
HAL Id: hal-01825733
https://hal.science/hal-01825733v1

Submitted on 22 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Resolution Wavenumber Analysis (HRWA) for the
mechanical characterization of viscoelastic beams

Pierre Margerit, Arthur Lebée, Jean-François Caron, Xavier Boutillon

To cite this version:
Pierre Margerit, Arthur Lebée, Jean-François Caron, Xavier Boutillon. High-Resolution Wavenumber
Analysis (HRWA) for the mechanical characterization of viscoelastic beams. Journal of Sound and
Vibration, 2018, 443, pp.198-211. �10.1016/j.jsv.2018.06.062�. �hal-01825733�

https://hal.science/hal-01825733v1
https://hal.archives-ouvertes.fr


High Resolution Wavenumber Analysis (HRWA) for the Mechanical
Characterisation of Viscoelastic Beams

Pierre Margerita, Arthur Lebéea,∗, Jean-François Carona, Xavier Boutillonb

aLaboratoire Navier, UMR 8205, École des Ponts, IFSTTAR, CNRS, UPE, Champs-sur-Marne, France
bLaboratory of Solid Mechanics (LMS), École polytechnique, Palaiseau, France

Abstract

The High-Resolution Wavenumber Analysis (HRWA) is presented. It identifies complex
wavenumbers and amplitudes of waves composing the harmonic response of a beam. Based
on the frequency dependence of these wavenumbers, experimental dispersion branches cor-
responding to various beam motions (e.g bending, torsion) can be retrieved. The HRWA
method is compared to the Mc Daniel and the Inverse Wave Correlation (IWC ) methods.
It overcomes some drawbacks of these methods: the wavenumber resolution is enhanced.
Also, the wavenumber search problem is expressed as a linear problem, making the method
computationally efficient. A number of wavenumbers can be identified automatically, thanks
to a statistical criterion. First, the noise sensitivity of each method is investigated in the
basis of synthesised measurements. For this criterion, the HRWA and Mc Daniel method
performances are close and much better than IWC. Moreover, the HRWA is five to twenty
times faster to compute than other methods, depending on the mesh size. Second, an ex-
perimental case is presented where bending and torsion waves are identified, yielding an
apparent viscoelastic Young and shear moduli on a wide-frequency range.
Keywords: Structure identification, Non-destructive testing, Signal Processing,
Wavenumber extraction

1. Introduction

With the apparition of full-field contactless measurement devices (e.g. scanning doppler
laser vibrometers or high-speed cameras), displacement or velocity measurements can be
performed on fine meshes, with a large number of points. Thanks to this major improvement,
non-destructive structural characterisation methods have been developed [1, 2, 3, 4]. Some
of them focus on the identification of structural waves in the medium frequency domain
[5, 6, 7, 8, 9]. These methods aim at filling the gap between low-frequency methods, (Oberst
[10, 11], modal analysis [12, 13, 14, 15, 16] or Dynamical Mechanical Analysis (DMA) [17])
and ultrasonic testing [18, 19, 20].
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The present work focuses on applications to beam, considered as waveguides. Waves
travelling in these structures are representative of the beam section motions: for example
bending, twist or longitudinal motion. In these unidimensionnal structures, the wavenum-
bers are characteristic of the local structural behaviour: far from singularities, boundary
conditions and sources have an influence on the wave amplitudes only. These wavenumbers
are given by reduced beam models (e.g. Euler or Timoshenko models) or more elaborated
schemes like Wave Finite elements [21]. The experimentally extracted wavenumbers can be
used to identify apparent viscoelastic parameters of reduced models via an inverse problem
[9].

The existing Mc Daniel [7] and IWC [5, 6] (Inhomogeneous Wave Correlation) methods
are two candidate for the extraction of waves in the harmonic response of beams. However,
these methods have some drawbacks (i) in low frequency, the Fourier based IWC method
suffers from resolution limitations; (ii) in practice, the beam response is composed of multiple
wave types (e.g. twist, compression, shear) and both existing methods fail to separate the
different wave contributions, as they postulate the number of waves present in the signal; (iii)
the formulation of these methods leads to a computationally expensive non-linear problem
that has to be solved, with a complex wavenumber as parameter.

The aim of the High Resolution Wavenumber Analysis (HRWA) presented in this paper
is to overcome the limitations of the existing wavenumber extraction techniques. It makes
use of the subspace-based identification algorithm ESPRIT [22] (Estimation of Signal Pa-
rameters via Rotational Invariance Techniques). Subspace-based methods are widely-used
in linear system identification, using for example the state-variable framework [23, 24]. An-
other example is the ERA [25] (Eigenvalue Realisation Algorithm), which is devoted to the
identification of the modal parameters of a measured system. Thanks to the use of the
ESPRIT algorithm, some limitations of the Mc Daniel and IWC methods are overcome: (i)
the algorithm resolution is high, as it uses a recurrence property of the signal to identify the
wave parameters; (ii) by using the subspace decomposition, the number of waves contained
in the signal can be estimated automatically with the ESTER criterion [26]; (iii) the complex
wavenumbers are the solution of an optimisation-free problem thus the computational cost
is lightened.

