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Numerical investigationof contact/impact problems between deformable
bodies

B. Magnain, Z.-Q Feng, J.-M. Cros
Laboratoire de Ḿecanique et d’́Enerǵetique d’Évry, Universit́e d’Évry Val d’Essonne

ABSTRACT: The bi-potential method has been successfully applied to the modelling of frictional contact prob-
lems in static cases. This paper presents the extension of this method for dynamic analysis of impact problems.
A first order algorithm is applied to the numerical integration of the time-dicretized equation of motion. The
solution algorithm is simple and efficient. Two numerical examples are carried out in 2D: a longitudinal elastic
impact between two slender bars and a more complex impact between two cylinders inside rigid walls.

1 INTRODUCTION

Problems involving contact and friction are among the
most difficult ones in mechanics and at the same time
of crucial practical importance in many engineering
branches. The main mathematical difficulty lies in
the severe contact non-linearities because the natu-
ral first order constitutive laws of contact and friction
phenomena are expressed by non-smooth multival-
ued force-displacement or force-velocity relations. A
large number of algorithms for the numerical solution
of the related equations and inequalities have been
presented in literature. The popular penalty method
appears, at first glance, suitable for many applica-
tions. But in this method, the contact boundary con-
ditions and friction laws are not accurately satisfied
and it is difficult for the users to choose appropri-
ate penalty factors. In addition, it may fail for stiff
problems because of unpleasant numerical oscilla-
tions between contact statuses. In mutually indepen-
dent works, Alart and Curnier (1991) and Simo and
Laursen (1992) have proposed the augmented La-
grangian method. De Saxcé and Feng (1998) have
proposed another augmented Lagrangian formulation
and the bi-potential method, which is somewhat dif-
ferent from the one presented in the first two works. In
particular, the frictional contact problem is treated in a
reduced system by means of a predictor-corrector so-
lution algorithm. In addition, the bi-potential method
leads to a single displacement variational principle
and a unique inequality in which the unilateral contact
and the friction are coupled via a contact bi-potential.
Using the bi-potential properties, the application of
the augmented Lagrangian method to the contact laws

leads to an equation of projection onto Coulomb’s
cone, strictly equivalent to the original inequality.

Usually, the time-discretized equation of motion of
dynamic system is integrated by second order algo-
rithms such as Newmark, Wilson, etc. In this kind of
methods, the acceleration is often assumed to be con-
stant or to vary linearly within one time step. How-
ever, it is well known that in impact problems, the
velocity and acceleration are not continuous because
of the sudden changes in contact conditions. So the
second order algorithms may lead to serious errors
(1998). In this work we use the first order integration
algorithm proposed by Jean (1989) in which the ac-
celeration doesn’t need to be calculated. The total La-
grangian formulation is used to take into account the
large displacements and rotations that occur in impact
problems.

In the present paper, we propose an extension of
the bi-potential method for the modelling of impact
problems using a first order algorithm for integration
of the equation of motion. Two numerical examples
are performed in this study to show the validity of the
model developed. The first example concerns the lon-
gitudinal impact between two elastic bars. The second
example simulates the impact of two elastic cylinders
in rigid walls.

2 THE BI-POTENTIAL METHOD

In the following section, basic definitions and nota-
tions used are described. Two deformable bodiesBα

(Figure 1),α = 1,2, are considered. Each of them
occupies the open, simply connected, bounded do-
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main Ωα ⊂ R3, whose generic point isdenotedXα.
Furthermore,the solids are elastic and undergo large
displacements. The boundaryΓα of each body is as-
sumed to be sufficiently smooth everywhere so that an
outward unit normal vector, denoted bynα, can be de-
fined at any pointM onΓα. At each timet ∈ I, where
I = [0,T ] denotes the time interval corresponding to
the loading process, the boundaryΓα of the bodyBα

can, in general, be split into three parts:Γα
u with pre-

scribed displacements̄uα, Γα
t with prescribed bound-

ary loadst̄ α, and the potential contact surfacesΓα
c

where the two bodiesB1 andB2 may possibly come
into contact at some timet :

Γα = Γα
u ∪ Γα

t ∪ Γα
c (1)
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Figure1. Contact kinematics

