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Abstract
In an emerging computing paradigm, computational capabilities, from

processing power to storage capacities, are offered to users over communi-
cation networks as a cloud-based service. There, demanding computations
are outsourced in order to limit infrastructure costs.

The idea of verifiable computing is to associate a data structure, a
proof-of-work certificate, to the result of the outsourced computation. This
allows a verification algorithm to prove the validity of the result, faster
than by recomputing it. We talk about a Prover (the server performing
the computations) and a Verifier.

Goldwasser, Kalai and Rothblum gave in 2008 a generic method to
verify any parallelizable computation, in almost linear time in the size of
the, potentially structured, inputs and the result. However, the extra cost
of the computations for the Prover (and therefore the extra cost to the
customer), although only almost a constant factor of the overall work, is
nonetheless prohibitive in practice.

Differently, we will here present problem-specific procedures in com-
puter algebra, e.g. for exact linear algebra computations, that are Prover-
optimal, that is that have much less financial overhead.

1 Introduction
In an emerging computing paradigm, computational capabilities, from process-
ing power to storage capacities, are offered to users over communication net-
works as a service.

Many such outsourcing platforms are now well established, as Amazon web
services (through the Elastic Compute Cloud), Microsoft Azure, IBM Platform
Computing or Google cloud platform (via Google Compute Engine), as shown
in Figure 1. None of these platforms, however, offer any guarantee whatsoever
on the calculation: no guarantee that the result is correct, nor even that the
computation has even effectively been done.
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Figure 1: Some outsourced computing services

1.1 Verifiable computing
This new paradigm holds enormous promise for increasing the utility of com-
putationally weak devices. A natural approach is for weak devices to delegate
expensive tasks, such as storing a large file or running a complex computation,
to more powerful entities (say servers) connected to the same network. While
the delegation approach seems promising, it raises an immediate concern: when
and how can a weak device verify that a computational task was completed cor-
rectly? This practically motivated question touches on foundational questions
in cryptography, coding theory, complexity theory, proofs and algorithms.

Figure 2: Verifying the computation should take less time than computing it

More generally, the question of verifying a result at a lower cost (time, mem-
ory) than that of recomputing it, as shown on Figure 2, is of paramount impor-
tance. Another example of application is for the extension of the trust about
results computed via probabilistic or approximate algorithms. There the idea
is to gain confidence into the correctness, but only at a cost negligible when
compared to that of the computation.

1.2 Linear algebra, global optimization
For instance, GL7d19 is an 1 911 130 × 1 955 309 matrix whose rank 1 033 568
was computed once in 2007 with a Monte-Carlo randomized algorithm [19].
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This required 1050 CPU days of computation. We thus need publicly verifiable
certificates to improve our confidence in computational results.

In linear algebra our original motivation is also related to sum-of-squares.
Indeed, by Artin’s solution to Hilbert 17th Problem, any polynomial inequality
∀ξ1, . . . , ξn ∈ R, f(ξ1, . . . , ξn) ≥ g(ξ1, . . . , ξn) can be proved by a fraction of
sum-of-squares:

∃ui, vj ∈ R[x1, . . . , xn], f − g =

(∑̀
i=1

u2i

)
/

 m∑
j=1

v2j

 (1)

Such proofs can be used to establish global minimality for
g = infξv∈R f(ξ1, . . ., ξn) and constitute certificates in non-linear global

optimization. A symmetric integer matrix W ∈ SZn×n is positive semidefinite,
denoted by W � 0, if all its eigenvalues, which then must be real numbers,
are non-negative. Then, a certificate for positive semidefiniteness of rational
matrices constitutes, by its Cholesky factorizability, the final computer algebra
step in an exact rational sum-of-squares proof, namely

∃e ≥ 0, W [1] � 0, W [2] � 0, W [2] 6= 0 :

(f − g)(x1, . . . , xn) · (me(x1, . . . , xn)TW [2]me(x1, . . . , xn)) =

md(x1, . . . , xn)TW [1]md(x1, . . . , xn), (2)

where the entries in the vectors md,me are the terms occurring in ui, vj in (1).
In fact, (2) is the semidefinite program that one solves [43]. Then, the client
can verify the positiveness by checking Descartes’ rule of sign on the certified
characteristic polynomial ofW [1] andW [2]. Thus arose the question how to give
possibly probabilistically checkable certificates for linear algebra problems.

1.3 Techniques
The tools used to provide such efficient proof-of-work certificates stem from
programs that check their work [12], to proof of knowledge protocols [7], via
error-correcting codes [42, 35] complexity theory [1] or secure multiparty proto-
cols [17], and the interaction of these different methodologies is crucial.

