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Abstract—We investigate the influence of two attitude esti-
mation methods for human posture detection. In the context
of ADL (i.e. Activities of Daily Living) we analyze inertial
sensors to reveal uncomfortable situations. Quantifying pos-
tures such as standing up, walking, lying down or sitting
may feature people autonomy and well being. We report
comparisons between two main attitude estimation strategies.
Our experimental protocol uses a precise ground truth obtained
from two annotators. The dataset involves 9 participants and
provides 50 various data sequences. We discuss the obtained
promising results, analyze advantages and limits when using
attitude estimation in this context.

Keywords-Inertial Measurement Unit; Attitude Estimation;
Posture Detection; eHealth; Actigraphy.

I. INTRODUCTION

Nowadays, eHeath services based on inertial sensors in-
creasingly rely on methods for detecting human postures
and actions. Human action recognition based on inertial
sensors has been an active area of research due to its
success in robotics [13], human computer interaction [6],
guidance [7], efc. Actions may be viewed as sequences of
static and dynamic postures during the time. Nevertheless,
human posture detection remains challenging, in particular
for eHealth applications [2]. Indeed, posture analysis in
Activities of Daily Living (ADL) is crucial because it may
reveal a disease, a loss of autonomy, difficult working
conditions, efc. In this case, device attitude estimation (i.e.
device orientation with respect to Earth’s local frame [18])
is fundamental.

Modern IMUs (Inertial Measurement Units) embed ac-
celerometer, gyroscope, and magnetometer sensors which
enable methods for attitude estimation. These methods in-
vestigate various domains such as: aerospace [8], unmanned
aerial vehicles [4], indoor positioning [15], efc. Moreover,
the particular context of smartphones carried by people in
their everyday lives brings new challenges for detecting their
postures. If people let their phone on a pocket, upside-
down or in their backpack, attitude estimation is relevant to
transform input data in a reference orthonormal coordinate
system such as a torso relative one. In a torso linked
referential, postures as standing up or lying down are indeed
easier to detect. External accelerations, gyroscope variations
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and magnetic perturbations need to be controlled when
attitude estimation is realized to prevent additional issues.

Our contributions are the investigation of a posture de-
tection system precision in the context of everyday life
scenarios. We consider classical postures (such as lying
down, sitting, standing up, walking, etc.) with various hu-
man behaviors in an indoor environment. We then analyze,
compare and evaluate two state-of-the-art methods for at-
titude estimation. One originality is an indirect evaluation
of attitude estimation methods with posture detection error
quantification in regards to a human-made ground truth.
The optimal automatic system should be as smart as human
perception of postures.

The paper is organized as follows: the next section briefly
reviews the state of the art of posture detection systems
and models. In section 3, we review two classical attitude
estimation methods. In section 4, we describe our experi-
mental protocol and results are presented. Finally, Section 5
summarizes our contributions and concludes the paper.

II. HUMAN POSTURE DETECTION

Human posture detection based on IMU data may be
described as challenging sequential pattern recognition. The
main objective is to determine as precise as possible starting
and ending timestamp of a labeled posture. Classically, as
in [3], postures are defined as a hierarchical representation
from a root posture as standing up to more precise situations
as standing with right arm up or lying down with curled up
legs on right side (see Fig. 1). Generally, automatic posture
detection systems use 3 main strategies based on: heuristics,
statistical inference or machine learning.

In the first strategy, heuristics from IMU data are built to
detect postures. For instances, in [20], the authors develop
a sleep posture estimator using 3-axis accelerometer data
in order to prevent Obstructive Sleep Apnea Syndrome
(OSAS). Likewise, when a device is worn on the torso such
as a necklace, and if the z accelerometer axis is collinear
to the gravity force, some rules may be provided. For
example, the detection of the standing up position is when
z accelerometer data are around g and x accelerometer are
around 0. In the same way, the detection of the lying down
position is when z accelerometer data are around O and z
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Figure 1: Hierarchical representation of human postures (extracted from [3]).

accelerometer are around g. Of course, threshold parameters
should be fixed in advance, which is a real drawback for
uncontrolled real life situations.

