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Modeling numerically Flow-Induced Vibrations in heat exchangers at a microscopic scale
requires high computational resources and time which are still unreachable. Therefore
model reduction is investigated in the present work in order to address the issue of
simulation computational time reduction. In the framework of POD-Galerkin projection
methods, the purpose is to propose optimal a posteriori reduction strategies enabling error
control on approximation as well as Reduced-Order Model (ROM) interpolation to deal
with sensitivity analysis of solutions to parameter perturbations. Amulti-phase fluid–solid
POD-Galerkin-based method is proposed for modeling flows and vibrations in cylinder
arrangements under single-phase fluid cross-flows.Moreover a single-POD basismethod is
evaluated in the context of ROM interpolation. This work is a first step in the development
of robust ROM describing fluid and solid dynamics in the presence of turbulence, heat
transfer effects and large magnitude structure displacements and deformations.

0. Introduction

Optimization of safety barrier reliability and Uncertainty Quantification (UQ) of physical models give rise to long-term
research programs involving designers and engineers working on maintaining systems under operating conditions. The
present article focuses on vibration risk assessment in heat exchangers in the context of lifecycle control and increase of
mechanical components in spite of the very constrained conditions they are submitted to. In Pressurized Water Reactors
(PWR) steam generators ensure the transition between the primary and secondary loops and are used to convert water into
steam from heat produced by the core made of fuel assemblies. Each heat exchanger can measure up to 20 m and is made
of regular confined arrangements of several thousands of thin elongated cylinders whose section diameter may be less than
2 cm. These cylinders are conveying the primary fluid and steam is produced, coming from the water on the shell side,
so-called the secondary fluid. The heat exchanges take place at this stage in this area. Then the secondary steam is delivered
to turbines for electric power generation. A brief dimensionless analysis of this geometrically complex system shows that
as a first approximation under current conditions the dynamical behavior of these vibrating cylinders is independent on
heat transfers. Therefore it is not necessary to account for thermal effects in the context of dynamical analysis. Due to
geometry and to thermohydraulics conditions, most effects responsible for vibrations of cylinder arrays are due to Fluid
Structure Interaction (FSI) and Flow-Induced Vibration (FIV) occurring at the external shell of the cylinders. They are due
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to the hydrodynamic unsteady load exerted by the external fluid on these structures. Moreover the component is such

that cylinders are submitted to two-phase flows at the top and to single-phase flows at the bottom. Therefore as a first

step, in the present article, one focuses on single-phase FIV at the bottom of the heat exchanger where flows are crossing

mostly transversally the array. The purpose is to address themulti-physicsmulti-scale issue of stability analysis of dynamical

response of cylinder arrangements submitted to external single-phase fluid flows in order to be able to establish accurate

stabilitymaps applicable for design. Therefore parameter perturbationsmust be investigated in order to account for possible

large variations of parameter values during the lifecycle of these mechanical components.

As far as numerical modeling is concerned, a fully three-dimensional microscopic-scale model of the bottom area

of the heat exchanger tube array under single-phase fluid cross flow under real operating conditions characterized by

Reynolds numbers of order of 105 would lead to solving systems involving more than 1010 degrees of freedom which

is still unreachable in practice even by using most advanced High Performance Computing (HPC) resources. Therefore

superpositionmethods have been introduced in the context of first order asymptotic developments in order to perform linear

stability analysis of these systems and exhibit major mechanisms involved in dynamical instability occurrence. Using space

domain decompositions dimensionless parameter effects have been studied independently. Nevertheless HPC simulations

performedon small-size domains are not yet convenient for design since they still require long computations of several hours

to several days according to Reynolds numbers to be considered and to turbulencemodels to be involved. Therefore Reduced-

OrderModeling (ROM) is investigated in order to dealwith this problematic of reducing computational time. It is investigated

in the present work by considering as a first step a two-parameter configuration where only Reynolds number and reduced

velocity can vary while other parameters like mass ratio, Scruton number and pitch ratio of the cylinder arrangement are

given. The basic idea is to use few High-Fidelity (HF) computations with a classical method (such as Finite Volumes and

Finite Elements) to build low computational time models. Then ROMs have an initial cost, but this cost can be charged off

if the models are used for large set of parametric values. The success of such approaches can be quantified by the large

field of their applications. For example, ROMs have been used for studying different configurations of thermal management

of data centers (Samadiani and Joshi, 2010), for controlling wave energy converters (Hesam and Shoori, 2014), fluid flow

control at high Reynolds numbers (Semaan et al., 2016; Balajewicz et al., 2016) or in aeronautics (Kim, 2016). One way

also explored is computation on smartphone, for which ROM approaches seem to be the appropriate solution. For example,

Modesto et al. (2015) proposed an application for smartphone for computing disturbances in the Barcelona harbor in quasi

real time using a ROM approach. On the same thing, ROMusing a few/small resources could be used in a context of volunteer

computing (Nouman Durrani and Shamsi, 2014) for a large parametric studies.