Here we will thus follow this road-map:

• We recalled that global optimization can be reduced to linear algebra.
Thereupon, we will focus on certificates for linear algebra problems [43] in
computer algebra. Those extend in particular the randomized algorithms
of Freivalds [32].

• We combine those with probabilistic interactive proofs of Babai [5] and
Goldwasser et al. [39],

• as well as Fiat-Shamir heuristic [29, 9] turning interactive certificates into
non-interactive heuristics subject to computational hardness.
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• Overall, we obtain problem-specific efficient certificates for dense, sparse,
structured matrices with coefficients in fields or integral domains.

2 Interactive protocols, the PCP theorem and
homomorphic encryption

2.1 Arthur-Merlin interactive proof systems
A proof system usually has two parts, a theorem T and a proof Π, and the
validity of the proof can be checked by a verifier V . Now, an interactive proof,
or a

∑
-protocol, is a dialogue between a prover P (or Peggy in the following) and

a verifier V (or Victor in the following), where V can ask a series of questions,
or challenges, q1, q2, . . . and P can respond alternatively, in successive rounds,
with a series of strings π1, π2, . . ., the responses, in order to prove the theorem
T . The theorem is sometimes decomposed into two parts, the hypothesis, or
input, H, and the commitment, C. Then the verifier can accept or reject the
proof: V (H,C, q1, π1, q2, π2, . . .) ∈ {accept, reject}.

To be useful, such proof systems should satisfy completeness (the prover
can convince the verifier that a true statement is indeed true) and soundness
(the prover cannot convince the verifier that a false statement is true). More
precisely, the protocol is complete if the probability that a true statement is
rejected by the verifier can be made arbitrarily small. Similarly, the protocol
is sound if the probability that a false statement is accepted by the verifier can
be made arbitrarily small. The completeness (resp. soundness) is perfect if
accepted (resp. rejected) statement are always true (resp. false).

It turns out that interactive proofs with perfect completeness are as powerful
as interactive proofs [33]. Thus in the following, as we want to prove correctness
of a result more than proving knowledge of it, we will mainly show interactive
proofs with perfect completeness.

The class of problems solvable by an interactive proof system (IP) is equal to
the class PSPACE [55] and a probabilistically checkable proof, PCP[r(n), π(n)] ,
for an input of length n, is a type of proof that can be checked by a randomized
algorithm using a bounded amount of randomness r(n) and reading a bounded
number of bits of the proof π(n). For instance, PCP[O(log n), O(1)]=NP [6, 3].

In general, interactive protocols encompass many kinds of proofs and Prover
and Verifier settings. One can think of the difficulty of integer factorization
versus that of re-multiplying found factors. Another example could be satisfia-
bility checking, where the solver has to explore the state space, while verifying
a variable assignment or a conflict clause could be much simpler [2]. In com-
puter algebra, the Prover can be a probabilistic algorithm or a symbolic-numeric
program, where the Verifier would perform the checks exactly or symbolically;
further, computer algebra systems could perform a complex calculations where
an interactive theorem prover (or proof assistant like Isabel-HOL or Coq) only
has to a posteriori formally verify the certificate [16, 15].

Table 1 gives more examples of such settings.
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Prover Verifier
Computer Scientist Mathematician
Computer Algebra system Formal proof assistant
Cloud User
Server Client
Cellphone Trusted platform module

Table 1: Examples of Prover/Verifier settings

2.2 Goldwasser et al. prover efficient interactive certifi-
cates

Now, efficient protocols (interactive proofs between a Prover, responsible for the
computation, and a Verifier, to be convinced) can be designed for delegating
computational tasks.

Recently, generic protocols, mixing zero-sum checks [45] and probabilistically
checkable proofs, have been designed by teams around Shafi Goldwasser at the
MIT or Harvard, for circuits with polylogarithmic depth [38, 57], namely for
problems that can be efficiently solved on a parallel computer (in the NC or
AC complexity class). These results have also been extended to any structured
inputs (any polynomial-time-uniform polylog-depth Boolean circuits in the sense
of Beame’s et al, [8], division circuits) [23].

The resulting protocols are interactive and there is a trade-off between the
number of interactive rounds, the volume of communication and the computa-
tional cost [50]; the cost for the verifier being usually only roughly proportional
to the input size.

These protocols can, e.g., certify that two supersparse polynomials are rela-
tively prime in verifier cost which is polylog time (and rounds) in the degree.