The second strategy suggests modeling the temporal struc-
ture of postures, with Hidden Markov Models (HMM).
For instance, hand gestures in [14], which may be viewed
as body postures, are modeled class by class from finite
samples and the detection process consists of maximizing
the likelihood of each class model outputs from input data.

The third method is to learn specialized classifiers (e.g.
Support Vector Machine (SVM), Neural Networks (NN),
etc.), which detect specific human posture from IMU data.
In [12], Nelson et al. study how to maintain a healthy living
for patients with Mild Cognitive Impairment (MCI). Their
system based on IMU data models people activities with
SVM based on their posture feature vectors.

In this study, we investigate the coupling between a
posture detection method and two attitude estimators. Con-
sequently, we build a posture detection algorithms based on
the first strategy with heuristics in order to evaluate the
attitude estimator added values. Fig. 2 shows our design.
First, classical signal processing methods are applied to
filter and denoise raw IMU data (i.e. a Butterworth filter
with a Cutoff frequency of 0.01). Then, an attitude estimator
is computed (see Section III) in order to calibrate data in
a torso based referential. Following the next steps, rules
are combined to classify IMU data to 5 human postures:
walking, bending, lying down, standing up and sitting. From
accelerometer data, dynamic versus static phase is obtained

by thresholding data variation on a sliding window. For
dynamic phases, we label temporal segments as walking and
bending in regard to a step detector. Here, successive peaks
on accelerometer energies with a frequency between 0.6 Hz
and 2.5 Hz define a walking step. For static phases, we
test first a lying and in second a standing pattern detectors
based on samples revealing these situations. Finally, if no
label is assigned after the lying and standing detectors, then
the remain segments are classified as sitting postures. The
schema relies then on a device attitude estimator, which may
strongly influence the automatic posture detection accuracy.

III. DEVICE ATTITUDE ESTIMATION
A. Background

Attitude estimation using IMU data is an important task in
order to give an accurate posture detection for ADL monitor-
ing. The 3-dimensional attitude of a rigid body is determined
as the axes orientation of the body frame B(Xp, Y5, ZB)
with respect to a local Earth-fixed frame N (Xy, Yy, Zn).
It can be generally represented in 3 principal forms: Euler
angles, quaternion, or Direction Cosine Matrix (DCM). The
quaternion representation offers a linear formulation of the
attitude dynamics in contrary to the other representations. In
this paper, the unit norm quaternion is used to represent the
attitude. It is defined as:

=l @ ¢ @feRY (D)

where ¢o and ¢ are the scalar and the vector parts of the
quaternion, respectively.
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For IMU sensors, we consider a triad of sensors con-
sisting of a gyroscope measuring the angular velocity, an
accelerometer measuring the sum of the gravity and the
device external acceleration and a magnetometer measuring
the magnetic field. The classical kinematic equation to
describe the variation of the attitude in term of quaternion
is defined as follows [16]:

Q=308 @)
where @ = [0 wT]7 is the quaternion representation of the
angular velocity w = [w, w, w,]” expressed in B.

The literature proposes different methods for attitude
estimation [5], [9]-[11], [17]. In the following, we report the
two different methods used in this study, exploiting firstly
complementary filters [9] and secondly Kalman filters [10].
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Figure 3: CF block diagram algorithm [9].

In the study of Mahony et al. [9], attitude estimation is
performed from low cost IMU sensors. The input data is
then very noisy with sampling period variations. In order to
resolve these issues, the authors write the filtering problem
as deterministic observers, linked on the Special Orthogonal
group SO(3), driven by reconstructed attitude and angular
velocity measurements. This method leads to determine two

non-linear observers on SO(3), termed the direct CF and
passive CF.

As described in the Fig. 3, the main idea is to calculate the
error by cross-multiplying measured and estimated vectors.
Then a correction step is used to correct the measured angu-
lar velocity. Again the quaternion propagation is integrated
to obtain an estimate of the orientation.