With the HRWA, a discrete number of complex wavenumbers is identified in the harmonic
response of a beam with a high resolution. Based on the dependence of the extracted
wavenumbers on frequency, experimental dispersion branches are retrieved. From these
branches are identified the beam viscoelastic properties. Thanks to the high resolution
aspects of the HRWA, the low-frequency limit of wavenumber extraction is lowered. Also,
with the automated identification of multiple wavenumbers, strain mechanisms can be well
separated, extending the upper frequency limit.

The paper is organised as follows. Firstly, theoretical wavenumbers are derived from
the Euler and the Timoshenko beam models. The ability to identify beam properties from
the wavenumbers is illustrated. Then, a common framework of wavenumber extraction
methods is given, and the existing IWC method and McDaniel method reformulated in this
framework. Secondly, the HRWA is developed in details. A summary of the algorithm
is given, that allows to identify viscoelastic properties of the beam. Thirdly, a numerical
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study based on synthesised harmonic responses of an Euler beam in bending motion only is
developed, where the Mc Daniel method is taken as reference. The Mc Daniel method, IWC
method and the proposed HRWA are compared in terms of sensitivity to noise ratio and
computation time. Finally, an experimental result is given on the simultaneous identification
of frequency-dependent apparent viscoelastic Young and shear modulus, for both beam
models.

2. Natural wavenumbers in a beam

All along the paper, the beam section is considered as homogeneous and made of a linear
viscoelastic isotropic material with density ρ, Young modulus E and shear modulus G.
However, the present method is applicable to higher-order beam models and more complex
material configurations. The axis and the geometry of the beam are presented in Fig. 1 (x
being the beam’s direction). Not considering the bending motion along y, the beam neutral
axis is assumed to remain in the (O, x, z) plane.

b
h

x

y

z

Figure 1: Beam geometry and coordinate axis

2.1. The Euler model
For the sake of simplicity, the Euler beam model is used for the numerical case considered

in this paper. The linearised displacement field u is given by:

u(x, y, z, t) = V (x, t) ex +W (x, t) ez − z W ′(x, t) ex + Θ(x, t) (y ez − z ez ) (1)

where V and W are respectively the longitudinal and transverse displacements, Θ is the
rotation angle of the beam section with respect to the x axis, and •′ denotes the partial
derivative with respect to x.

Along the paper, the harmonic dependence on time of real physical quantities is ac-
counted for by making them complex according to the eiωt convention (where i denotes the
imaginary unit). The local harmonic response of the beam at the angular frequency ω (except
on sources or at boundaries locations) obeys the following uncoupled linear homogeneous
equations:

E V ′′ = −ω2ρ V (2a)
IbEW

′′′′ = −ω2MW (2b)
ItGΘ′′ = −ω2J Θ (2c)
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with A = b h, Ib = b h3/12, J = ρ (b h3 + h b3)/12, It = κ J/ρ , M = ρA and κ being a
correction factor for twist inertia momentum, related to the shape of the beam’s section.

By taking exponential solutions as function of x, the displacement components are ex-
pressed as a sum of the solutions of the previous equations:

V (x) = v1 eikvx +v2 e−ikvx (3a)
W (x) = w1 eikbx +w2 e−ikbx +w3 ekbx +w4 e−kbx (3b)
Θ(x) = θ1 eiktx +θ2 e−iktx (3c)

where the wave amplitudes vr, wr and θr are given by boundary conditions.
According to the eiωt convention specified above, the e−ikx waves are forward-propagating

waves. The three following dispersion laws are obtained:

k2
v = ω2 ρ

E
, k4

b = ω2 M

EIb
and k2

t = ω2 J

GIt
(4)

It is of common practice to account for the viscoelastic behaviour of the material by
taking complex moduli E = E(1 + i ηE) and G = G(1 + i ηG) with positive (and small)
imaginary parts, according to the eiωt convention. The wavenumbers become complex too:

k = k(1− i γ) (5)

generically, with k = <(k). Specifically, the three groups of wavenumbers given by Eq. (4)
become:

kv = ±kv(1− i γv) (6a)
kb = ±kb(1− i γb) and kb = ±ikb(1− i γb) (6b)
kt = ±kt(1− i γt) (6c)

where these expressions are physical (waves attenuating along their direction of propagation)
only if the generic coefficient γ defined above is positive. The second group of bending waves
(kb = ±ikb(1− i · γb)) correspond to fast decaying and slowly oscillating waves.

