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Abstract

On high-frequency routes, transit agencies hold buses at control points and seek

to dispatch them with even headways to avoid bus bunching. This paper com-

pares holding methods used in practice and recommended in the literature using

simulated and historical data from Tri-Met route 72 in Portland, Oregon. We

evaluated the performance of each holding method in terms of headway instabil-

ity and mean holding time. We tested the sensitivity of holding methods to their

parameterization and to the number of control points. We found that Schedule-

Based methods require little holding time but are unable to stabilize headways

even when applied at a high control point density. The Headway-Based methods

are able to successfully control headways but they require long holding times.

Prediction-Based methods achieve the best compromise between headway reg-

ularity and holding time on a wide range of desired trade-o↵s. Finally, we

found the prediction-based methods to be sensitive to prediction accuracy, but

using an existing prediction method we were able to minimize this sensitivity.

These results can be used to inform the decision of transit agencies to implement

holding methods on routes similar to TriMet 72.
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1. Introduction

On high frequency routes, there is a natural tendency for buses to bunch

together. When a bus is traveling with a long headway1, it has to pick up and

drop o↵ a relatively greater number of passengers, which slows down the bus

even more. As the lagging bus becomes crowded, the following buses only have

a few passengers to serve, which they can do relatively fast. Eventually the lead

bus may get caught by one or several following buses and they start traveling as

a platoon. Bus bunching is the product of unstable dynamics that cause delays

to grow (Hickman, 2001). Even a small perturbation such as a tra�c signal or

a passenger paying in cash can destabilize the route and lead to bus bunching10

(Kittelson, 2003; Milkovits, 2008).

Unstable headway dynamics are a systemic problem that causes passenger

wait and crowding. Fan and Machemehl (2009) showed that on routes where

headways are less than 12 minutes, passengers tend to arrive randomly, even if

a schedule is available. Because more passengers arrive during long headways

than during short ones, gaps in service cause disutility to passengers in the

form of undue waiting time and crowding (Newell and Potts, 1964; Milkovits,

2008). One way for transit agencies to stop the progression of instability among

headways, is to provide control points, where buses with short headways can be

held to absorb the delay of following buses.20

Holding buses at control points can help reduce at-stop passenger waiting

time, but it increases the wait of passengers who have already boarded. There is

a trade-o↵ between stabilizing headways and maintaining high operating speed

(Furth et al., 2006; Furth and Wilson, 1981; Cats et al., 2011). This is why

transit agencies value the benefit of headway reliability and the disadvantage of

holding time di↵erently.

1In this text, the term headway will be used as the time between the passing of two

consecutive buses at a single location. Later, we will distinguish between the headway (or

forward headway) and the backward headway, which is the time until the following vehicle

will reach the current location.
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In addition to selecting a holding method for their routes, transit agencies

also need to decide how to implement it. Several holding methods in the liter-

ature require setting a parameter, which a↵ects the trade-o↵ between holding

time and headway stability (Daganzo, 2009; Xuan et al., 2011; Bartholdi and30

Eisenstein, 2011; Daganzo and Pilachowski, 2011). Holding methods can also be

applied at one or several control points along the route, which may impact the

performance of each method. Understanding sensitivity of holding methods on

the parameterization and number of control point is necessary to select the most

adequate holding method based on route characteristics and desired trade-o↵s

Several methods are based on predictions for the arrival times of following

buses (Bartholdi and Eisenstein, 2011; Daganzo and Pilachowski, 2011; Berrebi

et al., 2015). The quality of the predictions may a↵ect transit operators’ ability

to leverage headway stability from holding time. The required level of predic-

tion accuracy and confidence can be burdensome for certain transit operators40

that may not need high-quality predictions for other applications. The ubiq-

uity of prediction-based methods is therefore dependent on their sensitivity to

prediction quality.

Research in the literature has compared holding methods, but there currently

lacks a unified framework to evaluate the conflicting objectives of stabilizing

headways and minimizing holding time. Xuan et al. (2011) and Berrebi et al.

(2015) have case study sections to compare methods in the literature to their

own. Cats et al. (2011) compare naive methods used in practice and a headway-

based method similar to the method in Daganzo and Pilachowski (2011). There

is a need for a sensitivity analysis to support the choice of holding methods and50

their parameterization based on route characteristics, including the number of

control points on routes similar to Tri-Met 72.

In this paper, we investigate the holding trade-o↵ of holding methods used

in practice and recommended in the literature. To this end, we evaluate holding

methods on a simulated bus route using historical data from Tri-Met Route 72

in Portland, Oregon. We use the prediction tool developed in Hans et al. (2015)

to reproduce the predictions in a realistic setting. In the following section, we
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describe the holding methods used in practice and recommended in the litera-

ture. In Section 3, we discuss the simulation experiment, and particularly the

methods evaluated. In Section 4 we compare the performance of each holding60

method. In Section 5, we investigate the impact of parameter choice, and num-

ber of control points on the trade-o↵ between stabilizing headways and keeping

short holding times. In Section 6 we test the sensitivity of prediction-based

holding methods on the accuracy and confidence of predictions. Finally, we

provide concluding remarks in Section 7.

2. Holding methods in the literature

Methods to hold buses at control points have been addressed for many

decades. Osuana and Newell (1972) and Newell (1974) formulated the the-

oretical basis for holding mechanisms to minimize passenger waiting time on

simple routes in the 1970’s. Since then, two main approaches to the bus holding70

problem have been developed in the literature, mathematical optimization and

analytical.

The first approach consists in optimizing a weighted function of passenger

wait in mathematical programs that consider the dynamics of bus trajectories

(analytically or by simulation). At each decision stage, the optimization tools

model the future states of the system, and assign holds on a rolling horizon.

