
HAL Id: hal-01825708
https://hal.science/hal-01825708v2

Submitted on 29 Mar 2019 (v2), last revised 9 Dec 2019 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Clustering Complex Zeros of Triangular System of
Polynomials

Rémi Imbach, Marc Pouget, Chee Yap

To cite this version:
Rémi Imbach, Marc Pouget, Chee Yap. Clustering Complex Zeros of Triangular System of Polynomi-
als. CASC 2019, 2019, Moscow, Russia. �hal-01825708v2�

https://hal.science/hal-01825708v2
https://hal.archives-ouvertes.fr

Clustering Complex Zeros of Triangular System
of Polynomials?

Rémi Imbach1, Marc Pouget2, and Chee Yap1

1 Courant Institute of Mathematical Sciences, New York University, USA
remi.imbach@nyu.edu, yap@cs.nyu.edu

2 Universite de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
marc.pouget@inria.fr

Abstract. This report is about finding clusters of complex solutions
of triangular systems of polynomial equations. We introduce the local
solution clustering problem for a system of polynomial equations, that
is grouping all its complex solutions lying in an initial complex domain
in clusters smaller than a given real number ε > 0, and counting the
sum of multiplicities of the solutions in each cluster. For triangular sys-
tems, we propose a criterion based on the Pellet theorem to count the
sum of the multiplicities of the solutions in a cluster. We also propose
an algorithm for solving the local solution clustering problem for trian-
gular systems, based on a recent near-optimal algorithm for clustering
the complex roots of univariate polynomials. Our algorithm is numeric
and certified. We implemented it and compared it with two homotopy
solvers for randomly generated triangular systems and regular chains for
state of the art systems. Our solver always give correct answers, is often
faster than the homotopy solver that gives often correct answers, and
sometimes faster than the one that gives sometimes correct results.

1 Introduction

This report considers the fundamental problem of finding the complex solutions
of a system f(z) = 0 of n polynomial equations in n complex variables z =
(z1, . . . , zn). The system f = (f1, . . . , fn) : Cn → Cn is triangular in the sense
that fi ∈ C[z1, . . . , i] for 1 ≤ i ≤ n. Throughout this paper, we use boldface
symbols to denote vectors and tuples; for instance 0 stands for (0, . . . , 0).

We are interested in finding clusters of solutions of triangular systems and in
counting the total multiplicity of solutions clusters. Solving triangular systems
is a fundamental task in polynomial equations solving, since many algebraic
approaches (Gröbner basis, CAD, resultants,. . .) generally reduce the original
system to triangular systems.

? Rémi’s work is supported by the European Union’s Horizon 2020 research and inno-
vation programme No. 676541, NSF Grants # CCF-1563942, # CCF-1564132 and
CCF-1708884. Chee’s work is supported by NSF Grants # CCF-1423228 and
CCF-1564132.

ar
X

iv
:1

80
6.

10
16

4v
4

 [
cs

.C
G

]
 2

7
M

ar
 2

01
9

2 R. Imbach et al.

The problem of isolating the complex solutions of a polynomial system in an
initial region-of-interest (ROI) is defined as follows: let Z(B, f) denote the set of
solutions of f in B, regarded3 as a multiset.

Local solution isolation problem:
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set {∆1, . . . ,∆l} of pairwise disjoint polydiscs of radius ≤ ε
where

- Z(B, f) =
⋃l
j=1 Z(∆j , f).

- each Z(∆j , f) is a singleton.

There are two issues with the above formulation: deciding if Z(∆j , f) is a
singleton, and deciding if such a singleton lies in B, are two “zero problems” that
requires exact computation. Generally, this can only be decided if f is algebraic.
Even in the algebraic case, this may be very expensive. In [3] these two issues
are side-stepped by defining the clustering problem.

