehofer, H., and Kim, T. G. Theory of
modeling and simulation: integrating discrete event and
continuous complex dynamic systems. Academic press,
2000.

Zito, A., Diskin, Z., and Dingel, J. Package merge in
uml 2: Practice vs. theory? In Proc. MoDELS 2006,
Springer Berlin (2006), 185-199.

	1 Introduction
	2 Background
	2.1 Discrete Event System Specification (DEVS)
	2.2 Object-Z
	2.3 Model-Driven Engineering/Architecture (MDE/MDA)
	2.4 Meta-model Integration Techniques
	 Meta-model merge
	 Meta-model Interfacing
	 Class refinement

	3 AN INTEGRATED FRAMEWORK FOR MODEL-DRIVEN SYSTEMS ENGINEERING
	3.1 Overview of SimStudio
	3.2 SimStudio II

	4 HiLLS
	4.1 Abstract Syntax
	4.2 Concrete Syntax

	5 CASE STUDY: THE TRAFFIC LIGHT SYSTEM
	5.1 HiLLS Specification of Traffic Light PIM
	5.2 Derived Simulation Model
	5.3 Derived Formal Analysis Model
	5.4 Derived Enactment Model

	6 RELATED WORK
	7 CONCLUSIONS AND PERSPECTIVES