The successive deformed configurations ofBα are de-
scribed at each timet by the displacement fieldsuα

defined onΩα). On the contact surface, a unique nor-
maln directed towardsB1 (n≡ n2) is defined and the
tangential plane, orthogonal ton in R3, is denoted by
T. To construct a local basis, two unit vectorstx and
ty are defined within the planeT. For describing the
frictional contact interactions that may occur onΓc,
we introduce the relative velocity with respect toB2

u̇ = u̇1− u̇2 (2)

whereu̇1 andu̇2 are the instantaneous velocities ofB1

andB2. Let r be the contact force distribution exerted
onB1 atM fromB2. According to the action-reaction
principle,B2 is subjected to−r. In the local coordi-
nate system defined by the tangential planeT and the
normaln, any elemenṫu andr may be uniquely de-
composed as

u̇ = u̇t + u̇n n, u̇t ∈ T, u̇n ∈ R (3)

r = r t + rn n, r t ∈ T, rn ∈ R (4)

The unilateral contact law is characterized by a ge-
ometric condition of non-penetration, a static condi-
tion of no-adhesion and a mechanical complementary

condition. These three conditions are known as the
Signorini conditions:

un ≥ 0 , rn ≥ 0 , un rn = 0 (5)

In case of dynamic analysis such as impact problems,
the Signorini conditions can be formulated, in terms
of relative velocity:

u̇n ≥ 0 , rn ≥ 0 , u̇n rn = 0 (6)

Classically, a rate independent dry friction law is
characterized by a kinematic slip rule. In this work,
the classical Coulomb friction rule is used. The set of
admissible forces, denoted byKµ, is defined by:

Kµ =
{

r ∈ R3 such that‖r t‖ − µrn ≤ 0
}

(7)

Kµ is the so-called Coulomb’s cone and is convex.
De Saxće and Feng (1998) have introduced the bi-
potential defined by:

bc(−u̇, r) =
⋃

R−

(−u̇n) +
⋃
Kµ

(r) + µrn‖ − u̇t‖ (8)

whereR− =] −∞,0] is the set of the negative and
null real numbers and

⋃
Kµ

r denotes the so-called indi-

catory function of the closed convex setKµ:

⋃
Kµ

(r) =

{
0 if r ∈ Kµ

+∞ otherwise (9)

In order to avoid nondifferentiable potentials that oc-
cur in nonlinear mechanics, such as in contact prob-
lems, it is convenient to use the augmented La-
grangian method. For the contact bi-potentialbc,
given by (8), provided thaṫun ≥ 0 and r ∈ Kµ, we
have:

∀ r
′ ∈ Kµ :

%µ(r
′
n−rn)‖u̇t‖+(r−(r − %u̇)) · (r ′−r)≥0

(10)

where% is a solution parameter which is not user-
defined. In order to ensure numerical convergence,%
can be chosen as the maximum value of the diago-
nal terms of the local contact stiffness matrix. Taking
account of the decomposition (3,4), the following in-
equality has to be satisfied:

r
′ ∈ Kµ, (r − τ ) · (r ′ − r) ≥ 0 (11)

where the modified augmented surface tractionτ is
defined by

τ = r − %(u̇t + (u̇n + µ‖u̇t‖)n) (12)

The inequality (11) means thatr is the projection of
τ onto the closed convex Coulomb’s cone:

r = proj(τ ,Kµ) (13)
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To find the numericalsolutionof the implicit equation
(13), Uzawa’s algorithm can be used, which leads to
an iterative process involving one predictor-corrector
step:

Predictorτ i+1 = r i−%i(u̇i
t+(u̇i

n+µ‖u̇i
t‖)n)

Correctorr i+1 = proj(τ i+1,Kµ)
(14)

It is worth noting that, in this algorithm, the unilat-
eral contact and the friction are coupled via the bi-
potential. Another gist of the bi-potential method is
that the corrector can be analytically found with re-
spect to the three possible contact statuses:τ ⊂ Kµ

(contact with sticking),τ ⊂K∗
µ (no contact) andτ ⊂

R3 −Kµ

⋃
K∗

µ (contact with sliding).K∗
µ is the polar

cone ofKµ. It is important to emphasize the fact that
this explicit formula is valid for both 2D and 3D con-
tact problems with Coulomb’s friction and allows us
to obtain very stable and accurate results.