Before proceeding, we fix some general notations for this paper. A polydisc
∆ is a vector (∆1, . . . ,∆n) of complex discs. The center of ∆ is the vector of
the centers of its components and the radius r(∆) of ∆ is the max of the radii
of its components. If δ is any positive real number, we note δ∆ the polydisc
(δ∆1, . . . , δ∆n) that has the same center than ∆ and radius δr(∆). A square
complex box B is a complex interval [l1, u1]+

√
−1([l2, u2]) where u2−l2 = u1−l1;

the width w(B) of B is u1−l1 and the center of B is u1+ w(B)
2 +

√
−1(u2+ w(B)

2).
A polybox B ∈ Cn is a vector (B1, . . . , Bn) of square complex boxes. The center
of B is the vector of the centers of its components; the width w(B) of B is the
max of the widths of its components. If δ is any positive real number, we note δB
the polybox (δB1, . . . , δBn) that has the same center than B and width δw(B).

We introduce three notions to define the local solution clustering problem.
Let a ∈ Cn be a solution of f(z) = 0. The multiplicity of a in f , also called the
intersection multiplicity of a in f is classically defined by localization of rings as
in [21, Def. 1, p. 61], we note it #(a, f). An equivalent definition uses dual spaces,
see [9, Def. 1, p. 117]. For any set S ⊆ Cn, we note Z(S, f) the set of distinct
solutions of f in S, and #(S, f) the sum of multiplicities of solutions of f in S.
In the context of numerical algorithm, the notion of cluster of solutions is more
meaningful than that of solution with multiplicity since the perturbation of a
multiple solution generates a cluster. We thus “soften” the problem of isolating
the solutions of a triangular system of polynomial equations while counting their
multiplicities by translating it into the local solution clustering problem defined
as follows:

3 A multiset S is a pair (S, µ) where S is an ordinary set called the underlying
set and µ : S → N assigns a positive integer µ(x) to each x ∈ S. Call µ(x) the
multiplicity of x in S, and µ(S) :=

∑
x∈S µ(x) the multiplicity of S. Also, let |S|

denote the cardinality of S. If |S|= 1, then S is called a singleton. We can form the
union of two multisets, S ∪ S′ whose underlying set is S ∪ S′ and the multiplicities
add up as expected.

Clustering Complex Zeros of Triangular System of Polynomials 3

Clustering problem:
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set of pairs {(∆1,m1), . . . , (∆l,ml)} where:

- the ∆js are pairwise disjoint polydiscs of radius ≤ ε,
- mj = #(∆j , f) = #(3∆j , f) for all 1 ≤ j ≤ l, and

- Z(B, f) ⊆
⋃l
j=1 Z(∆j , f) ⊆ Z(2B, f).

In this reformulation of the root isolation problem, we have remove the two “zero
problems” noted above: we output clusters to avoid the first problem, and we
allow the output to contain zeroes outside the ROI B to avoid the second one.
We choose 2B for simplicity; it is easy to replace the factor of 2 by 1 + δ for any
desired δ > 0.

Outline. In the remaining of this section we explain our contribution, summarize
previous work and the local univariate solution clustering from [3]. In Sec. 2, we
define the notion of tower of algebraic clusters together with a recursive method
to compute the sum of multiplicities of the solutions it contains. Our algorithm
for solving the local solution clustering problem for triangular systems is intro-
duced in Sec. 3. The implementation and experimental results are presented in
Sec. 4.

1.1 Our contributions

We propose an algorithm for solving the local solution clustering problem for
triangular systems with zero-dimensional solution set. To this end, we propose
a formula to count the sum of multiplicities in a cluster. Our formula is derived
from a result of [21] that links the intersection multiplicity of a solution of
a triangular systems to multiplicities in fibers. We define towers of algebraic
clusters to encode clusters of solutions of triangular systems in stacks (or towers)
of clusters of roots of univariate polynomials and show that the so-called T∗-
test introduced in [4] and based on the Pellet theorem can be used to count the
sum of multiplicities of the solutions in a cluster encoded by a tower of algebraic
clusters.