Hickman (2001) developed a linear search optimization algorithm which con-

siders holding decisions in isolation of each other based on a stochastic model

for bus trajectories. In Eberlein et al. (2001) a heuristic algorithm is used

to minimize the waiting time of passengers at stops in a quadratic program.80

Bukkapatnam and Dessouky (2003) developed an iterative model where buses

and stations negotiate holding time to minimize marginal costs. The method in

Zolfaghari et al. (2004) assigns all holding decisions simultaneously, while con-

sidering capacity constraints, using AVL data and perfect predictions. Delgado

et al. (2009) and Delgado et al. (2012) developed a simulation-based optimiza-

tion algorithm that reproduces stationary bus trajectories deterministically and
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minimizes a weighted function of wait time. Sánchez-Mart́ınez et al. (2016, 2015)

extended their methods to consider dynamic passenger arrival rates and travel

time. Cortés et al. (2010) used a genetic algorithm to solve a multi-objective

dynamic problem.90

The second approach assigns holds as closed-form functions of bus arrival

times (Daganzo, 2009; Daganzo and Pilachowski, 2011; Xuan et al., 2011; Bartholdi

and Eisenstein, 2011; Berrebi et al., 2015). Buses are held with the objective

of maintaining stable headways, and preventing bus bunching from the onset,

which can minimize passenger waiting time globally and durably. Methods as-

sign holds to buses as a function of the schedule, headways and, for some, pre-

dicted arrival times2. Unlike the mathematical programming approach, these

methods do not consider the prediction model further than its output. There-

fore, they can use any prediction model 3, which makes them much easier to

implement. Closed-form holding methods will be the focus of this paper.100

The notation used in this paper is consistent with Berrebi et al. (2015), and

is shown in Table 1. The arrival time of the ith bus at the control point is Ai

(random variable) for a future arrival, and ai (realization of Ai) for a known

arrival time. Once the ith bus arrives, it holds for time hi, and is dispatched at

time di = ai + hi. If the route runs according to a schedule, d̄i is the scheduled

departure time from the control point, and Hi is its scheduled headway (Hi =

d̄i � ¯di�1

). The holding methods evaluated in this paper are described in their

Eulerian version (as in Xuan et al. (2011)) in Table 2 with the information they

require and their recommended holding times.

2In the remainder of this text, we refer to holding methods that consider schedules as

“schedule-based” and methods that consider headways as their main input as “headway-

based”. Schedule-based methods include the Naive Schedule and the method recommended

in Xuan et al. (2011). Headway based methods include the Naive Headway and the method

recommended in Daganzo (2009).
3A discussion follows in Section 6.
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Table 1: Summary of variable definitions.

Variable Definition

Ai Arrival time of bus i (Random Variable)

ai Arrival time of bus i (Realization)

hi Hold imposed on bus i

di Departure time of bus i (Realization)

d̄i Scheduled departure time of bus i

Hi Scheduled headway of bus i

ni Number of following buses when bus i reaches the control point

CV 2 Headway Coe�cient of Variation squared

T [Aj ] Arrival time of a particle4 of the jth bus

2.1. Naive methods110

The simplest and most widely used methods to hold buses at control points

are to plan scheduled departure times, d̄i, or scheduled headways, Hi, well in

advance (Boyle et al., 2009; Abkowitz and Lepofsky, 1990; Van Oort et al., 2010).

In this paper, we will consider the Naive Schedule and Naive Headway methods

as holding buses until their departure time or headway reaches the planned

threshold, as shown in Equations 1 and 2 of Table 2. The Naive Schedule method

is easy to implement because it only requires information about the arrival time

of the vehicle being controlled. The Naive Headway method requires the last

departure time from the control point. This method never dispatches buses with

short headways because it imposes a threshold headway, Hi. This feature allows120

the Naive Headway method to control big gaps in service that follow buses with

small headways.

2.2. Partial holding methods

Daganzo (2009) developed a headway-based holding method that compen-

sates for unstable headway dynamics. A dimensionless parameter � accounts

for the linear delay of vehicles resulting from a unit headway increase; values
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usually range between 0.01 and 0.1. When a bus arrives at a control point, its

headway is readjusted to the scheduled headway, H, by a factor of ↵+�, where

↵ 2]0, 1[. Equation 3 of Table 2 shows the hold imposed on a bus that arrives

at a control point5.130

Xuan and collaborators then generalized this class of control, and developed

a method that only considers the forward headway and deviation from schedule

as shown in Equation 4 of Table 2 (Xuan et al., 2011). The method readjusts

the headways with respect to the scheduled headway, H, by a factor � and

the o↵-schedule time, ai � d̄i, by a factor ↵ 2]0, 1[. The authors showed that

the holding mechanism was capable of maintaining a schedule in a stochastic

environment.

The partial holding methods act like parametric versions of the Naive Sched-

ule and Naive Headway, with the ↵ term in place to reduce the holding time.

Partial holding methods rely either on the scheduled departure, d̄i, or the sched-140

uled headway, Hi, to stabilize operations as in Naive methods. Unlike the Naive

methods, however, they only recommend holding for a portion of the thresholds

to reduce the holding time 6. Daganzo, Xuan, and collaborators showed that

their methods can recover from bounded deviations from the schedule or sched-

uled headway in stationary operating conditions. In practice, running time can

be highly stochastic and non-stationary, which can cause systematic deviations

from the schedule or scheduled headway. The methods described thus far do

not consider the predicted arrivals of following buses to adjust target headways.

5The forward headway in Daganzo (2009), Daganzo and Pilachowski (2011), and Xuan

et al. (2011) is expressed in terms of inter-arrival time, ai � ai�1 without considering the

hold imposed on the leading bus. To make these methods more robust, we have replaced the

inter-arrival time by the time since last departure for the forward headway.
6To preserve the robustness of their method, and recover from perturbations, Daganzo

(2009), Daganzo and Pilachowski (2011), and Xuan et al. (2011) recommend using slack time.

Slack time leverages longer holding time to stabilize headways, as shown in Argote-Cabanero

et al. (2015). We have found in a simulation, however, that adding slack time to the Route

72 schedule does not substantially a↵ect the trade-o↵ between headway stability and holding

time This is why we decided to calibrate slack time to the historical schedule in this paper.
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Table 2: Holding methods with their data requirements and recommended hold-

ing times.