3 FINITE ELEMENT FORMULATION OF NON-
LINEAR STRUCTURES

3.1 Total Lagrangian formulation

In order to describe the geometrical transformation
problems, we use the deformation gradient tensor:

F = Id +∇u (15)

where Id is the unity tensor and∇u the displace-
ment gradient tensor. Because of large displacements
and rotations, Green-Lagrangian strain is adopted for
the nonlinear relationships between strains and dis-
placements. We noteC the stretch tensor or the right
Cauchy-Green deformation tensor (C = FT F). The
Green-Lagrangian strain tensorE is defined by:

E =
1

2
(C− I) (16)

In the context ofthefinite element method and from
Eqs.(15, 16), the Green-Lagrangian strain includes
formally linear and nonlinear terms in function of
nodal displacements:

E =
(

BL +
1

2
BNL(u)

)
u (17)

whereBL is the matrixwhich relates the linear strain
term to the nodal displacements, andBNL(u), the
matrix which relates the nonlinear strain term to
the nodal displacements. In the particular case of
isotropic Saint-Venant-Kirchhoff material models, we
have:

S= D : E (18)

whereD andS respectively denote the usual material
secant tangent and the second Piola-Kirchoff stress

tensor. Using the finite element method, the equilib-
rium equation for an impact problem can be generally
written in the form:

Mü + Cu̇ + Fint − Fext −Rc = 0 (19)

whereFext, Fint andRc are respectively the external,
internal and contact forces. In this equation, reaction
forces are introduced like a second type of external
forces.M is the mass matrix andC is the damping
matrix. ü is the acceleration vector andu̇ is the veloc-
ity vector. It is noted that the stiffness effect is taken
into account by the internal forces vectorFint. Taking
the derivative ofFint with respect to the nodal dis-
placementsu gives the tangent stiffness matrix as

K =
∂Fint

∂u
= K e + Kσ + Ku (20)

The tangent stiffness matrix isin fact the sum of the
elastic stiffness matrixK e, the geometric stiffness (or
initial stress stiffness) matrixKσ and the initial dis-
placement stiffness matrixKu:

K e =

∫

V0

BT
LDBL dV (21)

Kσ =

∫

V0

S
∂BNL

∂u
dV (22)

Ku=

∫

V0

(BT
LDBNL+BT

NLDBL+BT
NLDBNL)dV (23)

whereV0 is the volume of the initial configuration.

3.2 First-order algorithm

For the integration of Eq.(19), we adopt a first-order
algorithm based on the following velocity approxima-
tion (Jean 1989):

u̇ =
ut+∆t − ut

∆t
= (1− θ) u̇t + θu̇t+∆t (24)

with (0 ≤ θ ≤ 1). Then, we obtain the following
Newton-Raphson iterative formulation:
{

K̄ i∆u = F̄i + F̄i
acc + Ri+1

c

ui+1 = ui + ∆u (25)

whereK̄ i, F̄i
acc andF̄i are calculated by (0 ≤ ξ ≤ 1):





K̄ i = ξ K i +
ξ

θ∆t
Ci +

1

θ∆t2
M i

F̄i
acc = − 1

θ∆t2
M i{ui − ut −∆t u̇t}

F̄i = (1−ξ)(Ft
int+Ft

ext)+ξ (Fi
int + Ft+∆t

ext )

(26)
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At the end of eachtime step, the velocity is updated
by:

u̇t+∆t = (1− 1

θ
) u̇t +

1

θ ∆t
(ut+∆t − ut) (27)

In the following numericalresults,the local velocity
at the contact interfaces are expressed in terms of the
average velocity over a time step:

u̇ = (1− θ)u̇t + θu̇t+∆t (28)

4 NUMERICAL RESULTS

The algorithms presented above have been im-
plemented and tested in the finite element code
FER/Impact. To illustrate the effectiveness and the ro-
bustness of the algorithm, we consider two example
applications which are homogenous Neumann prob-
lems (no displacements or external forces imposed).
For both cases, we assume that no damping exists ex-
cept for Coulomb friction between contact surfaces,
i.e. C = 0 in Eqs.(19, 26). Moreover, the algorithm
parameters used for the following simulation areθ =
ξ = 0.5 for which the first order algorithm is conser-
vative. Dimensionless data are intentionally used for
these analyses.