Our algorithm to solve the local solution clustering problem for triangular
systems is based on a recent clustering algorithm for univariate polynomials
[3], an implementation of which is detailed in [13]. This univariate clustering
algorithm is based on subdivision of the initial complex square box, and uses
Pellet’s test combined with Graeffe iterations to count the sum of multiplicities of
the roots in a cluster. It does not require the knowledge of the exact coefficients
of the polynomial, instead it uses a black-box that is able to give approximations
of them to any desired precision. This model is thus well adapted to solve in the
fibers of a triangular system.

We implemented and experimented our algorithm; we show that it compares
advantageously with two homotopy solvers: HOM4PS-2.0 that is fast but not
robust and Bertini that is more robust but slower.

4 R. Imbach et al.

1.2 Related work

There is a vast literature on solving polynomial systems and we can only refer
to book surveys and references therein, see for instance [10,19]. On the algebraic
side, symbolic tools like Goebner basis, resultant, rational univariate parameter-
ization, triangularization, enable to reduce the problem to the univariate case.
These methods are global: they do not take advantage of solving in a predefined
small domain. Being symbolic, these methods handle all input, in particular
with solutions with multiplicities, and are certified but at the price of a high
complexity that limits their use in practice.

On the numerical side, one can find subdivision and homotopy methods. The
main advantage of subdivision methods is their locality: the practical complexity
depends on the size of the solving domain and the number of solutions in this
domain. Their main drawback is that they are only practical for low dimensional
systems. On the other hand, homotopy methods are efficient for high dimensional
systems, they are not local but solutions are computed independently from one
another. Numerical methods only work for restricted classes of systems and
the certification of the output remains a challenge. Multiprecision arithmetic,
interval analysis, deflation and α-theory are now classical tools to address this
certification issue [18,11,5,20].

In the univariate case, practical certified algorithms are now available for real
and complex solving that match the best known complexity bounds together with
efficient implementations [15,13].

Only a few work address the specific problem of solving triangular polyno-
mial systems. The solving can then be performed coordinate by coordinate by
specialisation and univariate solving in fibers. For real solving, see [6] for the
regular case and [7,21] for systems with solutions with multiplicities.

1.3 Definitions and notation

For any n-dimensional vector v = (v1, . . . , vn) with n > 1, we note v̇ its last
component (i.e. vn) and v for the (n − 1)-dimensional vector (v1, . . . , vn−1) of
its other components. By abuse of notation, we sometimes write v = (v, v̇).
The modulus of a complex number z is noted |z| and the norm of a vector is
||v||= maxi=1...n|vi|.

If b is any point in Cn−1, z = (z1, . . . , zn) and g ∈ C[z], we note (g)b the
univariate polynomial g(b, ż) in C[ż] obtained by specializing g at b. If a ∈ Cn
is a solution of f , we call multiplicity of ȧ in ḟ in the fiber a the multiplicity of
the root ȧ of the polynomial (ḟ)a. We note it #(ȧ, (ḟ)a).

If B ⊂ C is a square complex box with center c and width w, we note
∆(B) the disc with center c and radius 3

4w, notice that ∆(B) contains B. If B =
(B1, . . . , Bn) ⊂ Cn is a polybox, we note ∆(B) the polydisc (∆(B1), . . . ,∆(Bn)),
notice that ∆(B) contains B.

A polydisk ∆ is called an isolator if #(∆, f) = #(3∆, f). Any non-empty
set of the form Z(∆, f) is called a cluster of solutions of f(z) = 0, and it is a
natural cluster if ∆ is an isolator.

Clustering Complex Zeros of Triangular System of Polynomials 5

Algorithm 1 TL∗ test: TL∗ (∆, L, f̃)

Input: A complex disc ∆, an integer L > 1, a polynomial f̃ of degree d.
Output: An integer k ∈ {−2,−1, 0, . . . , d}. If k ≥ 0 and f̃ is an L-bit approximation

of f ∈ C[z1], then #(∆, f) = k.

Algorithm 2 clusterPol(f,B, ε)

Input: A polynomial f ∈ C[z1], an initial box B, a real number ε ∈ R s.t. 0 < ε.
Output: A list {(Bj ,mj)|1 ≤ j ≤ l} so that {(∆(Bj),mj)|1 ≤ j ≤ l} is a solution of

the clustering problem for n = 1.