Few works exists on ROM development for FIV or FSI context. All works consist in adapting or extending the Proper

Orthogonal Decomposition (POD) to this problematic. The POD is the most famous method for ROM in fluid mechanics and

it has naturally been extended and adapted to the cases of flow in the presence of moving boundaries. For FSI cases similar

to aeroelasticity, i.e where the fluid domain could be considered as fixed, the Navier–Stokes equations are linearized and

projected on a POD basis (Barone et al., 2009b; Lieu et al., 2006). For small vibrations at the surface of the structure, Bourguet

et al. (2011) proposed a Hadamar formulation associated with a ROM-POD. For large fluid domain motion of deformation,

Rozza (2009) used POD on a parametric mesh and next built ROM for stationary problems on different meshes. In case of

imposed displacement of the structure, Balajewicz and Farhat (2014) proposed an immersed boundary ROMwith amodified

formulation. The ROM is directly built in an immersed boundary solver and is available only for imposed displacement of

the solid domain. Among the previous proposed methods, none allows to solve a FSI problems with a large displacement

of the structure, i.e cases where the fluid modifies the behavior of the structure, which interactively also changes the flow.

The issue of using POD for moving domains deals with the paradox of computing a POD basis which is a spatial basis on a

changing (i.e. a time-evolving) domain. Liberge and Hamdouni (2010) and Liberge et al. (2010) proposed a POD-multiphase

formulation available for FSI problems with large displacement of the domain. The method consists in computing a POD

basis of an interpolated velocity field on a reference grid, and next in projecting a multiphase formulation on this POD basis.

It is recalled in the next section. This method has been successfully used for small and large displacements of a cylinder in a

cross fluid flow for known parameters.

This paper explores the behavior of POD-multiphase ROM when the parameter values are different from those used to

build the POD basis. In the first part, the principles of the POD, the POD-multiphase and the ROM parameter sensitivity

analysis methods are explained. Next, the parameter sensitivity of the cylinder vibrations in a cross fluid flow is studied and

results are discussed.

1. Theory

One considers Ω ⊂ R
3 such that Ω = Ωf (t) ∪ Ωs (t) ∪ Γi (t) with Ωs the solid domain, Ωf the fluid domain and Γi the

fluid–solid interface. One defines the external boundary of the domain : Γf = ∂Ω \ Γi. The normal vector n is oriented as

pointing out towards outside the solid domain. One defines a velocity field u over the whole domain Ω × [0, T ] where T

corresponds to the last time where the dynamics of the system is considered.
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Fig. 1. Fluid structure interaction scheme.

1.1. The Proper Orthogonal Decomposition (POD)

The Proper Orthogonal Decomposition method being a well-known method, just a practical approach introduced by
Sirovich (1987) and the principal properties are exposed in the following. For more informations, one can refer to Allery et
al. (2004), Liberge and Hamdouni (2010) and Liberge et al. (2010).

Considering a set ofM snapshotsu (tk) , k = 1 · · ·M of the velocity field, the PODmethod consists in solving the following
eigenvalue problem :

CAk = λkAk (1)

with Cij =
∫

Ω
u (x, ti)u

(

x, tj
)

dx is a time correlation tensor of the snapshots of the velocity field. Next, the vectors of the
spatial basis are obtained with the decomposition :

Φk (x) =

M
∑

m=1

Ak
mu (x, tm) (x) (2)

The POD basis has the following properties :

• There is a set of positive eigenvalues (λi)i≥1 which decreases to 0,

λ1 ≥ λ2 ≥ · · · ≥ λi ≥ · · · and λi → 0 (3)

and a set of vectors (Φi)i≥1 which is a Hilbertian basis.
• The vectors (Φi) are orthogonal and can be normalized:

(

Φi, Φj

)

=

∫

Ω

Φi (x) · Φj (x) dx = δij (4)

In case of an incompressible flow, the POD basis fulfills the free divergence, i.e. divΦi = 0, i ≥ 1.
• The values of the temporal coefficients ai at specific times tk, k = 1 · · ·M are obtained from the projection of u onto

the basis :

ai (tk) = (u (tk) , Φi) (5)

This procedure is called POD direct projection.
• The eigenvalue λi is the energy captured by the vector Φi. For a given N , the POD decomposition is the best energy

decomposition that can be obtained.

Usually, in fluid mechanics, the POD is computed for the fluctuating velocity field u′ and the POD basis is
(

Φ ′
i

)

.