The produced certificates, in analogy to processor-efficient parallel algo-
rithms, are Prover-efficient: if the cost to compute the result by the best known
algorithm is T (n) for a size n problem, then the cost to produce the result
together with the verifiable certificate is T (n)1+o(1).

Those techniques can however produce a non negligible practical overhead
for the Prover and are restricted to certain classes of circuits.

2.3 Parno et al. homomorphic solutions
Another approach as been developed by Gentry et al., at Microsoft and IBM
research, it is Pinocchio. It solves a broader range of problems, to the cost of
using relatively inefficient homomorphic routines [48] in an amortized way.

The idea is that the Prover should run the program (or at least part of the
program twice), once normally on the input, and once homomorphically on an
encrypted version of the input. The Verifier will then verify the consistency be-
tween the normal output and the encrypted one. Usually the Verifier is required
to run the algorithm at least once for a given size or structure of the input but
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can reuse this for multiple inputs.
This generic procedure can be applied on specific linear algebra or polyno-

mial problems [31, 60, 28, 25], or on generic quadratic arithmetic programs [48].
There, fully homomorphic encryption can be used [36] or sometimes just pair-
ings [48] and/or cryptographic hashes [30].

Here also the Prover can be efficient, but subject in practice to the overhead
of homomorphic computations.

2.4 Public verification, delegatability and zero-knowledge
Interactive certificates require some exchanges between the Prover and the Ver-
ifier. With such a protocol, the Verifier can be privately convinced that the
computation of the Prover produced the correct answer. This does not mean
that other people would be convinced be the transcript of their exchange: the
Prover and Verifier could be in cahoots and the supposedly random challenges
carefully crafted.

Fiat-Shamir heuristic [29, 9] can thus turn interactive certificates into non-
interactive heuristics subject to computational hardness: the random challenges
are replaced by cryptographic hashes of all previous data and exchanges. Craft-
ing such values would then reduce to being able to forge cryptographic finger-
prints [20, § 4.5].

Further, more properties could be sought for such protocols, such privacy
of data and/or computations. In this setting, a publicly verifiable computation
scheme can also be four algorithms (KeyGen, ProbGen, Compute, Verify), where
KeyGen is some (amortized) preparation of the data, ProbGen is the preparation
of the input, Compute is the work of the Prover and Verify is the work of the
Verifier [49]. Usually the Verifier also executes KeyGen and ProbGen but in a
more general setting these can be performed by different entities (respectively
called a Preparator and a Trustee).

This allows to define several adversary models but usually the protocols are
secure against a malicious Prover only (that is the Client must trust both the
Preparator and the Trustee).

One can also further impose that there is no interaction between the Client
and the Trustee after the Client has sent his input to the Server. Publicly
verifiable protocols with this property are said to be publicly delegatable [60, 28,
25].

Then, some different properties of the protocol could be desirable, such
as not disclosing the result but instead just providing a proof-of-work. This
results in general in zero-knowledge protocols over confidential data, such as
cryptocurrency transactions, as in, e.g., [39], with recent efficient implementa-
tions [13, 10, 11, 14].

2.5 Problem-specific efficient certificates
Differently, dedicated certificates (data structures and algorithms that are ver-
ifiable a posteriori, without interaction) have also been developed, e.g., in com-
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puter algebra for exact linear algebra [32, 43, 20, 22, 24], even for problems that
are not structured. There the certificate constitute a proof of correctness of a
result, not of a computation, and can thus also detect bugs in the implemen-
tations.

Moreover, problem-specific certificates can gain crucial logarithmic factors
for the verifier and allow for optimal prover computational time, see Figure 3.

2048× 2048 Thaler[57] Ad-hoc [32]
Server time 18.23s 0.65s
Certificate overhead 0.13s 0.00s
Client time 2.89s 0.01s

Figure 3: Generic protocols [58] versus dedicated protocols for matrix multipli-
cation

For this, the main difficulty is to be able to design verification algorithms
for a problem that are completely orthogonal to the computational algorithms
solving it, while remaining checkable in time and space not much larger than
the input.

3 Prover-optimal certificates in linear algebra
We show in this section, that such problem-specific certificates are attainable
in linear algebra, where we allow certificates that are validated by Monte Carlo
randomized algorithms.
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3.1 Freivalds zero equivalence of matrix expressions
The seminal certificate in linear algebra is due to Rūsin, š Freivalds [32]: quadratic
time is feasible because a matrix multiplication AB can be certified by the
resulting product matrix C via the probabilistic projection to matrix-vector
products (see also [44] who reduced the requirements to only O(log(n)) random
bits), shown in Protocol 1.