Finally, Young and shear moduli can be identified from bending and twist wavenumbers
composing the harmonic response of the beam. Considering the Euler model, the Young
and shear moduli are given:

Eeul(ω) = M

Ib

ω2

k4
b

and G(ω) = J

It

ω2

k2
t

(7)

The coefficients that are obtained are apparent Young and shear moduli, in the sense that
they refer to an underlying theory of the Euler beam behaviour and not directly to elasticity.
Consequently, they may vary in frequency.
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2.2. The Timoshenko model
One can define one equivalent slenderness ratio µ as the bending wavelength divided by

the beam thickness:
µ(ω) = λb(ω)

h
= 2π
kb(ω)h (8)

When the frequency increases, µ decreases. As a consequence, out-of-plane shear and rotary
inertia effects are no longer negligible and the beam behaves as a thick beam. The Timo-
shenko model aims at taking into account these effects. The governing equation for bending
motion in the harmonic regime (Eq. (2b)) can be found in [27]:

IbEW
′′′′ − ω2MW + ω2ρIb

(
1 + E

ξG

)
W ′′ + ω4ρ2 Ib

ξG
= 0 (9)

with ξ = π2/12 the shear correction factor. As in Eq. (4), the bending wave dispersion law
is derived:

k4
b IbE − ω2M − ω2k2

b ρIb

(
1 + E

ξG

)
+ ω4ρ2 Ib

ξG
= 0 (10)

As in the preceding case, this fourth order equation in k gives four solutions, of which two
are almost real and two are almost imaginary. Finally, an apparent Young modulus Etim

that takes both out-of-plane shear effects and rotary inertia into account can be identified
from the bending wavenumber kb and the shear moduli G(ω) (Eq. (7)):

Etim(ω) =
ω2M + ω2k2

b ρIb − ω4ρ2 Ib
ξG(ω)

k4
bIb − ω2k2

b ρ
Ib

ξG(ω)
= Eeul(ω)

 1
1− ω2

k2
b

ρ
ξG(ω)

+ k2
b
Ib

A

 (11)

The next section presents the signal model of a measurement performed on the beam,
which parameters are identified by means of the proposed HRWA and of two existing methods
suited for wavenumber identification: the Mc Daniel method [7] and the Inhomogeneous
Wave Correlation [5].

3. Signal model

The harmonic response of a beam is measured on a domain away from sources and
boundaries, along a regularly ∆-spaced mesh x of N points, aligned with the beam neutral
axis:

xu = x1 + (u− 1)∆ , u ∈ [[ 1, N ]] (12)
A typical setup is schematised in Fig. 2.

For a beam structure vibrating in the linear regime, the measurement of a component of
u(x, y, z) along the mesh x is expected to provide the spatially discrete signal s formed by
a sum p = ui(x, y0, z0) of R damped exponentials and noise n :

su = ui(xu, y0, z0) + nu = pu + nu =
R∑
r=1

arz
u
r + nu (13)
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x0 Lx1 x2 · · · xN

∆F

xF

Figure 2: Typical setup for wavenumber identification methods.

where ar are the amplitudes corresponding to the poles zr = eikr∆, kr = kr(1− i · γr).
The p part of the signal can be expressed as:

p = VN(zR) · aR (14)

where aR = [a1, . . . , aR]>, zR = [z1, . . . , zR] and VN(zR) is the Vandermonde matrix:

VN(zR) =


1 · · · 1
z1 · · · zR
... . . . ...

zN−1
1 · · · zN−1

R

 (15)

The main problem is to find the poles zR. Once the poles are known, the complex
amplitudes aR can be estimated in the measured noisy signal s in the least-square sense:

aR = (V ∗N(zR) · VN(zR))−1 (V ∗N(zR) · s) (16)

where •∗ denotes complex conjugate or hermitian transpose.

4. Two existing wavenumber identification methods

As well as the HRWA method presented in this paper, the Mc Daniel and IWC methods
make use of a Vandermonde matrix, but with different R and N values.

4.1. One pole : Inverse Wave Correlation
The Inverse Wave Correlation method [5, 6] aims at finding the wavenumber k wich

maximises the normalised scalar product CIWC(k) between the Vandermonde vector vN(k) =
VN(eik∆) and the noisy signal s:

CIWC(k) = s · vN(k)
‖s‖‖vN(k)‖ (17)

One can notice that the IWC correlation coefficient CIWC(k) can be seen as a normalised
z-transform on the complex wavenumber k. Therefore, it suffers the same resolution limita-
tions as any method based on a Fourier transform.
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4.2. Bending waves’s four poles: the Mc Daniel method
Mc Daniel suggested [7, 8] to identify simultaneously the four waves derived from the

bending operator (Eq. (2b), Eq. (3b) and Eq. (4b)). The four poles are imposed to be
z4(k) = [eik∆, e−ik∆, ek∆, e−k∆], where k only has to be determined. A signal reconstruction
s̃(k) is made:

s̃(k) = VN(z4(k)) · a4 (18)
with the amplitudes a4 estimated by Eq. (16). If only bending waves are present in the
measured signal s, its normalised correlation CMcDan(k) with the reconstructed signal s̃(k):

CMcDan(k) = s · s̃(k)
‖s‖‖s̃(k)‖ (19)

is maximum when k matches the natural bending wavenumber.
Both methods are based on the maximisation of a correlation coefficient (CIWC or CMcDan).