Holding method Data requirement Recommended holding time Eq

Naive Schedule Schedule d̄i � ai (1)

Naive Headway Forward headway H � (ai � di�1

) (2)

Daganzo (2009) Forward headway (↵+ �)(H � (ai � di�1

)) (3)

Xuan et. Al (2011) Forward headway �(H � (ai � di�1

))� ↵(ai � d̄i) (4)

Bartholdi and Eisenstein

(2011)

Predicted backward headway Max[H � (ai � di�1

),↵(E[Ai+1

]� ai)] (5)

Daganzo and Pilachowski

(2011)

Forward and predicted back-

ward headway

(↵+ �)(H � (ai � di�1

))

�↵(H � (E[Ai+1

]� ai))

(6)

Berrebi et. Al (2015) Joint probability distribution

of next n bus arrival times

E


max

r�i

Ar�ai
r�i �(ai�di�1)

�

1+E

" 
argmax

r�i

Ar�ai
r�i

!�1# (7)

2.3. Prediction-based holding methods

A novel closed-form approach to the bus holding problem is to dispatch150

buses according to the predicted arrival times of following buses at the control

point. Real-time prediction methods are becoming increasingly accurate and

available, which allows the replacement of planned operations by the natural

headway in current operating conditions. Today, the vast majority of public

transportation agencies in the United-States are capable of tracking their vehi-

cles in real-time (Grisby, 2013). Using real-time vehicle locations, increasingly

sophisticated prediction algorithms have surfaced recently (Chien et al., 2002;

Cathey and Dailey, 2003; Jeong and Rilett, 2004, 2005; Chen et al., 2005; Shal-

aby and Farhan, 2004; Gurmu and Fan, 2014; Sun et al., 2007; Mazloumi et al.,

2011). Most notably, Hans et al. (2014, 2015) developed a prediction method160

specifically for the purpose of real-time control. Their prediction algorithm can

generate probability distributions of arrival times. Based on these predictions,

holding methods can consider following buses to equalize headways, without

having to rely on planned operations.
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Using real-time predictions, Bartholdi and Eisenstein (2011) developed a

holding strategy that can stabilize headways without the need for planned op-

erations. The method consists in holding each vehicle for the predicted time

until the next arrival by a factor ↵ 2]0, 1[ as in Equation 5 in Table 2. When

several buses arrive in close succession, however, the method sends the middle

few uncontrolled. To prevent this, Bartholdi and Eisenstein added a minimum170

forward headway7. Otherwise, the method can split the burden on a big gap

between two buses: each vehicle leaves the control point with the weighted sum

between its forward8 and backward headways. Unlike the methods cited thus

far, their method involves a mechanism that acts locally to scale headways to

the rate of arriving vehicles.

Daganzo and Pilachowski used predictions on the next arrival time to blend

the forward headway with the backward headway, as shown in Equation 6 of

Table 2 (Daganzo and Pilachowski, 2011). The method considers the forward

headway in the same way as Daganzo (2009), but it also subtracts the deviation

of the expected time until the next arrival from the scheduled headway, H �180

(E[Ai+1

] � ai), by a factor ↵ 2]0, 1

2

[. The holding method can reduce the

di↵erence between the forward and backward headways by holding buses for a

weighted sum of that di↵erence.

More recently, Berrebi and collaborators developed a method that takes a

global approach by considering every bus on the route. The method is a gener-

alization of Daganzo and Pilachowski (2011), without H and �, that considers n

buses. The vehicle that will arrive with the maximum relative delay, max
r�i

Ar�ai
r�i ,

is probabilistically identified and each preceding vehicle is held to absorb a share

of that delay, as in Equation 7 in Table 2. When the lagging bus arrives at the

control point, it can be dispatched with approximately the same headway as190

the leading few. The method can di↵use big gaps organically without the need

7To let the method act primarily on backward headways, we set the minimal forward

headway as Hi/2.
8More exactly the backward headway of the following bus, a headway ago.
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for schedules, scheduled headways, or any kind of explicit slack time.

3. Case study

3.1. The route

Holding methods were compared by simulation using data on real bus tra-

jectories from Tri-Met bus route 72 shown in Figure 1. Buses run in mixed

tra�c on the perpendicular 82nd Avenue and Killingsworth Street in Portland,

Oregon. The scheduled headway alternates between seven and eight minutes in

the afternoon peak. Historically, Route 72 had a bus bunching problem during

peak hours (Berkow et al., 2007). Buses on route 72, however, are equipped200

with a Computer Aided Dispatching (CAD) system that would allow replacing

the current schedule with real-time control. To evaluate the potential benefits

and disadvantages of applying each real-time holding method described in the

previous section, we have tested their performance in a case study.

Figure 1: Map of TriMet Route 72 TriMet (2016)

We used data available on the Portland Oregon Regional Transportation
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Archive Listing (PORTAL)9 to build the simulation framework. The online

open platform provides Automatic Vehicle Location (AVL), Automatic Passen-

ger Counts (APC), tra�c signal settings, and loop-detector data for September

15th to November 15th 2011 on a part of route 72. The data covers the en-

tire portion on 82nd Avenue and ten blocks of Killingsworth Street (until 72nd210

Avenue) towards Swan Island.

In the study, we used historical data leading up to the first control point 10.

Each method had the opportunity to hold vehicles at that point to stabilize

operations and mitigate bus bunching. Whenever the boarding and alighting

times exceeded the hold recommended by a control method, buses were dis-

patched after they finish loading and unloading. The headways of buses leaving

the control point were recorded to evaluate the performance of the dispatching

strategy. We used simulated data downstream from the control point to take

into account the impacts of each holding method on headway dynamics.

In this paper, we considered a single value of Hi: its historical value. In220

the historical data, vehicles arrive at the control point(s) according to a set

scheduled frequency of service. The scheduled frequency at a control point

determines the scheduled headway, because the frequency of departure cannot

be greater than the frequency of arrival. If we reduced the scheduled headway,

the holding methods would be unable to control buses at all. If we increased

the scheduled headway, a continually accumulating queue of buses would form.