1.2. The POD-multiphase formulation for FSI problems

The classical POD approach leads to a spatial basis, and needs fixed domains. Indeed, if the domain Ω is time dependent,
the eigenvalue problem (1) cannot be computed since the snapshots do not have the same domain definition at times ti and
tj. To cancel this drawback, Liberge and Hamdouni (2010) and Liberge et al. (2010) have proposed to use a global domain Ω

with a fixed grid which recovers all the time variant domains Ω = Ωf (t) ∪ Ωs (t) ∪ Γi (t) as displayed in Fig. 2.
The method consists in computing snapshots using a classical Fluid Structure Interaction approach, which can use time

variant grid. Next, the snapshots are interpolated from the time variant grid to the reference one. The snapshots can be

3



Fig. 2. Examples of grids for moving (left) and reference (right) domains to be introduced in order to account for time dependency of fluid–solid interface
in a configuration involving a periodic cylinder arrangement with a moving central cylinder.

Fig. 3. Space- and time-dependent characteristic functions in the whole domain equal to 1 in the fluid and 0 in the solid domains for fluid and conversely
for solid for coarse with 25 × 25 cells (left), refined with 50 × 50 cells (middle) and fine with 200 × 200 cells (right) cartesian grids for a two-dimensional
configuration involving a periodic cylinder array.

computed by a classical solver using Arbitrary Lagrange Euler (ALE) method involving moving grid. Then a global velocity
field is built on Ω as follows:

u(x, t) = us(x, t)1Ωs (x, t) + uf (x, t)1Ωf
(x, t) (6)

with us(x, t) the solid velocity field defined on space Ωs(t) and uf (x, t) the fluid velocity field defined on space Ωf (t) at time
t . Characteristic functions are respectively expressed by 1Ωs (x, t) and 1Ωf

(x, t) with 1Ωs (x, t) = 1− 1Ωf
(x, t). Each function

1Ωi
(for i = f or s) is defined by :

1Ωi
(x, t) =

{

1 if x ∈ Ω i(t)

0 else

Each variable (density and viscosity) and each field is decomposed following the example of Eq. (6).
Examples of time-dependent space distributions of characteristic functions are displayed in Fig. 3 for several grid

refinement.

1.3. Reduced-order dynamical model

Applying the POD to the velocity field (6) leads to a spatial basis defined on Ω .
We focus in this paper on caseswhere solid domain can bemodeled using a rigid body coupledwith springs and dampers.

The non fluid constraints are expressed as external forces Ff and momenta Ms.
Then, the ROM is built using themethod proposed by Liberge andHamdouni (2010). The principle is developed in Liberge

and Hamdouni (2010) and it is recalled in the present paper.
The formulation consists in extending the Navier–Stokes equations to the solid domain by adding a rigidity constraint

Eq. (7) defined on the solid domain and a Lagrange multiplier Λ associated with the constraint as follows:

D(u) = 0 in Ωs(t) (7)

where D (•) is defined by :

D (•) =
1

2

(

∇ • +∇T•
)

.

This leads to the following variational formulation on the global domain Ω :
HvΓ

=
{

u|u ∈ H1 (Ω) ,u = uΓ (t) on ∂Ω \ ΓI

}

,
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H0 =
{

u|u ∈ H1 (Ω) ,u = 0 on ∂Ω \ ΓI

}

, L20 (Ω) =
{

q ∈ L2 (Ω) |
∫

Ω
qdx = 0

}

,

∀u∗ ∈ H0 and q ∈ L2 (Ω) , find u ∈ HvΓ
, p ∈ L20 (Ω) , Λ ∈ H1 (Ωs (t)) such that

∫

Ω

ρ

(

∂u

∂t
+ u∇u

)

u∗dx −

∫

Ω

p∇ · u∗dx +

∫

Ω

q∇ · vdx +

∫

Ω

2µD (u) : D
(

u∗
)

dx

+

∫

Ωs(t)

D (Λ) : D
(

u∗
)

dx =

∫

Ω

fu∗dx

(8)

where ρ and µ are defined on the global domain Ω :

ρ = ρf

(

1 − 1Ωs

)

+ ρs1Ωs , µ = µf

(

1 − 1Ωs

)

+ µs1Ωs . (9)

µs is the penalization factor associated with the Lagrange multiplier. f denotes the global volumique forces defined as

f = ff
(

1 − 1Ωs

)

+ fs1Ωs (10)

where ff designates the standard external volumic hydrodynamic forces exerted by the fluid and fs is the other part of
external volumic forces acting on the rigid body different from fluid forces. fs satisfies the two following equations :

Fs =

∫

Ωs

fsdx and Ms =

∫

Ωs

fs ∧ xdx (11)

Next, the POD-ROM is built by choosing PODmodes Φi, i = 1 · · ·N for the virtual velocity field and the decomposition of
u on the POD basis.

For each n = 1, . . . ,N:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=1

dai

dt
Ain +

N
∑

i=1

N
∑

j=1

aiajBijn +

N
∑

i=1

aiCin + Dn + En = 0

D (u) = 0 in Ωs (t)
∂1Ωs

∂t
+ u · ∇1Ωs = 0

(12)

where :

Ain =

∫

Ω

ρΦi · Φndx Dn =

∫

Ω

1ΩsTr
[

D(Λ)D(Φn)
]

dx

Bijn =

∫

Ω

ρ(Φi · ∇)Φj · Φndx En =

∫

Ω

fΦndx

Cin = 2

∫

Ω

µTr
[

D(Φi)D(Φn)
]

dx

As explained in Liberge and Hamdouni (2010) the formulation (12) does not need to compute explicitly the fluid forces
on the structure because they are intrinsic to the formulation. In addition, the equivalent formulation using the fluctuating
velocity field is described in Appendix A. Moreover the method can be extended to the case of deformable structure as
described in Appendix B.