This is a non-linear problem on two unknowns: the real and imaginary parts of k. For the
comparisons given in the present paper, the procedure proposed by Rak [9] was adopted,
using a Nelder-Simplex research algorithm.

5. High Resolution Wavenumber Analysis (HRWA) method: implementation
for the characterisation of beams

The HRWA method makes use of the ESPRIT algorithm [22] (Estimation of Signal Pa-
rameters via Rotational Invariance Techniques) to extract wavenumbers from the harmonic
response of a beam. It is inspired from the pioneer works of Prony [28], who stated that
signals composed of complex poles follows a recurrence relation. This led, at the end of the
twentieth century, to the development of a family of identification methods such as Matrix
Pencil [29], Pisarenko method [30], MUSIC algorithm [31] and ESPRIT algortihm. The
main goal of these methods consists in identifying, in a measured signal, complex poles with
their associated amplitudes. These methods are widely used in array processing and radar
applications [32, 33], musical applications [34, 15, 35] and high-resolution spectral analysis
[36]. Some applications have been developed for the impact localisation on plates [37].

A Prony method has been already used in the past for the retrieval of dispersion relations
in cylindrical shells [38][39]. However, it was limited by the sensibility to noise, the unknown
number of travelling waves and the number of measurement points required to retrieve
evanescent waves [40]. The ESPRIT algorithm, used here, applies subspace decomposition
to improve the resistance to noise. In addition, the ESTER criterion [26] (ESTimation or
ERror) is used to estimate the signal order (number of poles contained in the signal). Finally,
the procedure is here applied to full-field measurements, which allows to make measurement
over fine meshes and overcome the limitations due to a limited number of points.

5.1. The ESPRIT algorithm
5.1.1. Signal and noise subspaces

The first step of the algorithm consists in the decomposition of the signal between signal
and noise subspaces. First, a Hankel matrix H is formed with the measured signal s of
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length N :

H =


s1 s2 · · · sN−K
s2 s3 · · · sN−K+1
... . . . ...
sK · · · sN

 (20)

where the integer parameter K corresponds to the sum of the dimensions of signal and noise
subspaces. The HRWA method makes use of the autocovariance matrix Rss:

Rss = HH∗ = W ∗DW (21)
which eigenvectors W spans the same subspace as the Hankel matrix singular vectors, and
has the advantage to be an asymptotically non-biased estimator of the signal autocovariance,
in presence of white gaussian noise. The eigenvectors matrix W spans the entire subspace
of the noisy signal s. This total subspace can be decomposed into signal subspace Wp and
noise subspace Wn, with Wp built with the eigenvectors corresponding to the R dominant
eigenvalues (with the number of poles R supposed known here):

W =
[
[Wp]K×R [Wn]K×(K−R)

]
K×K

(22)

It can be seen, with this last equation, that the parameter K has to be larger than R. Also,
the dimension of the noise subspace is given by this parameter. In fact, the (K−R) additional
poles contained in the noise subspace permits to sample an hypothetical correlated part of
the noise [41], to separate it from the signal pole extraction. Numerous studies investigates
this parameter influence on the errors of pole estimation [42, 43], and a common strategy
consists in choosing this parameter so that K ≈ N/2.

5.1.2. Rotational Invariance
Thanks to the regularity of the uniform measurement mesh x of Eq. (12), a rotational

invariance property is expressed via two Vandermonde matrices, related to two subparts of
the signal:

V ↓(N−1)(zR) = V ↑(N−1)(zR) ·Z (23)

with Z = diag(zR) and the two matrices V ↑(N−1) and V ↓(N−1) respectively corresponding to
the (N − 1) first and last samples of the signal. The ESPRIT algorithm strategy consists
in estimating the signal poles zR via the signal subspace matrix Wp. As this last matrix
and the Vandermonde matrix spans close subspaces, they are related by a transfer matrix
T : VN(zR) = Wp T . The rotational invariance property is then expressed as a function of
the signal subspace matrix: W ↓

p = W ↑
p F , with F = T Z T−1 and:

W ↑
p =

[
I(K−1) 0(K−1)×1

]
Wp

W ↓
p =

[
0(K−1)×1 I(K−1)

]
Wp

(24)

Consequently, the matrix F is estimated in the Least-Square sense:
F = (W ↑

p )−1W ↓
p (25)

Finally, the poles zR are extracted from the diagonalisation of F .
8



5.1.3. Estimation of the number of poles
In the previous steps, the number of poles R, or signal order, has been supposed known.