This is why we did not test holding methods with varying values of Hi.

3.2. Prediction

Once buses arrive at the control point, each method can recommend a hold-

ing time based on the last departure time (recommended by the method) and230

the predicted next arrivals. The methods recommended in Daganzo and Pi-

lachowski (2011) and Bartholdi and Eisenstein (2011) need the expected next

9
http://portal.its.pdx.edu/Portal/index.php/fhwa

10Several holding point are considered in Section 5.2.
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arrival time, E[Ai+1

]. The method recommended in Berrebi et al. (2015) needs

the probability distribution of each future arrival to infer the maximum relative

delay, max Ar�ai
r�i , and its corresponding index, argmax Ar�ai

r�i .

The prediction tool used in our simulation is a particle filter combined with

an event-based mesoscopic model developed in Hans et al. (2014) and Hans et al.

(2015). The prediction tool is capable of generating simulated trajectories solely

using vehicle location data. The predicted arrival times of buses at the control

point are generated iteratively as a function of their dwell and travel times, as240

shown in Table 3. The dwell time is estimated as the sum of boarding, alighting

and door operation time, assuming passengers board and alight through the

same door. The number of passengers boarding are assumed to follow a Poisson

distribution, with no capacity constraints. The share of passengers alighting

follows a binomial distribution with passenger loads estimated using historical

headways. Travel times between stations are generated as a Gamma distri-

bution. To ensure that the particle filter accurately reproduces operations on

Route 72, the parameters of dwell and travel times, such as the rate of arriving

passengers and the mean travel time between stops were calibrated on historical

data from the route. Odd days were used for the calibration, and even days were250

kept for the simulation.
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Table 3: Particle generation

Equation Variable Definition

Ai =
sctrl�1P
s=slast

�i,s + ⇡i,s

s
ctrl�1

Upstream stop from the control point

s
last

Last stop visited by bus i

�i,s Dwell time of bus i at stop s

⇡i,s Travel time of bus i between stop s and s+ 1

�i,s = aNA + bNB + c

a Individual alighting time

b Individual boarding time

c Time lost in door opening and closing

NA Number of alighting passengers

NB Number of boarding passengers

NB ⇠ P(dshi,s)
hi,s Headway of bus i at stop s

ds Demand rate at stop s

NA ⇠ Bin(Li,s, µs)
Li,s Load of bus i at its departure from stop s

µs Alighting proportion at stop s

Li,s = (1� µs)Li,s�1

+ dshi,s

Li,0 = 0

⇡i,s ⇠ Gam(means, stdevs)
means Mean travel time between stop s and s+ 1

stdevs Standard deviation of travel time between s and s+ 1

When a bus arrives at the control point, 100 particles (simulated bus trajec-

tories) are generated for each following bus traveling on the route.11 The arrival

times of following buses at the control point are then aggregated in a histogram,

which are treated as probability distributions. Figure 2 shows a time-space di-

agram with the trajectories of following vehicles in part (a), and the associated

histogram of bus arrival times in part (b). At each station, the particles in part

11We chose to generate 100 particles as a compromise between the computational time and

the resolution of the histogram.
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(a) tend to divert away from their mean because the prediction accounts for

the delay accumulation caused by unstable headway dynamics. In part (b), the

arrival time of the current and leading buses are represented by vertical lines260

because their arrival times are known. The arrival times of following vehicles

are random and their distributions widen with the horizon of their prediction.
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Figure 2: (a) Generation of particles to simulate bus trajectories. (b) Histograms of simulated

bus arrival times treated as probability distributions.

The particle filter recommended in Hans et al. (2014) and Hans et al. (2015)

is particularly suitable for real-time control. Unlike regression and machine

learning prediction methods, the particle filter is capable of generating proba-

bility distributions, which is necessary for the method in Berrebi et al. (2015).

The model is simple to calibrate, and it is compatible with any bus route and

any data format. The tool can consider tra�c congestion and tra�c signal

data if available, but in this study, we assumed that only vehicle locations were

available for the prediction270
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3.3. Performance indicators

Performance indicators allow transit agencies to identify and address gaps

in service. On high frequency routes, a measure of instability is the squared

coe�cient of variation of headways, denoted CV 2 as shown in Equation 8 (Kit-

telson, 2003). The variable measures the extent of headway instability. When

CV 2 = 0, buses are evenly spaced, and when CV 2 = 1, Average Passenger Wait

(APW) is equal to H. Assuming Poisson arrivals, APW is directly proportional

to CV 2 (Newell and Potts, 1964), as shown in Equation 9.

CV 2[headway] =
V ar[headway]

E[headway]2
(8)

APW =
E[headway]

�
1 + CV 2[headway]

�

2
(9)

Variation in headways tends to increase along the route unless buses are

controlled (Hickman, 2001). Therefore, unstable headway dynamics can have280

lasting e↵ects on the system and on passenger experience if headways are not

stabilized. We choose to evaluate headway stability in terms of CV 2 because it

is a dimensionless parameter that directly relates to at-stop passenger wait and

allows extrapolation of results to other routes.

Holding methods can stabilize headways by trading o↵ holding time. Holding

time too has a cost. It causes passengers who are already aboard the vehicle

undue waiting time. In addition, holding time reduces bus operating speed.

Finally, holding at a control point can disrupt surrounding tra�c, depending on

its location. Since transit agencies may value the benefit of headway stability

and the cost of holding time di↵erently depending on the route, we chose to290

keep these measures of performance separate.

4. Cross-comparison

We simulated the decision process of each holding method described in Table

2 in the afternoon peak hour, when scheduled headways, Hi, oscillate between

seven and eight minutes. In the simulation, buses were held at the 48th station,
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which is seven miles away from the departure point, at the intersection with

the light-rail, MAX, on Banfield Expressway. We chose this station because it

is used as a schedule recovery point in historical data. The station also has

by far the greatest alighting proportion and boarding demand on Route 72.