Remark. A POD-Galerkinmethod is involved in the presentwork. It is well-known that it can lead to instabilities, that is why
the use of additional viscosities associated to each PODmode (Cazemier et al., 1998) or Least-Square approach (Tallet et al.,
2015; Carlberg et al., 2017) is often preferred in the context of fluid mechanics applications. However this is not necessary
in the present study since as explained in Liberge and Hamdouni (2010), the solid viscosity used to penalize the rigid body
plays the role of the viscosity of Cazemier et al. (1998) and avoids instabilities.

2. Application to FIV of cylinder array

2.1. Configuration

In what follows, the model reduction method is applied to a configuration involving a periodic cylinder array made of
one central moving cylinder and 8 truncated non-moving cylinders submitted to an external cross flow. The problem is
two-dimensional thanks to the choice of parameters since the Reynolds number does not exceed 1000. Reduced velocity
varies between 1 and 4. Other parameters are fixed. Pitch ratio is 1.44, Scruton number is taken to 0 and mass ratio equals
7.8. (See Fig. 4).

These parameters are defined as follows: pitch ratio Pr = P/D with D the cylinder diameter and P the distance
between two centers of in-line neighbor cylinders in the square array; Scruton number or mass-damping parameter
Sc = (2πξm) /

(

ρfD
2
)

with ξ the solid reduced damping in presence of flow, m the solid mass and ρf the fluid density;
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Fig. 4. Application to tube array.

mass ratio M = ρf /ρs with ρs the solid density; Reynolds number Re =
(

ρfUD
)

/µ with U the characteristic fluid flow

velocity and µ the kinematic fluid viscosity; reduced velocity UR = U/fsD with fs the characteristic solid frequency in the

considered medium defined as fs = 1
2π

√

k
m
and the stiffness of the spring.

The expression of fs defined in Eq. (10) is :

fs =
k

|Ωs|
(x − x0) (13)

with |Ωs| the volume of the solid, and x0 the solid position at rest. Thus,

Fs (t) =

∫

Ωs(t)

fsdx = k (xG (t) − x0) (14)

with xG the coordinate of the gravity center of the rigid body. For the studied case, ff = 0.

Using the fluid, solid and geometric characteristics, the dimensionless formulation of system (8) leads to the definition of

two significant nondimensional parameters, the Reynolds number and the reduced velocity. This leads to a nondimensional

form for the ROM as follows:

for each n = 1, . . . ,N ,
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=1

dai

dt̃
Ãin +

N
∑

i=1

N
∑

j=1

aiajB̃ijn +

N
∑

i=1

aiC̃in + D̃n + Ẽn = 0

D̃
(

ũ
)

= 0 in Ω̃s

(

t̃
)

∂1Ωs

∂ t̃
+ ũ · ∇̃1Ωs = 0

(15)

where:

Ãin =

∫

Ω

h
(

x̃, t̃
)

Φ̃i · Φ̃ndx

D̃n =

∫

Ω

1ΩsTr
[

D̃(Λ)D̃(Φ̃n)
]

dx

B̃ijn =

∫

Ω

h
(

x̃, t̃
)

(Φ̃i · ∇̃)Φ̃j · Φ̃ndx

Ẽn =
1

M

4π2

U2
R

∫

Ω

(

x̃ − x̃G
)

Φ̃ndx

C̃in =
2

Re

∫

Ω

g
(

x̃, t̃
)

Tr
[

D̃(Φ̃i)D̃(Φ̃n)
]

dx

φ̃ denotes the dimensionless form of the corresponding variable or operator φ.
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Fig. 5. Velocity field in m.s−1 for Reynolds number RE = 612 and reduced velocity VR = 1. Pitch ratio is 1.44, Scruton number is 0 and mass ratio 7.8.

Fig. 6. Mean velocity field (top left), mode function shapes 1 (top right), 2 (bottom left) and 3 (bottom right) in m.s−1 for Reynolds number RE = 612 and
reduced velocity VR = 1. The pitch ratio of the cylinder array is 1.44. Scruton number is 0 and mass ratio 7.8.