However, the number of dominant waves in the signal is unknown in most of the practical
applications. As a wrong estimated signal order would drastically decrease the poles ex-
traction accuracy, a signal order estimation method is needed. A number of signal order
selection criterion have been proposed [44], as it is a common issue encountered in subspace-
based identification methods. The HRWA method makes use of the ESTER criterion [26]
(ESTimation or ERror), which is particularly adapted to the ESPRIT algorithm.

The estimation of matrix F (Eq. (25)) is sensitive to the assumed signal order R used to
extract the signal subspace (Eq. (22)). The ESTER criterion consists in finding the signal
order R that minimises the F estimation residual, so that :

R = min
r∈ [[ rmin,rmax ]]

∥∥∥W ↑
p (r)F (r)−W ↓

p (r)
∥∥∥

2
(26)

With this criterion, the signal order R can be estimated automatically in a given range of
signal orders r ∈ [[ rmin, rmax ]].

5.2. HRWA Implementation
For applying the HRWA to the characterisation of beams, any type of excitation may

be used (impulse, random noise or sweep), with any type of actuator (e.g. shaker at xF ,
exerting a point force F on the beam). The method has no requirement with regard to
boundary conditions, provided that they are not applied too close to the measured zone.
The displacement, velocity or acceleration S(x, t) is measured along a regularly spaced mesh
x of Eq. (12), as in Fig. 2. A collection of harmonic responses is obtained by computing
the Fourier Transform S(x,ω) of the measured signal over the time dimension for a given
number of individual frequencies ωi. The HRWA procedure consists in applying the following
steps to each obtained harmonic response s(ωi) = S(x, ωi):

1. A Hankel matrix H is built, based on the array s(ωi) (see Eq. (20)).
2. The Covariance Matrix Rss is computed and diagonalised yielding the matrix of eigen-

vectors W (see Eq. (21)).
3. The ESTER method is applied to estimate the signal order, in other words the number

of detectable waves in the (noisy) signal. Then, for each r ∈ [[ rmin, rmax ]] :
(a) the r eigenvectors corresponding to the r dominant eigenvalues are extracted to

form the approximated signal subspace matrix Wp (Eq. (22))
(b) the truncated signal subspace matrices W ↑

p and W ↓
p are built (Eq. (24))

(c) the Least-Squares estimation of F is computed (Eq. (25))
(d) the ESTER criterion as function of r is evaluated (Eq. (26))
Finally, the signal order R is chosen to minimise the ESTER criterion.

4. The eigenvalues of the matrix F (see Eq. (25)) are computed, yielding the wavenumbers
kr of all the waves which can be detected with the HRWA at the angular frequency ωi:

kr(ωi) = ln(i · zr(ωi))
∆ (27)

5. If a signal reconstruction is needed, the Vandermonde matrix VN(zR) is computed
(Eq. (15)), and the complex amplitudes aR are estimated (Eq. (16)).
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6. Comparison of methods for a simulated cantilever bending-only beam

This section is devoted to a comparison between the Mc Daniel method, the IWC method
and the HRWA, regarding the sensitivity to noise and the computation time. For this pur-
pose, a simple case is investigated numerically. Using synthesised data for the comparison
makes possible the exploration of various parameters (e.g. mesh size, material characteris-
tics, etc.). A thin aluminium cantilever Euler beam of length L is harmonically excited at
the pulsation ω with a force F = 1N at (xF , yF , zF ) = (L, 0, h/2) (Fig. 3), in order to be sub-
mitted to bending only. In this situation, the signal model of the Mc Daniel method is exact:
the harmonic response of the beam is composed of four bending waves, with wavenumbers
kb solutions of the fourth root of Eq. (4b). It is thus the reference method for this case
study.

The characteristics of the beam are summarised in Tab. 1. The beam is excited between
10 Hz and 5 kHz. Eleven resonance peaks appear in this bandwidth (see Fig. 4, top frame).
The first modal frequency is around 14 Hz.

x0 Lx1 x2 · · · xN

∆ F

Figure 3: The simulated cantilever beam.

The response of the beam is derived analytically since the four complex amplitudes wj
in Eq. (3) are determined by the boundary conditions. The response yields the virtual
measurements on the mesh x of Eq. (12) along a sub-part of the beam (xu ∈ [0.1, 0.9]×L).
The beam response is computed at 100 equally-spaced frequencies in the desired bandwidth,
and for 100 regularly spaced points over the sub-part of the beam.

L h b E η ν ρ
60 cm 6 mm 40 mm 70 GPa 0.5% 0.3 2500

Table 1: Characteristics of the beam.

6.1. Noise Sensitivity
To study the sensitivity to noise of each wavenumber identification method, a white

gaussian noise is added to the signal s. The amplitude of this noise is determined by a given
Signal to Noise Ratio (SNR). For each of the 100 SNR values ranging from 100 to 104 and
each of the 100 computed beam harmonic responses, 100 realisations of the noisy signal are
computed. Altogether, the estimation of the bending wavenumber is done one million times
for each method. Based on these 100 realisations of the noise the mean and variance of the
wavenumber estimation error are computed, as a function of frequency and SNR.