These considerations are important because the overall cost of holding time is300

proportional to the number of passengers who ride through the holding point

and the overall benefit of stabilizing headways is proportional to the number

of passengers waiting at downstream stops. Therefore, holding at station 48

inconveniences few passengers and benefits many.

Every method was parameterized with � calculated at each arrival as per

Daganzo (2009), Daganzo and Pilachowski (2011), and Xuan et al. (2011), and

↵ = 1

2

to provide a middle-ground basis of comparison with the Naive Schedule

and Headway methods. We discuss the choice of the ↵ parameter in the next

section.

16



Station No
10 20 30 40 50 60

C
V

2  [%
]

0

10

20

30

40

50

60
(a)

Naive Schedule

Naive Headway

Daganzo (2009)

Bartholdi and Eisenstein (2012)

Daganzo and Pilachowski (2011)

Xuan et al. (2011)

Berrebi et al. (2015)

Historical data

Mean lost time per bus in holding [s]
0 50 100 150 200 250 300

Historical data

Berrebi et al. (2015)

Xuan et al. (2011)

Daganzo and Pilachowski (2011)

Bartholdi and Eisenstein (2012)

Daganzo (2009)

Naive Headway

Naive Schedule

?

(b)

Figure 3: Performance of holding methods in terms of (a) squared headway coe�cient of

variation, (CV 2) and (b) mean holding time past boarding and alighting (lost time).

The results of our simulation are shown in Figure 3, with squared headway310

Coe�cient of Variation, CV 2 in part (a) and mean holding time past boarding
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and alighting (lost time) in part (b) for each holding method. This figure and

all figures following are based on 50 simulation runs. In part (a), values of CV 2

upstream of the control point come from historical data, and values downstream

of the control point are simulated, except for the historical data curves in black.

In historical data, buses start the route with close to even headways, but get

destabilized along the route, leading to the control point. The CV 2 increases

in a saw tooth pattern, with small drops corresponding to mid-route control

points. When buses arrive at the main control point, CV 2 is 42%, which,

according to the second edition of the Transit Capacity and Quality of Service,320

corresponds to a Level of Service (LOS) E, and is denoted as Frequent bunching

(Kittelson, 2003). In historical data, CV 2 is reduced to 30%, which is still LOS

E. We did not display the mean lost time in historical data because we could

not di↵erentiate the share that was conscious holding from boarding, alighting,

and other dwell operations.

The holding method applied in historical data, and the method recom-

mended in Xuan et al. (2011) are both based on the Naive Schedule method,

but they produce di↵erent results. The Naive Schedule method12 reduces CV 2

to 22% (LOS D, Irregular headways, with some bunching) with a mean lost time

holding of 79 seconds. The holding method in Xuan et al. (2011) sends buses330

with greater variability than the Naive Schedule, scoring LOS E, but only holds

buses for 40 seconds on average.

The Naive Headway method is capable of sending buses at regular intervals,

but requires long holding times. The Naive Headway method was e↵ective at

stabilizing headways with 7% of CV 2 (LOS B, vehicles slightly o↵ headway).

The method, however, holds buses for 255 seconds on average. The holding times

tend to accumulate because each late bus pushes back the dispatching time of

all upstream buses. The method proposed in Daganzo (2009) dispatches buses

with much more erratic headways than the Naive Headway, which causes longer

wait for passengers at a stop, but the method keeps mean holding time at 40340

12Sometimes overlapping with Daganzo (2009) in parts (a) and (b).
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seconds.

The prediction-based holding methods consider the predicted arrival times

of following buses to di↵use big gaps. The method in Bartholdi and Eisenstein

(2011) dispatched buses at CV 2 = 0.13 (LOS C, vehicles often o↵ headway).

The method, however, holds buses for 180 seconds on average. The method

in Daganzo and Pilachowski (2011) produced almost the same results as in

Bartholdi and Eisenstein (2011), but only required 98 seconds of holding time.

The method recommended in Berrebi et al. (2015) considers the arrival time of

every following bus on the route. The holding method reduces CV 2 to 7% (LOS

B, Vehicles slightly o↵ headway) with 160 seconds of mean holding time.350

The reduction in headway variability at the control point has lasting e↵ects

downstream from the control point. The more a method is able to reduce

headway variability at the control point, the less headways tend to destabilize

further down the route. Conversely, the rate of increase of CV 2 is highest for

methods that are the least able to stabilize headways. For example, between

stops 49 and 60, CV 2 increased three times more for the method in Xuan et al.

(2011) than the method in Berrebi et al. (2015), which dispatched buses with

far more stable headways. This trend is not seen in historical data because it

benefits from mid-route control points, which we have omitted in the simulation.

5. Sensitivity360

The performance of control strategies can vary depending on how they are

applied. It is important to understand the implications of parameter choice and

the number of control points. In this section, we investigate how the performance

of each method is a↵ected by these factors.

5.1. Parameterization

The methods recommended in Daganzo (2009), Daganzo and Pilachowski

(2011), Bartholdi and Eisenstein (2011), and Xuan et al. (2011) all require set-

ting an ↵ parameter, but their interpretation of the parameter is di↵erent. For
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the methods prescribed in Daganzo (2009) and Xuan et al. (2011), ↵ corre-

sponds to the fraction of the deviation from headway or schedule that is to be370

recovered by the hold. When ↵ is close to zero, buses are barely controlled, and

for values ↵ close to one, the holding methods are similar to the Naive Sched-

ule and Headway. For the method recommended in Bartholdi and Eisenstein

(2011), ↵ is the fraction of the predicted backward headway that buses should

hold for. The mean holding time is ↵ times the average headway. In Daganzo

and Pilachowski (2011) the ↵ parameter weights the di↵erence between the for-

ward and backward headway. For values of ↵ close to zero, more importance is

given to the forward headway, and for values close to one, more importance is

given to the backward headway.