We call L-bit approximation of a ∈ C a dyadic complex number ã that
satisfies |a − ã|≤ 2−L. We call L-bit approximation of a = (a1, . . . , an) ∈ Cn a
vector ã ∈ Cn such that ãi is an L-bit approximation of ai for 1 ≤ i ≤ n, in other
words ||ã−a||≤ 2−L. If g is a univariate polynomial, we call L-bit approximation
of g a univariate polynomial g̃ which coefficients are L-bit approximations of the
coefficients of g.

1.4 Pellet’s theorem based clustering for univariate polynomials

We recall in Algo 1 the specifications of the TL∗ test introduced in [4]. It combines
Pellet’s theorem and Graeffe iterations to determine the number of solutions
counted with multiplicities of a polynomial f ∈ C[z] in a complex disc ∆, using

an L-bit approximation f̃ of f . It returns −2 if L is to small to decide, −1 if f
has roots close to the boundary of ∆ and an integer k ≥ 0 only if f has k roots
counted with multiplicities in ∆.

The TL∗ test can be embedded in the so-called T∗ test that takes in input ∆
and a black-box producing L-bit approximations of f . The T∗ test applies the
TL∗ test for ∆ and increases L whenever the latter test returns -2.

In [3], the T∗ test is combined with subdivision of the initial complex square
box and Newton iterations to obtain the local clustering procedure clusterPol,
specified in Algo. 2, that solves the clustering problem for n = 1.

The input polynomial f in Algo. 2 is given as an approximation procedure
that for a given strictly positive integer L returns an L-bit approximation of f .
An implementation of the procedure clusterPol is described in [13].

2 Sum of multiplicities in clusters of solutions

We extend in Sec. 2.2 a result of [21] to an inductive formula giving the sum
of multiplicities of solutions of a triangular system in a cluster. In Sec. 2.3, we
introduce the Towers of Algebraic Clusters (TAC) that are special instances of
clusters in which our formula can be applied. In Sec. 2.4, we show how to use
the TL∗ test to prove that a cluster is a TAC. We first define in Sec. 2.1 two
illustrative examples.

6 R. Imbach et al.

∆(B2)

∆(B1)

∆(B2)

1

a4

2−δ 2−δ

a3 a2

a1

∆(B1) 2−δ

−1

a5 a6

1

a4

2−δ 2−δ

a3 a2

a1

#(a3,g) = 1× 1 #(a2,g) = 1× 1
#(a4,g) = 1× 1 #(a1,g) = 1× 1
#(∆(B1),g) = 2× 1
#(∆(B2),g) = 2× 1

#(a3,h) = 1× 1 #(a2,h) = 2× 1
#(a4,h) = 1× 1 #(a1,h) = 2× 1
#(a5,h) = 1× 2 #(a6,h) = 2× 2
#(∆(B1),h) = 3× 3
#(∆(B2),h) = 3× 1

Fig. 1. In the left (resp. right), the solutions of g(z) = 0 (resp. h(z) = 0) defined in
Eq. 1 (resp. Eq. 2) with δ = 1. B1 (resp. B2) is the square complex box of C2 with
center (0, 0) (resp. (0, 1)) and width 2 ∗ 2−δ. The boxes in dashed lines are the real
parts of ∆(B1) and ∆(B2). In the frame, the multiplicities of solutions of each system
computed with the formula of [21].

2.1 Two examples

Let δ > 0 be an integer. We define the triangular systems g(z) = (g1(z1), g2(z1, z2) =
0 and h(z) = (h1(z1), h2(z1, z2)) = 0 as follows:

(g(z) = 0) :

{
(z1 − 2−δ)(z1 + 2−δ) = 0

(z2 − 22δz21)z2 = 0
(1)

(h(z) = 0) :

{
(z1 − 2−δ)2(z1 + 2−δ) = 0
(z2 + 2δz21)2(z2 − 1)z2 = 0

(2)

g(z) = 0 has 4 solutions: a1 = (2−δ, 0), a2 = (2−δ, 1), a3 = (−2−δ, 1) and
a4 = (−2−δ, 0). h(z) = 0 has 6 solutions that are real: a1, a2, a3, a4, a5 =
(−2−δ,−2−δ) and a6 = (2−δ,−2−δ). For 1 ≤ i ≤ 6, we note ai = (ai1, a

i
2). The

solutions of both g = 0 and h = 0 are depicted in Fig. 1.