The Mc Daniel method and IWC method identify only one wavenumber k. By contrast,
the HRWA identifies a varying number of wavenumbers. Consequently a valid wavenumber
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Figure 4: Synthesised Mean Square Velocity without noise (top frame). Contour plots of the relative errors
in the determination of the real part of the wavenumber k (middle frame) and the spatial decay γ (bottom
frame) for different SNR levels (ordinates) as a function of the frequency. Comparison of the HRWA (black),
Mc Daniel (red) and IWC (blue) methods. Contour lines display the 10% (continuous lines), 1% (dashed
lines) and 0.1% (dotted lines) limits for the relative identification errors. The results are obtained as the
mean of the estimation over 100 virtual tests.
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Figure 5: Relative error in the identification of the complex wavenumber k = k(1 − i · γ) as a function of
the SNR for two fixed frequencies. Mean ± Standard Deviation. Comparison between HRWA (black), Mc
Daniel (red) and IWC (blue) methods. (a) at 1 kHz, between two modal frequencies. (b) at 4.5 kHz, on a
modal frequency.
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selection strategy has to be chosen to perform the comparison. All along this numerical
investigation, the maximum signal order rmax of the HRWA procedure is given by the equi-
librium (Eq. (3)). The algorithm is then free to identify from one to eight waves of different
wavenumbers (R ∈ [[ 1, 8 ]]). The choice is automated with the ESTER criterion. The chosen
strategy, which was observed to work the best among several options, consists in isolating
the P propagative wavenumbers kp so that 0 < γp < 1. The mean of these wavenumbers is
then computed as follows:

k = 1
P

√√√√ P∑
p=1

Re(kp)2 − i

√√√√ P∑
p=1

Im(kp)2

 (28)

the square power allowing to take into account both forward and backward propagating
waves. This strategy eliminates the identified evanescent (fast decreasing) waves, the iden-
tification of which is sensitive to noise.

In Fig. 4 and Fig. 5, average relative errors on the identification of the real part k of the
wavenumber and the spatial decay γ are represented for the IWC method, the Mc Daniel
method and the HRWA. In Fig. 4, three contour lines are plotted, corresponding on three
levels of performance (relative error of 10%, 1% and 0.1%). The wavenumber identification
turns out to be sensitive to the number of spatial periods contained in the measurement
mesh. As the wavelength depends on frequency, it has been chosen to represent the relative
error on the complex bending wavenumber estimation as a function of frequency and of
Signal to Noise Ratio.

Regarding the real part of the bending wavenumber, both HRWA and Mc Daniel method
give an estimation with less than 1% of relative error, above 500 Hz and for small signal
to noise ratios (SNR > 3). The Mc Daniel method provides a relative error of 0.1% in
the estimation, up to a 102 SNR, whereas the HRWA delivers such an estimation above
3kHz. The HRWA and the Mc Daniel methods display comparable abilities to provide an
estimation of the spatial decay with less than 10% of relative error. For high signal to noise
ratios (SNR> 103), the Mc Daniel method can give an estimation of the spatial decay with
less than 1% of relative error, above 2.5 kHz, whereas this frequency bound is higher for the
HRWA (4kHz).

In contrast, the estimate of the IWC method depends on the frequency. This behaviour
is related to its resolution limitations. Except for few high frequencies, no estimation of the
real part of the wavenumber with IWC can be made with less than 0.1% or relative error.
Moreover, the estimation of the spatial decay γ is not possible to the IWC method in this
SNR and frequency ranges. These results agree with those of Rak [9].

The HRWA method exhibits a frequency-dependent behaviour for the fine estimation of
real part of wavenumber (0.1% of relative error) and spatial decay (1% of relative error):
both real and imaginary parts of the wavenumber are better identified at modal frequencies.
In order to explain this particular behaviour, results of the study for two given frequencies
are plotted in Fig. 5. It shows the results of complex bending wavenumber identification as a
function of SNR, for the three methods. First, Fig. 5a shows the results at 1000 Hz, between
two modal frequencies (see Fig. 4, top frame, marker a ). For this particular frequency, the
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HRWA converges shortly to a first plateau at 0.5% of relative error in k identification, for
SNR higher than 101. Then, one can observe a jump at SNR of 2000, HRWA finally reaching
a very fine estimation of the real part k of the wavenumber, comparable to the Mc Daniel
method. The level and the extension of the plateau are due to the variable estimation
of the number of waves in the signal by the ESTER criterion, an effect which appears to
be stronger between modal frequencies. The spatial decay estimation is affected by this
plateau effect too, the relative error converging to a value of 3%, below a SNR of 2000. By
comparison, the error of the estimation of k with the IWC method reaches a plateau too,
which is higher (0.9% of relative error) and related to its resolution limitation. Furthermore,
the Mc Daniel method shows a uniform convergence rate, with a relative error fifty times
smaller than the noise ratio on k (∆k/k ≈ (50 SNR)−1) and twenty times larger on the
spatial decay (∆γ/γ ≈ 20 (SNR)−1). In Fig. 5b, the same data has been plotted, but for a
higher frequency of 4400Hz which coincides with a modal frequency (see Fig. 4, top frame,
marker b ), where the three methods provides a good estimation of the real part of the
wavenumber. Here, the plateau reached by the HRWA error is much lower (≈ 6 × 10−5 of
relative error) than in the previous case. The HRWA, before this plateau, shows the same
convergence rate as Mc Daniel method, both for k and γ estimation. It has to be noted that
IWC method, in this case, estimates the spatial decay with approximately 15% of relative
error.