Figure 4 shows (a) CV 2 as a function of ↵, (b) mean lost time as a function380

of ↵ and (c) CV 2 as a function of mean lost time immediately downstream of

the station 48 control point13. Solid lines represent the range of ↵ parameter

recommended by the authors of the holding methods, and dashed lines repre-

sent values of ↵ outside the recommended range. Note that when ↵ is greater

than its recommended range, Daganzo (2009), Daganzo and Pilachowski (2011)

and Xuan et al. (2011) compensate for perturbations excessively by dispatching

buses past āi or Hi. In the last section, we set ↵ = 1

2

for each parametric

method. The solid dots on Figure 4 show the performance of each holding

method as parameterized in the previous section.

13Note that the interpretation of ↵ di↵ers for each method.
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Figure 4: (a) CV 2 as a function of ↵, (b) mean lost time as a function of ↵ and (c) CV 2 as

a function of mean lost time at station 49.
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The choice of ↵ a↵ects the amount of holding time recommended by each390

method, and ultimately the CV 2 and average passenger wait. Part (a) of Figure

4 shows that CV 2 for the partial holding methods decreases monotonically with

values of ↵ within their recommended range. Part (a) also shows that the

parametric prediction-based methods have convex shapes and attain their lowest

CV 2 close to ↵ = 1

2

, with a slight deviation due to the � parameter. In part

(b) of Figure 4, the holding time of each parametric method grows with ↵.

Part (c) of Figure 4 shows the trade-o↵ between CV 2 and mean lost time

attained by each method. The naive methods and the method recommended

in Berrebi et al. (2015) are represented as single points because they are not

parametric. The CV 2 in Xuan et al. (2011) and Daganzo (2009) decrease mono-400

tonically as a function of mean lost time. In both methods, the chosen trade-o↵s

(↵ = 0.5) yield far greater CV 2 than the naive methods from which they are

derived. For the method in Xuan et al. (2011), the rate of decay remains high

until the Naive Schedule trade-o↵ is reached, whereas the method in Daganzo

(2009) requires less than a third of Naive Headway’s mean lost time.

Prediction-based methods achieve the best compromise between headway

regularity and holding time in a wide range of settings. The method in Daganzo

and Pilachowski (2011) can be parameterized to yield a lower CV 2 than any

other method for any holding time up to 130 seconds. The method in Berrebi

et al. (2015) can dispatch buses with 7% of CV 2 and 160 seconds of holding410

time, making it the preferable method for holding times over 130 seconds.

5.2. Multiple Control Points

Whereas methods thus far have been applied at a single control point, we

now test them at several control points along the route. Applying holds at

several control points can help maintain stable headways throughout, but it re-

quires more frequent holding. In this section, we evaluate the trade-o↵s between

headway stability and mean holding time for each method based on the number

of control points. This analysis can support the decision of transit agencies to

implement the holding method most adequate for their route and objectives.
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The methods in Berrebi et al. (2015) and Bartholdi and Eisenstein (2011)420

are designed to dispatch buses with one or few control points. The method

in Berrebi et al. (2015) considers the predicted arrival times of each bus on

the route. It cannot be applied at a close succession of control points because

holds would interfere with predictions. The method in Bartholdi and Eisen-

stein (2011) holds vehicles for ↵Hi on average. Holding time would therefore

accumulate proportionally to the number of control points. Both methods, how-

ever, can be paired with on-route holding methods that only consider the local

headway dynamics. We introduce two hybrid methods that apply the method

in Bartholdi and Eisenstein (2011) (Hybrid #1) and Berrebi et al. (2015) (Hy-

brid #2) at a “main control point” (stop 29) and the method in Daganzo and430

Pilachowski (2011) at all other control points.

The Hybrid Methods require the predicted arrivals of one or several upstream

buses. In this simulation, the arrival times of vehicles at early stops were not

predictable due to unavailable data. The Hybrid methods could only be applied

on the second half of the route. In order to test non-Hybrid methods in the most

favorable and realistic conditions, we allowed there methods to apply holding

time progressively form the beginning of the route. Although the route char-

acteristics including congestion levels, stop spacing, and passenger demand, are

relatively stable throughout the route, the non-Hybrid methods may encounter

slightly di↵erent operating conditions on the first 29 stops. This is why, Hybrid440

and non-Hybrid methods are plotted separately.

Figure 5 shows mean CV 2 and total lost time applied and recorded through-

out the route in Part (a) and applied and recorded in the second half of the

route in Part (b). All holding methods were implemented at 1,2,4, and 8 hold-

ing points. The Schedule-Based methods were also held at 16 and 32 holding

points because they are the only ones that do not consider headways. All other

methods use either the forward or the backward headway, which would be af-

fected by holds imposed at intermediate bus stops. The ↵ parameter was set to
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0.5 for all parametric methods, including both Hybrid Methods. 14 15 In every

case, control points were placed at regular intervals. 16

450

14Testing was done with various values of ↵. We found that
15Note that the � parameter is accumulated over the number of stops between control points

for the method in Xuan et al. (2011). We did not, however, use a cumulative � when applied

at a single control point.
16Control points are {30}, {30, 45}, {30, 38, 46, 54}, {30, 34, 38, 42, 46, 50, 54, 58} for the

Hybrid Methods and {30}, {20, 40}, {12, 24, 36, 48}, {7, 14, 21, 28, 35, 42, 49, 56}, {4, 8, 12,

16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64}, {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 68, 60, 62, 64} for other methods.
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Figure 5: Mean CV 2 and total lost time applied throughout the route in Part (a) and applied

in the second half of the route in Part (b)
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The Schedule-Based Methods are similarly a↵ected by the number of control

points. The Naive Schedule and the method in Xuan et al. (2011) are unable to

stabilize the route when applied sparsely. When applied at many stops (16 or 32)

the methods require between 152 and 188 seconds to maintain a CV 2 between

20% and 25%, which is more than the methods in Daganzo and Pilachowski

(2011) and Berrebi et al. (2015) for the same level of stability. As expected,

the method in Xuan et al. (2011) yields more unstable headways but requires

less holding time than the Naive Schedule method for any number of control

points.