Prover Communication Verifier

A ∈ Fm×k, B ∈ Fk×n

Compute C = A ·B C−−−−−−−−→ r
$←− S ⊆ F

Form ~v = [1, r, r2, . . . , rn−1]T

A (B~v)−C~v
?
= ~0

Protocol 1. Matrix multiplication certificate [44].

In Protocol 1, we give the variant of [44] that requires log(n) random bits,
but works over sufficiently large coefficient domains, as its soundness is 1− |S|n
by the DeMillo-Lipton/Schwartz/Zippel lemma [18, 61, 53]. Freivalds original
version randomly selects a zero-one vector instead. This requires n random bits
instead but applies to any ring and gives a soundness larger than 1

2 .
In both cases it is sufficient to repeat the test several times to achieve any

desired probability.

3.2 Reductions to matrix multiplication
With a certificate for matrix expressions, then one can certify any algorithm
that reduces to matrix multiplication: the Prover records all the inter-
mediate matrix products and sends them to the Verifier who reruns the same
algorithm but checks the matrix products instead of computing them [43], as
shown in Protocol 2.

Prover Communication Verifier

All intermediate Runs the algorithm but
Runs the algorithm matrix products replace each matrix products

−−−−−−−−−−−−→ by Freivalds’ checks

Protocol 2. Certificates with reduction to matrix multiplication [43, § 5].

Overall, the communications and Verifier computational cost are given by
taking ω = 2 in the Prover’s complexity bounds (with potential additional log-
arithmic factors due to summations). Further, the production of the certificate
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has no computational overhead for the Prover: it only adds the communication
of the intermediate matrix products.

For instance, Storjohann’s Las Vegas rank algorithm of integer matrices [56]
becomes a non-interactive/non-cryptographic Monte Carlo checkable proof-of-
work certificate that has soft-linear time communication and verifier bit com-
plexity in the number of input bits!

3.3 Sparse or structured matrices
When the matrices are sparse or present some structure, quadratic run time
and/or quadratic communications might be overkill for the Verifier. There it is
better if his communications and computational cost is of the form µ(A)+n1+o(1)

where µ(A) is the number of operations to perform a matrix-vector products.
This scheme is thus also interesting if the considered matrix is only given as a
blackbox [40].

In that vein, we now have certificates for :

• non-singularity, Protocol 3;

• an upper bound to the rank, Protocol 4 (if elimination on the input
matrix is possible for the Prover then a variant without preconditioners
can be used [26, 24]);

• the rank, combining Protocols 3 and 4;

• the minimal polynomial, using Protocol 5 (where fA,vu is the monic
scalar minimal generating polynomial of the sequence uT v, . . . , uTAiv,
ρA,vu is such that ρA,vu = fA,vu ·G with G the generating function of the
latter sequence, for random vectors u and v, chosen by the Verifier [41,
Theorem 5]);

• the determinant, Protocol 6, which randomness could be reduced from
O(n) to a constant number of field elements [21, § 7].

Additionally, properties of the given matrices can also sometimes be discov-
ered at low cost: whether the blackbox is a band matrix, has a low displace-
ment rank, has a few or many nilpotent blocks or invariant factors [27].
Similarly, the existence of a triangular one sided equivalence, as well as the
rank profiles can also be certified without sending an explicit factorization to
the Verifier [24]. For the latter, the price to pay is to require a linear number
of rounds.

3.4 Integer or polynomial matrices
Over an integral domain, the verification procedure can be performed via a
randomly chosen modular projection. If there are sufficiently many small max-
imal ideals, then one can uniformly chose one at random and then ask for a
certification of the result in the associated quotient field as shown in Protocol 7.
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Prover V erifier

Input A ∈ Fn×n

Commitment
1 : non-singular //

Challenge
2 : ~boo ~b

$←− Sn ⊂ Fn

Response ~w ∈ Fn 3 : ~w // A~w
?
= ~b

Protocol 3. Blackbox interactive certificate of non-singularity [20]

Prover V erifier

A ∈ Fm×n S ⊂ F

rank(A) ≤ r 1 : r // r
?
< min{m,n}

2 : U, Voo U ∈ Bm×mS , V ∈ Bn×nS

preconditioners of size n1+o(1)

w ∈ Fr+1 6= 0
3 : w // w

?