4.1 Longitudinal elastic impact

The first example of dynamics is presented in order to
verify the validity and the efficiency of the method de-
veloped. The problem concerns the longitudinal im-
pact of two elastic bars in 2D. Two cases are consid-
ered : impact between similar and dissimilar bars. Ge-
ometric configurations and material characteristics of
the two considerated cases are reported in Figure 2
and Table 1.

(2)

0
(1) V

0
(2)

A B C D
(1)

V

Figure2. Longitudinal impact of two elastic bars

Table 1. Material and geometric data
case1 case2

T 0.04 50.0
∆t 0.00001 0.01

bar(1) bar(2) bar(1) bar(2)
Length 10 10 100 100
E 1000 1000 10,000 80,000
ρ 0.001 0.001 100 200
V0 1.0 -1.0 0.1 0.0

4.1.1 Case 1: similar bars
For this first simulation, both bars have the same ma-
terial properties. For each of the following displayed
results, analytical solutions are plotted in order to
check the efficiency of the proposed method. In Fig-
ure 3 the nodal displacement of point C is plotted. It
shows a good concordance between the analytical so-
lution and the numerical solution.
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Figure3. Local displacement ofpointC

The velocities and reaction forces at the contact in-
terface (point C) are plotted in Figures 4 and 5.
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Figure4. Local velocityof point C
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Figure 6 displays the energy evolution of the full
system(bar(1) + bar(2)). Ek, Ee andEt = Ek + Ee

are respectively the kinetic energy, the elastic strain
energy and the total energy. It shows that the proposed
method permits us to verify the principe of energy
conservation for frictionless contact problems.
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Figure6. Energy evolution

4.1.2 Case 2: dissimilar bars
This example has been first studied by Laursen and
Love (2002) with a penalty regularization method.
The displacements of both bars and the local veloc-
ities at the contact interface are plotted in Figures 7
and 8.
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Figure8. Velocity atthecontact interface

For each bar, the evolution of total energy is plotted
in Figure 9. Once again, the total energy of the system
(Et = Et1 + Et2) is conserved.
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Figure9. Energy evolution (µ= 0.0)

4.2 Impact of two cylinders inside rigid walls

The second example is dealing with the impact of
two elastic cylinders inside rigid walls. This problem,
proposed by Armero and Petocz (1998), permits to
explore the performance of the presented method in
the case of deformable-deformable contact. The ge-
ometric data of the problem is displayed in Figure
10. The material constants of the both cylinders are
: E = 2700, ν = 0.33, andρ = 1. The left cylinder is
given an initial velocity ofVx = 1.0 andVy = −2.0,
hitting the bottom rigid wall and afterwards the right
cylinder as depicted in Figure 10. The total simulation
time is 15 and time step is∆t = 10−3.

4

4

4

Figure10. Impact of two cylinders inside rigid walls

In Figures 11 and 12,Et, Ek and Ee are plotted
in the case of frictionless (µ = 0.0) and frictional
(µ = 0.2) contact. We can clearly observe that the total
energy is quite well conserved in the case of friction-
less contact. However, in the case of frictional contact
(µ = 0.2), the total energy decreases at each shock
(Figure 12). As expected, the energy is dissipated by
frictional effects.

5



 0

 1

 2

 3

 4

 5

 6

 7

 8

 14 12 10 8 6 4 2 0

E
n
e
rg

y

Time

Et
Ek
Ee

Figure11. Energy evolution (µ= 0.0)
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Figure12. Energy evolution (µ= 0.2)

Figure 13 shows the distribution of the shear stress
of the left cylinder when it hits the bottom wall. As
expected, the distribution is symmetrical in friction-
less case while this is not true in frictional case.

Figure13. Distribution ofshearstress att = 1.56 s

5 CONCLUSION

In this paper, we have presented the recent develop-
ment of the bi-potential method applied to dynamic
analysis in impact mechanics. The numerical algo-
rithms are described. The presented results demon-
strate that the proposed method can provide good re-
sults in terms of numerical stability and precision. The
proposed algorithms seem to preserve the total energy
of the system in the case of frictionless contact and
also take into account the physical energy dissipation
by frictional effects.
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