For any number of control points, the method applied in Daganzo (2009) re-460

quires much less holding time than the Naive Headway, but it also dispatches ve-

hicles with greater CV 2. The method recommended in Daganzo (2009) requires

the same amount of holding time as the methods in Daganzo and Pilachowski

(2011) and Berrebi et al. (2015) but yields greater CV 2. When applied at 1,2,

or 4 control points, the Naive Headway method yields the same level of stability

as methods in Daganzo and Pilachowski (2011) and Berrebi et al. (2015) but

requires far greater holding time. The Naive Headway can exceed the method

in Berrebi et al. (2015) by 4%, when applied at 8 control point, at the cost of

266 additional seconds of holding time. The method recommended in Daganzo

and Pilachowski (2011) yields the lowest CV 2 of any non-Hybrid method for470

any value of holding times greater than 65 and less than 398 seconds.

In Part (b) of Figure 5, the Hybrid #2 consistently yields more stable head-

ways with less holding time than the Hybrid #1 for any number of holding

points. Although, the Hybrid methods were applied starting at stop 29, whereas

non-Hybrid methods were applied throughout, it is worth noting that the Hy-

brid #2 method yields the lowest CV 2 out of all holding methods for any value

of holding time greater than 118 and less than 398 seconds. These results are

consistent with those obtained in section 4. We expect that these results would

remain consistent in a live-implementation if the two sets of methods were tested

on the same route portion due to the resemblance of the first 30 stop of the route480

with the following 35.
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Figure 5 shows that for any value of holding time less than 177 seconds,

the combination of method and number of holding points yielding the lowest

CV 2, (a) has the greatest number of holding points the method can support

under the set holding time, and (b) has the lowest number of holding point of

any method under the set holding time. In other words, the best compromise

between headway stability and holding time is always the method with the

most concentrated holding time. In particular, the Hybrid #2 yields the best

compromise between the two objectives but concentrates holding time in few

holding points located in the second half of the route. The concentration of490

holding time disproportionately impacts the passengers riding through the few

holding points. Transit agencies should therefore be mindful of finding holding

points where many passengers board and alight or selecting methods that dilute

holding time, even at the cost of more holding and instability.

The number of control points a↵ects the nature of the trade-o↵ between

holding time and headway stability. When applied at a single control point,

the holding time is a riding cost imposed on passengers riding through. When

applied at many control points, holding time can be approximated as a cost per

distance. In any case, the at-stop waiting time due to uneven headways is a

boarding cost for any passenger getting on the vehicle.500

There is a discrepancy between Prediction-Based methods. The Hybrid #

1 yields both greater CV 2 and greater holding time than Partial Methods and

other Prediction-Based methods for any number of control points.

and the Hybrid # 2, on the other hand, The Hybrid # 2 dispatches vehicles

with more stable headways than the method in Daganzo and Pilachowski (2011)

for any number of control points and requires less holding time when applied at

four or eight control points.

6. Prediction

For transit agencies that wish to take advantage of bus dispatching methods

using real-time predictions such as Daganzo and Pilachowski (2011), Bartholdi510
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and Eisenstein (2011), and Berrebi et al. (2015), it is important to know what

type of prediction is required and how accuracy will a↵ect their performance.

Although real-time vehicle tracking and prediction technologies are widely avail-

able among transit agencies, many of these systems were designed for passenger

information rather than operational control. On these systems, using inade-

quate predictions could negatively impact the quality of dispatching mecha-

nisms. Conversely, implementing a separate prediction system for control would

duplicate e↵orts. To help transit agencies decide on the most appropriate pre-

diction model, with respect to the performance of each holding method and

to the costs of acquiring high-quality predictions, we tested the sensitivity of520

holding methods to the accuracy of predictions.

To evaluate the sensitivity of prediction-based holding methods to the pre-

diction accuracy, we simulated their performance with synthetic predictions.

Each time a bus arrived at the control point, a synthetic distribution of ar-

rival times of the following buses was generated with errors on the distribution

mean, �
1

, and within the distribution, �
2

. The systematic error �
1

a↵ects

each prediction-based holding method because it biases the expected arrival

time of each bus. The shape parameter on the other hand should not a↵ect

the methods in Daganzo and Pilachowski (2011) and Bartholdi and Eisenstein

(2011) because they only require expected arrival times, but it may a↵ect the530

method in Berrebi et al. (2015), which uses probability distributions.

Equations 10, 11, and 12 show the probability distribution of a synthetic tra-

jectory of the jth bus, denoted T [Aj ], at time ai. The distribution is centered

around aj +�
1

, which is a uniformly distributed random variable, with interval

length proportional to the horizon, aj � ai, and to the accuracy indicator, ✏.

The random variable �
2

is the error of trajectories around �
1

, which is nor-

mally distributed with scale parameter proportional to the horizon and to the

confidence parameter, �. The choice of Uniform and Normal distributions with

the horizon, aj � ai as parameters is consistent with the distribution of errors

on the particle filter used in Sections 4 (Hans et al., 2015). Note, however, that540

the random variable �
1

is determined once for all synthetic simulated arrival
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times of the same bus, whereas �
2

is re-determined for each particle.

T [Aj ] = aj +�
1

+�
2

(10)

�
1

⇠ U [�✏(aj � ai), ✏(aj � ai)] (11)

�
2

⇠ N [0,�(aj � ai)] (12)

Figure 6 shows the sensitivity of (a) CV 2 and (b) mean lost time holding to

the error terms, ✏ and �. The methods recommended in Bartholdi and Eisenstein

(2011) and Daganzo and Pilachowski (2011) are shown with � = 0 because they

only require E[Aj ]. The method proposed in Berrebi et al. (2015) is shown

with � = {0, 0.2, 0.3, 0.4}17. For each value of ✏, solid lines show the case where

� = 0, i.e. all trajectories equal aj + �
1

. These lines describe the simulated

performance of each holding method that would result if transit agencies used

expected arrival times instead of probability distributions. The dashed lines550

describe the outcome of considering uncertainty, �, surrounding the expected

synthetic trajectories, which contain error distributed with accuracy parameter,

✏.