The direct CF proposes non-linear observers using quater-
nion representations. The passive CF is derived from the
reconstructed attitude based on the gyroscope measurements,
avoiding coupling the constructed attitude error with the
predictive velocity update. Additionally, the authors propose
a formulation of the passive CF into an explicit CF from
gravitational and magnetic field measurements that do not
require online algebraic attitude reconstruction, which is a
weakness for embedded systems. In this method, the attitude
detector accuracy depends mainly on the K, gain parameter.
Their experimental results appear very challenging on a
robot and an unmanned aerial vehicle.

C. Quaternion Adaptive Kalman Filters (q-AKF)

a
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Figure 4: q-AKF block diagram extracted from [10].
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Likewise, Makni er al. [10] consider the challenge of
rigid object attitude estimation under external acceleration
using IMU data. Their study focuses on attitude estimation
during dynamic phases. Consequently, for compensating the
external accelerations, a quaternion-based Adaptive Kalman
filter (q-AKF) is designed (see Fig. 4).

First, a detector decides if the object is in a static or
dynamic phase. Then, the external acceleration covariance
matrix is estimated to feature the filter gain. The second
challenge tacked in this study is the energy consumption
issue when using a gyroscope. For preserving IMU battery
life, the authors design a switching policy in order to exploit
gyroscope data only when it is useful. The efficiency of the
two contributions shows challenging results and the attitude
detector accuracy depends mainly on the P parameter, the
initial value of the covariance matrix corresponding to the
estimation error.

IV. EXPERIMENTS
A. Dataset

1) Proposed scenario: The objective of the scenario in
[1] is to collect inertial data of many participants in a real-
life scenario (cf. Fig. 5). As activities of daily living are
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Figure 5: One sample posture sequence to be performed.

composed of 4 main postures (e.g. standing up, sitting, lying
down, walking), the participants were asked to follow a
particular protocol for about 12 minutes. Each participant
performs a specific posture sequence in a particular order
as follows: (standing up - walking - standing up - sitting).
This sequence is repeated 6 times and may be preceded by a
lying down posture or followed by a (standing up - walking
- standing up - lying down) sequence. Each data sequence
represents then human behaviors similar to an everyday life,
but condensed in 12 minutes.
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Figure 6: SK6 device.

2) Protocols: 9 participants (5 males and 4 females)
were recruited to participate in the experiment [1]. The
study was limited to French native participants in order
to have homogeneous behavioral patterns and a standard
annotation protocol. Ages are ranged from 22 to 55 years old
with an average of 38. Participants had different functions:
interns, developers, PhD students, researchers, ergonomists
and project managers.

A device, named SK6 [19], as shown in Fig. 6, was fixed
on the participant and collect inertial data. 3D accelerometer,
3D gyroscope, 3D magnetometer data are sampled every 100
ms, as shown in Fig. 7. The mean duration of each sequence
is about 7643 samples (i.e. 13 minutes and 14 seconds long).

3) Data Amnnotation: One independent annotator seg-
ments manually each posture on the posture sequences in
regards to the scenario, shown in Fig. 5. A second annotator
validates the provided labels. This process was used for all
inertial features in order to establish our ground truth (GT).
The 4 main postures (i.e. lying down, sitting, standing up,
walking) are labeled and also a bending label is added to
mark the transition postures between lying down and sitting
or standing up situations. These particular transition postures
are indeed more fuzzy situations. This experiment design
was thought to handle a list of classical postures known to
largely contribute on activities of daily living. Finally, each
sequence presents then around 35 annotated segments.
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Figure 7: Accelerometer, gyroscope and magnetometer data
for one participant during one IMU data acquisition.
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Figure 8: Raw and filtered accelerometer data for one
participant.

B. Results

Fig. 8 presents raw data of one session and the filtered
data, obtained before the attitude estimation phase, used for
posture detection. We observe that the low-pass filter on
the z-axis data provides a smoother signal, denoising then
some interferences. The posture detector is then facilitated
when automatically labeling walking or standing up signal
segments. Likewise, signal processing on y-axis reveals
clearly situations when participants are lying down (i.e. in
the beginning of the scenario and around 500 seconds. The
two resulting postures, namely sitting and bending are then
deduced from the 3 previous ones, as described in Fig. 2.