2.2. POD basis generation

For POD basis generation HF simulations are performed on this configuration for several values of Reynolds number
and reduced velocity. With the previous approach, each set of parameter values corresponds to an optimal POD-ROM. In
the fluid domain, the HF computation involves a FV solver with colocalized pressure and velocity fields and a fractional
time step approach as described in Archambeau et al. (2004). An ALE formulation based on an elliptic equation for grid
deformation is involved to account for solid wall motion and the solid dynamics is modeled by using an oscillator equation
solved by using a Newmark time scheme. A relaxation is introduced in order to ensure the stability of the explicit solver used
to describe the dynamics and kinematics boundary conditions at the time-dependent fluid structure interface. An example of
flow velocity field is reproduced in Fig. 5. This fieldwas evaluated on the original reference grid. Then before ROMgeneration,
it is interpolated on a cartesian coarser grid as displayed in Fig. 1.

2.3. ROM accuracy and control

Results provided by the reduced-order models of FIV in cylinder arrangements are displayed below. An example of mean
flow velocity u and first mode shapes Φ′

i (for i = 1 to 3) is plotted on Fig. 6 in a two-dimensional configuration involving a
periodic cylinder arrangement under cross flow. The mean flow velocity does not allow to capture the velocity of the rigid
body. This velocity is captured using the following modes which are non zero on the area traveled by the cylinder. These
modes are also needed to have the velocity fluctuations. For example, the mode 3 has to be used to capture the fluid flow
and the solid velocity for cylinder position near the maximum amplitude.
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Fig. 7. Expected values deduced from reference solution versus reduced-ordermodel values of time coefficients ai (for i = 1 to 3) deduced fromcomputation
of the dynamical system for case of Figs. 5 and 6.

Fig. 8. Predicted flow velocity field on the cartesian grid using the POD-ROM (left). Solid displacement (right): reference solution (dots) versus predicted
solution (lines) for case of Figs. 5 and 6.

Associated coefficients deduced from computation of the dynamical system (12) are displayed on Fig. 7. The coefficients
are compared to expected values according to the sample of reference solutions as follows (for i = 1 to N):

a′
i = (u′,Φ′

i ) (16)

Good adequacy has been found between the POD-ROM solution and the reference one. Finally the solution is reconstructed
over the whole domain using the decomposition:

u(x, t) = u(x) +

N
∑

n=1

a′
n(t)Φ

′
n(x)

The reconstruction of the solution is compared to the solution of the reference system over the interpolation domain.
The flow velocity field as well as the solid displacement are displayed in Fig. 8. With a truncate threshold fixed at 99%, the
reduced order model solution reproduces reference values with a good agreement. The evolution of the relative error on the
solution according to the mode number of the reduced model is given in Fig. 9. 10 modes are sufficient to stabilize the error.
The size of the ROM is very small compared with the HF model. The sensitivity to grid refinement is also investigated. When
increasing the number of cells of the cartesian grid, the slope is improved and the accuracy of the model for a given mode
number is better. For the present study,refine the grid more than a 50 × 50 grid does not improve the quality of the ROM.
The Fig. 3 shows a good description of the geometry with this grid. As displayed in Fig. 9, this grid is sufficient to capture the
physics of the phenomena.

2.4. ROM stability

The sensitivity to penalization factor is plotted on Fig. 10. The stabilization compensates the effect of basis truncation
which ensures a preservation of most energetic mode development but in the same time suppresses modes responsible
for dissipation (Cazemier, 1997; Cazemier et al., 1998; Rempfer and Fasel, 1994). In the elementary configurations to be
considered, an optimum is obtained for a solid viscosity close to the fluid value.
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Fig. 9. Norm of the relative error on the solution according to number of modes of truncation from 1 to 30 (left) and to grid refinement for grids involving
25 × 25 to 200 × 200 cells (right) for case of Figs. 5 and 6.

Fig. 10. Norm of relative error on the solution according to solid viscosity for case of Figs. 5 and 6.

2.5. Performances and CPU time reduction

The predictive capability of ROM over a long period of time is pointed out in several configurations for a given Reynolds
number and several values of reduced velocity. The phase portrait of the dynamical response is displayed in Fig. 11 in three
cases: for reduced velocity below, close to and above the critical value of the system dynamical stability limit. In each case
the solution predicted by the ROM is in good agreement with reference Bourguet et al. (2011) and Barone et al. (2009a).

In terms of computational time the gain is displayed on Fig. 12. Comparisons of CPU times are performed by solving
the ROM and High Fidelity (HF) model. In the present study, the HF model involves an ALE formulation of Navier–Stokes
equations on a moving grid. The interpolation step from the moving grid to the reference grid as well as the POD basis
computation are excluded. These two steps are considered as offline steps and only the online steps are compared. The gain
in CPU time is expressed in % of gain per iteration, processor and cell. As shown in Fig. 12, the gain of CPU time is about of a
factor 100 in the present configurations.

3. Small ROM parameter perturbations

3.1. Principle of sensitivity analysis

Here it is proposed to study the behavior of the POD-ROMwhen one considers different values of parameters than those
used to compute the POD basis. Considering the problem (Pλ):
Find u in space H for parameter λ such that :

⎧

⎨

⎩

∂u

∂t
= f (u, λ)

u(0) = u0

(17)
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Fig. 11. Phase portrait of reference (lines) and ROM (dots) solutions for Reynolds number Re = 612 and reduced velocity Ur = 1 (top left), Ur = 3.273 (top
right) and Ur = 2.448 (bottom).