17We did not include � = 0.1 because it closely overlapped with � = 0.
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Figure 6: Sensitivity of (a) CV 2 and (b) Mean holding time to the maximal error in prediction

The methods recommended in Daganzo and Pilachowski (2011) and in Bartholdi

and Eisenstein (2011) are a↵ected by prediction accuracy in similar ways. When

✏ is null (perfect predictions), they dispatch buses with almost exactly the same

CV 2. As ✏ increases, they both destabilize at a fast rate (although CV 2 grows

at a slightly greater rate for the method in Bartholdi and Eisenstein (2011)).

The error in accuracy, ✏, causes these methods to dispatch buses too soon some-

times and too late other times. The method in Daganzo and Pilachowski (2011)560

can dispatch buses with roughly half of the mean lost time in Bartholdi and

Eisenstein (2011). The mean lost time is only slightly a↵ected by increasing ✏

because the methods consider the expected arrival time, whose error is centered

around the true mean.

For every value of ✏ and �, the method in Berrebi et al. (2015) can dispatch
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buses with less than half the CV 2 of the other two methods, but it requires

more holding time as ✏ and � increase. The method in Berrebi et al. (2015) can

dispatch buses with slightly more stable headways when it considers the uncer-

tainty around its prediction, �, but considering more uncertainty requires much

more holding time. The reason for this increase in lost time is that the expected570

maximum of random variables is a monotonous increasing function of their vari-

ability. The confidence � also causes holding time, especially when ✏ is small,

for the same reasons. These results indicate that it may be adequate to replace

the joint probability distribution of bus arrival times by their expectations to

sacrifice headway stability for holding time and computational simplicity.

7. Conclusion

In this paper, we compared the performance of closed-form bus holding meth-

ods used in practice and recommended in the literature on Tri-Met route 72 in

Portland, Oregon. We applied control at one and several control points along the

route and tested how each method holds vehicles to stabilize headways, reduce580

passenger waiting time, and prevent bus bunching. We used a new prediction

tool developed in Hans et al. (2015) to simulate the performance of real-time

holding methods, which was essential to apply several holding methods studied.

In addition, we coupled the methods in Bartholdi and Eisenstein (2011) and

Berrebi et al. (2015) with the method in Daganzo and Pilachowski (2011) to

produce hybrid methods that can be applied at several control points along the

route.

In the simulation, we found the trade-o↵s between headway stability and

holding time for each holding method The Schedule-Based methods can re-

duce the need for holding time but they are unable to stabilize headways. The590

Headway-Based methods can be parametrized and applied at several holding

points to yield a wide range of holding times. The methods, however, are not

competitive in terms of headway stability for any level of holding time.

We found that Prediction-Based holding methods coupled with the predic-
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tion method in Hans et al. (2015) achieved the best compromises between head-

way regularity and holding time on a wide range of desired trade-o↵s. In par-

ticular, the method in Daganzo and Pilachowski (2011) was the most e↵ective

for stops where little holding can be implemented at once and the method in

Berrebi et al. (2015) was the most e↵ective when vehicles could be held for longer

periods of time. A Hybrid between the two methods, applied at one or several600

holding points produced the lowest headway CV 2 for a wide range of possible

holding times. The latter analysis, however was made comparing holding meth-

ods on di↵erent route portions due to the lack of data on previous vehicle trips.

In order to model the e↵ects of cyclical vehicle trips and to compare holding

methods in a more similar framework, future research should test and compare

holding methods on a real bus route, and include optimization-based holding

methods in the analysis.

In particular, a hybrid between the method from Berrebi et al. (2015) and

Daganzo and Pilachowski (2011), applied at one or several holding points, achieved

the best compromises between headway regularity and holding time on a wide610

range of desired trade-o↵s.

When evaluating the impact of prediction accuracy on the performance of

holding mechanisms, we found that prediction errors increased headway instabil-

ity of real-time holding methods. Inaccurate predictions substantially increase

mean lost time holding for the method in Berrebi et al. (2015). Using high

quality predictions such as those in Section 4 for real-time holding methods is

necessary to maintain stable headways and short holding times. The uncertainty

considered in the prediction for the method in Berrebi et al. (2015) helps reduce

CV 2 at a high cost of holding time, especially for highly accurate predictions.

Replacing the probability distribution of expected arrival times by their mean620

could help reduce the mean lost time holding.

This paper compares holding methods assuming Poisson distributed arrivals,

but this assumption is not always true (Luethi et al., 2006). The performance

metrics do not reflect the value that schedules o↵er for both passengers and

operators. In addition, on certain routes, schedule or real-time information
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coordinated arrivals may impact the performance of holding methods compared.

Future research should compare holding methods based on di↵erent passenger

arrival distributions.

In this paper, TriMet Route 72 is used as a test bed for holding methods

used in practice and recommended in the literature. There are routes resembling630

Tri-Met Route 72 in terms of passenger demand, tra�c congestion, and land-use

in almost every metro area in the United States. Route 72 is a typical high-

frequency route (7-8 minute headways in peak hours) that faces the issue of

bus bunching. We considered Route 72 as generally as possible, often applying

sensitivity analyses. The analysis presented in this paper can therefore provide

a basis for transit agencies to decide on a closed-form holding method on their

high frequency routes. Every holding method presented here strikes a di↵erent

balance between the conflicting objectives to stabilize headways and dispatch

buses with little holding time.

As transit agencies look to implement innovative holding methods, further640

testing and simulation should be done for cases of unique passenger loading

rules, severe passenger overflow, and other route characteristics that substan-

tially deviate from TriMet Route 72. Future research should explore how route

characteristics such as travel patterns, route instability, and perception of wait-

ing time a↵ect the desired trade-o↵s between these conflicting objectives.
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