Each labeled segments build finally a specific APD (Auto-
matic Posture Detector-based) posturogram that is compared
to the specific GT (Ground Truth) posturogram for each par-
ticipant. Fig. 9 shows two posturograms for one participant
and the superposition of the two previous ones.

It is then notable that on this user session, the automatic
posture detector performs well, underlying the ground truth.
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Figure 9: Posturogram alignments between the Ground Truth
(GT) and the Automatic Posture Detection (APD).

Some errors appears when distinguishing standing up and
bending postures. These two postures are quite similar in
real life, and these errors are due to some standing detector
imprecisions. Sometimes, some errors show light delays
when detecting postures. These time variations may be
caused by some issues to determine precisely starting times
of a new posture. Again, bending postures are less marked
situations and consequently more difficult to detect because
they often result from transfer phases between two marked
situations (i.e. between standing up and sitting postures or
between standing up and walking postures).

Posture detection evaluation is then performed by comput-
ing a DTW (i.e. Dynamic Time Warping) based metric. In
order to compare the precision of the APD posturogram in
regards to the ground truth, this metric measures similarity
between the two temporal sequences. Table I presents our
evaluation with 3 configurations: firstly, with no attitude
estimation before our posture detector, secondly with Com-
plementary Filter (CF) attitude estimator (see III-B), and
thirdly with q-AKF attitude estimator (see III-C). An average
posture detection error is computed from a 5-cross validation
process. 5 validation datasets are used to optimize CF and
g-AKF methods while 5 test datasets are used to evaluate
blindly the precision of the full posture detection process (i.e.
including attitude estimation performances). One repetition
contains 25 sequences from random participants.

In Table I, we observe that the minimal average error is
performed by the q-AKF attitude estimator and our posture
detector with a score of 0.192646 % 0.023791. This means
that around 80.74% of the posture sequences were correctly
classified. This score is better than using CF attitude es-
timator (0.197152 4+ 0.0.021079) or no attitude estimator
(0.216408 + 0.0009055). It reveals that using an attitude
estimator is relevant for posture detection and that CF atti-
tude estimation is less adequate in this context. Particularly,

our protocol gives significance for dynamic phases, which
may correspond better to q-AKF attitude estimation design.
The main remaining confusions concern standing up and
sitting postures and standing up and bending postures. On
the contrary, the walking and lying down postures are mainly
correctly classified by our specific detectors.

Table I: Average posture detection errors.

Methods Validation Test
No attitude Mean 0.210572 | 0.216408
estimation Standard Deviation | 0.005730 | 0.009055

(CF) 9] Mean 0.197685 | 0.197152

Standard Deviation | 0.023632 | 0.021079
(q-AKF) [10] Mean 0.190133 | 0.192646
Standard Deviation | 0.025875 | 0.023791

As a complement, Fig. 10a presents the influence of the
parameter K, representing the gain in the CF formulation,
on posture detection accuracy. The average minimal error
over the 5 validation datasets is 0.197685 4 0.023632 ob-
tained for K, = 0.8. Likewise, Fig. 10b shows the posture
detection accuracy when the parameter P varies over the 5
validation datasets and the mean minimal reached error is
0.190133 £ 0.025875 obtained for P = 4 x 1075, P is the
initial values of the covariance matrix used in the q-AKF
attitude estimator.

V. CONCLUSIONS AND PERSPECTIVES

We investigate the influence of two attitude estimation
methods for posture detection in the particular context of
everyday indoor situations. We propose an experiment based
on 9 participants for evaluating the precision of posture
detection. Our experiments shed light on the relative impacts
of the attitude estimation computation on inertial data based
posture detection. The best overall result obtains 0.192646
of errors, which is very promising to feature human behavior
when performing activities of daily living.

Some challenges remain opened with large scaled datasets
and environment perturbations as biases or acceleration
noises due to means of transports in outdoor situations, for
instance.
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