Fig. 12. Linear evolution of the gain in computational time compared to the reference simulation according to mode number of the reduced order model
for case 3 of Fig. 11.

When a POD basis obtained for a parameter value λ0 is used for a different value λ, Akkari et al. (2014b, a) proposed to

bound the error by the number of POD modes involved in the POD-ROM :

|| uλ − ũ ||≤ g(N)+ | λ − λ0|
γ h(N) (18)
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Table 1

Parameter values used for ROM interpolation with λ1 and λ2 respectively the
Reynolds number and the reduced velocity of the problem.

Case Values of POD basis ROM
parameters for generation generation

1 λ1 612 818
λ2 3.27 3.27

2 λ1 818 612
λ2 3.27 3.27

3 λ1 480 612
λ2 1.00 1.00

4 λ1 612 480
λ2 1.00 1.00

5 λ1 612 612
λ2 2.44 3.27

6 λ1 612 612
λ2 3.27 2.44

7 λ1 818 612
λ2 3.27 2.44

where uλ is the approximation of the problem (Pλ) solution and ũ is given by :

ũ =

N
∑

n=1

a
λ,λ0
n Φ

λ0
n or ũ = u

λ,λ0 +

N
∑

n=1

a′
n
λ,λ0

Φ
′
n
λ0 (19)

a
λ,λ0
n is obtained by solving the POD-ROM resulting from the projection of the problem (Pλ) Eq. (17) on

(

Φλ0
)

.
It is expected that for parameter values not too far from λ0, the ROM provides an accurate solution for a number of POD

vectors N not too big.

3.2. Numerical results

Inwhat follows, pitch ratio, Scruton number andmass ratio are given and the system is characterized by two parameters :
Reynolds number and reduced velocity. The purpose is to evaluate the influence of small variations of these both parameters
on the accuracy of the reducedmodel. Values of Reynolds number and reduced velocity are changed and reduced ordermodel
associated to each case is used for other cases.

In the present study, the Reynolds number is modified by changing the inlet velocity, and the Reduced velocity by

changing the inlet velocity and the spring stiffness. Therefore, the initial values of the a
λ,λ0
n (or a′

n
λ,λ0 ) time coefficients of

the ROM have to be modified. We note Γ the part of Γf with non zero Dirichlet boundary condition, and xΓ a point of this
boundary. The Reynolds number and the reduced velocity can be written :

Re =
ρf u (xΓ )

µf

UR =
u (xΓ )

fsD
(20)

At the initial step, one gets :

uλ (xΓ , 0) = u
λ,λ0 (xΓ ) +

N
∑

n=1

a′
n
λ,λ0 (0)Φ′

n
λ0 (xΓ ) (21)

It is proposed to use a scaling coefficient α defined by :

α(λ, λ0) =
uλ(xΓ , 0)

uλ0 (xΓ , 0)
. (22)

Then

u
λ,λ0 = α(λ, λ0)u

λ0 (23)

and

a′
n
λ,λ0 (0) = α(λ, λ0)a

′
n
λ0 (0) (24)

Several configurations for stable and unstable dynamical behaviors are considered. Values of parameters of the configu-
rations to be considered are described in Table 1.
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Fig. 13. Small perturbation of Reynolds number: case 1 (left), case 2 (right).

Fig. 14. Small perturbation of Reynolds number: case 3 (left), case 4 (right).

Fig. 15. Small perturbation of reduced velocity: case 5 (left), case 6 (right).

Three values of the Reynolds number are considered : 480,612 and 818. In that range of perturbation the flow regime is
not changing. Three values are considered for reduced velocity too : a dynamical stable case (Ur = 1), a second dynamical
stable case close to the critical stability (Ur = 2.44) and an unstable case (Ur = 3.27). Sensitivity to Reynolds number
deviation is displayed in Figs. 13 and 14 respectively in dynamically unstable and stable cases. Reduced velocity deviation is
investigated in Fig. 15.

POD basis associated with stable case is used for prediction of unstable solution and conversely. Finally both parameters
Reynolds number and reduced velocity are changed simultaneously in Fig. 16. For each case, good behavior of the rigid body
has been obtained by the ROM. It means that the ROM built for a parameter couple can be used for another near values

12



Fig. 16. Small perturbation of both Reynolds number and reduced velocity: case 7 with 10 (left) and 15 modes (right).

of parameters. In the case treated, the ROM is enough robust to model another behavior, i.e from stable to unstable or
conversely. Change only one parameter or two in the same time does not affect the results. Increasing number of modes
improves accuracy of results.