6= 0

[Ir+1|0]UAV

[
Ir+1

0

]
w

?
= 0

Protocol 4. Blackbox upper bound to the rank certificate [20]
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Prover Communication Verifier
H(λ) = fA,vu (λ),

h(λ) = ρA,vu (λ). H,h−−−−→
φ, ψ ∈ F[λ] with

φfA,vu + ψρA,vu = 1,
φ, ψ−−−−→ deg(φ)

?
≤ deg(h)− 1,

deg(ψ)
?
≤ deg(H)− 1.

Random r0 ∈ S ⊆ F.
Checks GCD(H(λ), h(λ)) = 1 by φ(r0)H(r0) + ψ(r0)h(r0)

?
= 1.

Computes w such that r1←−−−− Random r1 ∈ S ⊆ F.
(r1In −A)w = v. w−−−−→ Checks (r1In −A)w

?
= v and (uTw)H(r1)

?
= h(r1).

Returns fA,vu (λ) = H(λ).

Protocol 5. Certificate for fA,vu [22]

Prover Communication Verifier

1. Form B = DA with

D ∈ Sn ⊆ F∗n D,u, v−−−−−−−−−→
and u, v ∈ Sn,
s.t. deg(fB,vu ) = n.

Protocol 5

2. H,h, φ, ψ−−−−−−−−−→ Checks:
3. r1←−−−−−−−−− deg(H)

?
= n,

4. w−−−−−−−−−→ H
?
= fB,vu , w.h.p.

5. Returns
fB,vu (0)

det(D)
.

Protocol 6. Determinant certificate for a non-singular blackbox [22]
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Prover Communication Verifier

Commitment Result r ∈ R r−−−−−−−−→
Challenge I←−−−−−−−− I $←− maximal ideals

Response Result x ∈ R/I with
x, CR/I−−−−−−−−→ x

?≡ r mod I and
field certificate CR/I CR/I(x)

?
= valid

Protocol 7. Certification in a quotient field [20, § 3.2 and § 4.4].

For instance this gives very efficient certificates for polynomial or integer/ra-
tional matrices, provided that one has a bound on the degree or the magnitude
of the coefficients:

• For integral matrices, if the true result v is bounded in magnitude, then
only a finite number of prime numbers will divide the difference between
the commitment r and the result. Therefore the result can be checked
over a small prime field [20, Theorem 5].

• For polynomial matrices, if the true v(X) result’s degree is bounded,
then only a finite number of evaluation points can be roots of the difference
polynomial between the committed one r(X) and the result. Therefore the
result can be checked in the ground field at a small evaluation point [20,
Theorem 2].

The latter results allows, for instance, to certify the global optimization
problems of Section 1.2.

This is illustrated in Figure 4, where many of the reductions presented here
are recalled.

3.5 Non-interactive certificates
The certificates in Sections 3.1 and 3.2 are non-interactive: all the communica-
tions can be recorded and publicly verified later.

On the contrary the certificates of Sections 3.3, 3.4 are interactive: the
Verifier chooses some random bits during the computation of the certificate.
Non-interactivity can be recovered via Fiat-Shamir scheme: any random bits
are generated by cryptographic hashes of the inputs and all the previous in-
termediate commitments. Soundness is then subject to standard cryptographic
assumptions.

For sparse or structured problems fewer results exists without this assump-
tion, or with worse complexity bounds:

• For the minimal polynomial (scalar or matrix) or the determinant, non-
interactive certificates exists, but with communications and computational
cost O(n

√
µ(A)) instead of µ(A) + n1+o(1) [21].
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Figure 4: Global optimization via problem-specific interactive certificates: dense
(purple) or sparse (red) algebraic problems, as well as over the reals (green) or
oblivious (yellow).
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• Non-interactive certificates can also verify polynomial minimal approxi-
mant bases in O(mD + mω), where D is the sum of the column degrees
of the output [37].

4 Some open problems
We conclude this survey with some open problems in the area of problem specific
linear algebra certificates:

• Sparse Smith form: for dense matrices, one can interactively certify
any normal form via a Freivalds certificate on a randomly chosen modular
factorization. With sparse matrices, even the modular projection of the
change of base can be too large. In that setting extending protocols for the
rank or the determinant to deal with the Smith form should be possible.

• Non integral domains certificates: more generally, how to efficiently
certify some properties when there is no quotients or if those properties
do not carry over (e.g., Smith form)?

• We have defined certificates resisting a malicious server with unbounded
power. This is error detection with unbounded number of errors. Thus
the question of the complexity of problem specific unbounded error
correction also arises. This path again was first taken for matrix multi-
plication [35] and was recently extended to the matrix inverse [51].
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