The plateau effect of HRWA shown previously is due to the possibility given to the
ESPRIT algorithm, to select the number of waves in the signal (thanks to the ESTER
criterion), and by making no assumption on a relation between each wavenumber. This
is the main difference with Mc Daniel method’s signal model, which confers to this last
method its stability against the noise level, when only bending waves are present. However,
this plateau appears below 1% of relative error on the real part of the wavenumber and 10%
of relative error on the spatial decay, which is are good estimations, altogether.

6.2. Comparison of Computation Times
In addition to noise sensitivity, the computation time of each method has been investi-

gated. As these methods extract wavenumbers from one single frequency component, the
computation time is independent from frequency. It is only dependent on the size N of the
measurement mesh. From 10 to 1000 measurement points have been exported from the syn-
thesised forced response’s shape. The computation time has been averaged on 20 frequency
points and 10 iterations. The results of the study are plotted in Fig. 6.

This figure illustrates the advantages of HRWA in terms of computational cost: it is,
depending on the mesh size, five to twenty times faster than the two other methods. This
makes wavenumber analysis suitable for real-time applications, such as structural health
monitoring. The computational cost of Mc Daniel and IWC methods is mainly caused by
the amount of iterations needed in the two dimensional non-convex minimisation problem
in k.
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Figure 6: Computation time of each wavenumber identification method as a function of the measurement
mesh size, averaged on 200 wavenumbers extractions. Comparison between methods.

7. Experimental Results

An experimental application is performed on a simple rigid PVC (polyvinyl chloride)
beam. The beam’s section is square of side 15mm, and its length of 1m. The velocity is
measured with a Doppler laser vibrometer along a regular mesh of 500 points over the top
surface of the beam. Consequently, the mesh is shifted from the beam neutral axis (y 6= 0
in Eq. (1)). Hence both bending and twist motion contributes in the measured velocity. A
shaker is fixed at one end of the beam ((xF , yF , zF ) = (0,−b/2,−h/2), see Fig. 1), whereas
the other end is supported by a silicon block.

A first measurement is performed with an impulse excitation, achieved by sending an
electrical pulse to the shaker. A second measurement is made with a random noise excitation
filtered between 5 kHz and 22 kHz. In both cases, the frequency response is estimated from
the average of 20 realisations, respectively below 6 kHz and between 5 and 22 kHz. For both
experiments, a sampling frequency of 50 kHz was used.

The HRWA is applied to the computed frequency transfer estimator H1 between the
measured velocity and the electrical excitation signal (no force measurement). As the mea-
surement mesh is shifted from the neutral axis, it contains both the bending and twist
motion’s contributions. Fig. 7a shows the HRWA results, for both excitation type. It shows
that the HRWA is able to identify both bending (blue) and twist (red) wavenumbers, at
each frequency. It can be observed that both the real and imaginary parts of the identified
wavenumbers are independent of the excitation type: the wavenumbers extracted in the
overlapping frequency band (between 5Hz and 6kHz) are identical. By combining different
excitations, a wavenumber extraction can be achieved in a very wide frequency domain. The
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Figure 7: Experimental application of the HRWA to a PVC beam of length L = 1 m and square section
of side h = b = 15 mm, for frequencies between 0 and 22 kHz. (a) Identification of wavenumbers on the
measured beam with the proposed HRWA, for two excitation types: impulse (dashed lines) and steady noise
(solid line). Bending wavenumber kb (blue) and twist wavenumber kt (red). (b) Apparent complex moduli
identification from the extracted wavenumbers: With the Euler model (Eeul (blue) and G (red) from Eqs.
(7)) and the Timoshenko model (Etim (green) from Eq. (11))).
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minimum identified wavelength λ = 2π/k is approximately 3.7 cm, which means that at least
18 measurement points are contained in each wavelength. Following the Nyquist criterion, a
coarser measurement mesh could have been taken (≈ 8 times less points). However, taking
a finer mesh improves the identification accuracy, as the parameter identification is made in
the least-square sense (Eq. (25)).