4. Conclusion

The multiphase-POD method has been applied for fluid structure interaction study in case of a 2D model of tube array.
The proposed reduction method is efficient for velocity field prediction in a domain involving flows in interaction with
solid dynamics. It relies on a standard POD-Galerkin projection method combined with an interpolation over a non-moving
cartesian grid and a penalization method for dealing with heterogeneity of medium in the whole domain with possible
unsteadiness. Both fluid and solid may feature a dynamical behavior. The robustness of the multiphase-POD methods is
investigated in order to make possible real-scale real-time parameter sensitivity analysis and preserve the optimality of the
generated ROM in terms of error control and computational time reduction. Good agreement has been found between the
ROM solution and HF model, even if the ROM is used for another set of parameters than these used to build the POD basis.
An extension of the method is now under development to account for turbulence and thermal effects.
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Appendix A. POD-Multiphase ROM for fluctuating velocity field

It has been observed that in fluid mechanics, the first POD mode is similar to the average velocity field and capture the
most important part of the energy. Then, a practical approach consists in writing the POD-ROM for the fluctuating velocity
field u′ such as:

u′(x, t) = u (x, t) − u (x)

where u designates the mean flow velocity field and :

u′(x, t) = u′
s(x, t)1Ωs (x, t) + u′

f (x, t)1Ωf
(x, t)

A POD basis is computed for this field :

u′(x, t) ≃

N
∑

n=1

a′n(t)Φ′
n(x) (25)

The Navier–Stokes equations for a domain Ωi, i = f , s become :
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ρi

∂u′
i

∂t
+ ρi

(

ui∇ui + ui∇u′
i + u′

i∇ui + u′
i∇u′

i

)

− ∇ · σi = fi in Ωi

∇ · ui = 0 in Ωi

D(u) = 0 in Ωs(t)

(26)
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The same procedure as that presented in Section 1.3 leads to the following ROM:
for each n = 1, . . . ,N ,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

N
∑

i=1

da′
i

dt
A′
in =

N
∑

i=1

N
∑

j=1

B′
ijna

′
ia

′
j +

N
∑

i=1

C ′
ina

′
i + D′

n + E ′
n

D(u) = 0 in Ωs

∂1Ωs

∂t
+ u · ∇1Ωs = 0

(27)

with :

A′
in =

∫

Ω

ρΦ′
i · Φ′

ndx

B′
ijn = −

∫

Ω

ρ(Φ′
i · ∇)Φ′

j · Φ′
ndx

C ′
in = −

∫

Ω

ρ
[

(u · ∇)Φ′
i + ((Φ′

i ) · ∇)u
]

· Φ′
ndx

−2

∫

Ω

µTr
[

D(Φ′
i )D(Φ

′
n)

]

dx

−2

∫

Γf

µD(Φ ′
i )Φ

′
nndγ

D′
n = −

∫

Ω

ρ(u · ∇)u · Φ′
ndx − 2

∫

Ω

µTr
[

D(u)D(Φ′
n)

]

dx

−

∫

Ω

1ΩsTr
[

D(Λ)D(Φ′
n)

]

dx

E ′
n =

∫

Ω

1Ωs fsΦ
′
ndx

where

ρ = ρf

(

1 − 1Ωs

)

+ ρs1Ωs ,

µ = µf

(

1 − 1Ωs

)

+ µs1Ωs ,

and Λ is the Lagrange multiplier.

Appendix B. Multiphase formulation for deformable structure with small deformations

The case of a domain containing a fluid and a solid (with a linear elastic behavior) is considered. The aim is to propose a
monolithic formulation of the system. Small deformations of the solid are superposed by large displacements of a rigid solid.
The extension to large deformations and large displacements of the solid are considered in Favrie et al. (2009).

The solid is first considered as a structure with viscoelastic characteristics. As Hachem et al. (2010) and El Feghali et al.
(2010) propose, one canwrite amonolithic formulation of Navier–Stokes equations inΩ . Hachem et al. (2010) and El Feghali
et al. are interested by this monolithic formulation in the framework of finite-element models.

If one considers the equation governing the fluid domain, one gets the classical incompressible Navier–Stokes equations:
⎧

⎨

⎩

ρf

∂uf

∂t
+ ρf (uf · ∇uf ) − ∇ · σf = ff in Ωf

∇ · uf = 0 in Ωf

(28)

with associated boundary conditions, where ρf is the fluid density, pf the fluid pressure term and σf the stress tensor in the
fluid part, defined by:

σf = −pf Id + 2µfD(uf ) (29)

µf is the fluid dynamical viscosity and Id represents the identity tensor andD(uf ) is the deformation rate tensor, itself defined
by D(uf ) = 1

2

(

∇uf + ∇Tuf

)

.
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The solved equation in the solid for us with us(t) = ∂d
∂t
, where d is the solid displacement, is:

ρs

∂us

∂t
+ ρs(us · ∇us) − ∇ · σs = fs in Ωs (30)

ρs is the solid density. The solid stress tensor σs is defined by:

σs = 2αD(d) + βTr(D(d))Id (31)

where α and β are the Lamé constants. This leads to its time derivate form σ̇s:

σ̇s = 2αD(us) + βTr(D(us))Id (32)

If we consider the hypothesis of small deformations, we can define the linearized Lagrangian deformation rate tensor as:

D(us) =
1

2
(∇us + ∇Tus) (33)

To Eqs. (28) and (30), we have to add continuity equations for velocity and stress fields (n the external normal unity vector):
{

us|Γi
= uf |Γi

σs|Γi
· n = −σf |Γi

· n
(34)

We can choose to rewrite Eq. (32) as:

σ̇s = 2αD(us) − ṗsId (35)

with ṗs = −βTr(D(us))Id and we note τ̇ = 2αD(us). By coupling Eqs. (28) and (30) and with the stress tensors definition, we
deduce the following total strong formulation:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

ρ
∂u

∂t
+ ρ(u · ∇u) − ∇ · (−pId + 2µf 1Ωf

D(u) + 1Ωsτ ) = f in Ω

∇ · u +
1

κ
ṗs = ∇ · u +

1

κ

[∂ps

∂t
+ u∇ps

]

= 0 in Ωs

(36)

where p = pf 1Ωf
+ ps1Ωs and κ = 1Ωsβ , κ represents a compressibility coefficient.

Taking into account Eq. (36), a total weak form of Navier–Stokes equations in Ω reads:
Find u ∈ H(Ω), p ∈ L2(Ω) and τ ∈ L2(Ω)N×N such as: ∀u∗ ∈ {v|v ∈ H(Ω),u = 0 on ∂Ω \ Γi} and for q ∈ L20(Ω) = {r ∈

L2(Ω)|
∫

Ω
rdx = 0} :

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

Ω

ρ
∂u

∂t
u∗dx +

∫

Ω

(u · ∇u) · u∗dx −

∫

Ω

p∇ · u∗ − 2

∫

Ω

µf 1Ωf
D(u) : D(u∗)dx

−

∫

Ω

1Ωsτ : D(u∗)dx =

∫

Ω

f u∗dx

∫

Ω

∇ · uqdx +

∫

Ω

1

κ

[∂ps

∂t
+ u∇ps

]

qdx = 0

(37)

El Feghali et al. (2010) choose to introduce a viscosity µs in the solid as a penalization term. Thus, this equation becomes:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∫

Ω

ρ
∂u

∂t
u∗dx +

∫

Ω

(u · ∇u) · u∗dx −

∫

Ω

p∇ · u∗ − 2

∫

Ω

µD(u) : D(u∗)dx

−

∫

Ω

1Ωsτ : D(u∗)dx =

∫

Ω

f u∗dx

∫

Ω

∇ · uqdx +

∫

Ω

1

κ

[∂ps

∂t
+ u∇ps

]

qdx = 0

(38)

where µ = µs1Ωs + µf (1 − 1Ωs ). In the case of the POD, trial functions u∗ are the POD modes. Global velocity and pressure
fields are decomposed along space and time as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

u(x, t) =

N
∑

n=1

an(t)Φn(x)

p(x, t) =

M
∑

m=1

bm(t)Ψm(x)

(39)
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whereΦn,Ψm are elements of POD basis respectively for the velocity and the pressure fields for each n and eachm, and an(t),
bm(t) are time coefficients. The final low-order dynamical system is the following, for each Φi, i = 1, . . . ,N and each Ψi,
i = 1, . . . ,M:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

N
∑

n=1

dan

dt
Ani +

N
∑

n=1

N
∑

l=1

analC
u
nli −

M
∑

m=1

bmB
p
1,mi − 2

N
∑

n=1

anB
u
1,ni

−2

N
∑

n=1

∫ t

0

an(s)ds B
u
2,ni = Ei in Ω

(40a)

N
∑

n=1

anB
p
2,ni +

M
∑

m=1

dbm

dt
Bκ
mi +

N
∑

n=1

M
∑

m=1

anbmC
p
nmi = 0 (40b)

with the system coefficients:

Ani =

∫

Ω

ρΦn · Φidx Cu
nli =

∫

Ω

(Φn · ∇Φl) · Φidx

B
p
1,mi =

∫

Ω

Ψm∇ · Φidx Bu
1,ni =

∫

Ω

µD(Φn) : D(Φi)dx

Bu
2,ni =

∫

Ω

α1ΩsD(Φn) : D(Φi)dx Ei =

∫

Ω

fΦidx

B
p
2,ni =

∫

Ω

(∇ · Φn) · Ψidx Bκ
mi =

∫

Ω

1

κ
Ψm · Ψidx

C
p
nmi =

∫

Ω

1

κ
(Φn · ∇Ψm) · Ψidx

Taking into account the viscoelastic characteristic of the solid, this formulation has the advantage to offer a quasi-classical
Navier–Stokes dynamical system to solve, with only a penalization term for the solid viscosity, and the introduction of τ
leads to an integro-differential equation.
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