Observing the wavenumber dependence as a function of frequency, two dispersion branches
can be built, related to the bending and to the twist motions. Within the frame of the Eu-
ler beam theory, one can connect wavenumbers to the Young and shear moduli according
to Eq. (7). The results of the identification of the apparent Young modulus Eeul (in blue,
from bending branch) and shear modulus G (in red, from twist branch) are shown in Fig.
7b (with κ = 0.845 for a square section and the PVC density ρ = 1380 kg/m3). The
low-frequency estimation is noisier because of the plateau effects of the HRWA related to
the modal behaviour of the beam (see preceding section). As the frequency increases, the
beam’s response tends to be smoother and the number of spatial periods increases, leading
to a better wavenumber estimation.

The dependency on frequency of the identified complex apparent Young modulus Eeul

is mainly due to the transverse shear effects generated by the bending motion, that in-
creases with the frequency. To explain these effects, one can use the equivalent slenderness
ratio defined in Eq. (8). At low frequencies, this ratio is large (µ(100 Hz) ' 42) and the
beam behaves as a thin beam. As the frequency increases, µ decreases (µ(5 kHz) ' 6.5,
µ(20 kHz) ' 2.7) and the beam behaves as a thick beam. In order to take these effects into
account, the Timoshenko model is used to better estimate the Young modulus. By injecting
the identified shear modulus G in the equation (11) leads to the estimation of an other Young
modulus, Etim (in green). The result is shown on Fig. 7b in yellow. It can be observed that
the identified modulus is almost constant (' 5.5 GPa) in the considered frequency range.
The resulting Poisson ratio is estimated as ν = E/(2G)−1 ' 0.4. In addition, the identified
Young loss factor ηEtim seems very close to the shear loss factor ηG.

8. Conclusion and Perspectives

A common framework for wavenumber extraction methods has been presented and the
High Resolution Wavenumber Analysis has been proposed. This new method aims at over-
coming three following drawbacks of the IWC and the Mc Daniel methods: (a) IWC suffers
from resolution limitations (b) the nonlinear wavenumber search problem is computationally
heavy and (c) the number of identified waves is fixed and small.

The HRWA procedure includes a linear search of wavenumbers. Thus, the computation
cost is reduced and the wavenumber identification is free from any initialisation. Moreover,
it allows an automated determination of wavenumbers in a noisy signal without a priori
assumption on their number. The detected waves are not limited to bending waves but can
be associated with twist, compression, shear, etc.

Firstly, numerical investigations and comparisons of HRWA with the two other methods
has been led in simple cases, including that of a thin prismatic Euler beam. When only
bending waves are present, the Mc Daniel method can be taken as a reference method.
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In this simple case, this method is the least sensitive to noise. The IWC method fails to
identify a spatial decay, in the frequency band studied. The HRWA exhibits a convergence
rate as function of the signal to noise ratio comparable to the Mc Daniel method (∆k/k ≈
0.02 SNR−1), with certain fluctuations for a very precise determination of the real part of the
wavenumber (0.1% of relative error). These fluctuations are mainly due to the fact that the
method has no a priori assumptions with regard to the number of wavenumbers present in
the signal, as opposed to the Mc Daniel method. The spatial decay has a reduced influence
on the measured beam harmonic response, compared to the real part of the wavenumber.
Therefore, its determination is more sensitive to noise. An estimation with a relative error
of 10% can be achieved with both Mc Daniel and HRWA methods, for good signal to noise
ratios (SNR> 100). Moreover, the comparison of computational times shows that HRWA
can be twenty times faster than the two other methods.

Secondly, the HRWA has been applied to experimental data. It emphasises the ability
of the HRWA to simultaneously identify apparent complex Young and shear modulus, as a
function of frequency, independently from boundary conditions or excitation type. Identified
with the Euler model, the Young modulus vary in frequency. To account for the out-of-
plane shear and rotary inertia effects, the Timoshenko model is finally used and leads to
the identification of a Young modulus which is almost constant in the frequency range of
interest.

It has been observed that most of the identification errors of the HRWA results are related
to a wrong signal order estimation. Indeed, the ESTER criterion performs well only if the
signal model is correct. In order to improve the robustness of the HRWA, other signal order
selection criterion could be investigated. For example, the use of a stabilisation diagram
[45, 46] to estimate the order of the signal could improve the accuracy of the wavenumber
estimation, at the price of a reasonable increase of the computational burden.

At this point, it appears clearly that no hypothesis has been made on the nature of the
waves: the HRWA is not limited to the simple beam models presented here. For example,
a different section or material configuration may induce coupled strain mechanisms and
coupling the characteristic in equations (2) and (3). The detected wavenumbers would be
different, but still be representative of the structural behaviour, reasonably far from the
boundary conditions.

The present paper is focused on material characterisation but the HRWA can also be
used for the identification of boundary conditions (not presented here). Moreover, multidi-
mensional versions of ESPRIT [33] and ESTER [47] have been developed and can be applied
to the experimental identification of wavevectors in the harmonic response of plates. This
will be the object of a forthcoming paper.
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