2.2 Sum of multiplicities in a cluster

We recall the result of [21] for counting multiplicities of solutions of triangular
systems knowing multiplicities in fibers, and rephrase it in an inductive setting.

Clustering Complex Zeros of Triangular System of Polynomials 7

Theorem 1 ([21]). Let a ∈ Cn be a solution of the triangular system f(z) = 0.
The multiplicity of a in f is

#(a, f) = #(ȧ, (ḟ)a)×#(a, f).

We extend Thm. 1 to a formula giving the sum of multiplicities of the solu-
tions of f(z) = 0 in a cluster Z(∆, f).

Theorem 2. Let Z(∆, f) be a cluster of solutions of the triangular system
f(z) = 0. If there is an integer m ≥ 1 so that for any solution a ∈ Z(∆, f),
one has m = #(∆̇, (ḟ)a), then

#(∆, f) = m×#(∆, f).

We apply Thm. 1 to compute the multiplicities of solutions of g(z) = 0 and
h(z) = 0 (see Eq. 1 and Eq. 2). a1 has multiplicity 1 in g: #(a1,g) = #(a11, g1)×
#(a12, (g2)a11) = 1 × 1. a1 has multiplicity 2 in h: #(a1,h) = #(a11, h1) ×
#(a12, (h2)a11) = 2× 1. The multiplicities of other solutions are given in fig. 1.

Let B1 = (B1
1 , B

1
2) be the polybox centered in (0, 0) having width 2 ×

2−δ. Z(∆(B1),g) = {a1,a4} and #(∆(B1),g) = 2. Since #(∆(B1
2), (ġ)a1) =

#(∆(B1
2), (ġ)a4) = 1, one can apply Thm. 2 and obtain #(∆(B1),g) = 2× 1.

Z(∆(B1),h) = {a1,a4,a5,a6} and #(∆(B1),h) = 9. Since #(∆(B1
2), (ġ)a1) =

#(∆(B1
2), (ġ)a4) = 3, one can apply Thm. 2 and obtain #(∆(B1),h) = 3× 3.

Let B2 = (B2
1 , B

2
2) be polybox centered in (0, 1) having width 2× 2−δ. One

can apply Thm. 2 and #(∆(B2),g) = 2×1, and #(∆(B2),h) = 3×1. The real
parts of ∆(B1) and ∆(B2) are depicted in Fig. 1.

Proof (of Thm. 2.). Remark that Z(∆, f) = {a ∈ ∆|f(a) = 0} can be defined
in an inductive way as Z(∆, f) = {(b, c) ∈∆|b ∈ Z(∆, f) and c ∈ Z(∆̇, (ḟ)b)}.
We use Thm. 1 to write #(∆, f) as

∑
(b,c)∈Z(∆,f)

#(b, f)×#(c, (ḟ)b) =
∑

b∈Z(∆,f)

#(b, f)×
∑

c∈Z(∆̇,(ḟ)b)

#(c, (ḟ)b)


and by definition of m,

#(∆, f) =
∑

b∈Z(∆,f)

#(b, f)×m = m×#(∆, f)

ut

2.3 Towers of algebraic clusters

A TAC is a special instance of a polydisc containing a cluster of solutions. A TAC
satisfies the hypothesis of Thm. 2, then one can compute the sum of multiplicities
of the solutions in it (see Thm. 3).

8 R. Imbach et al.

Definition 1 (Algebraic clusters). We call algebraic cluster a triple (B,m, g)
where B ⊂ C is a square complex box, m is an integer ≥ 1 and g is a univariate
polynomial, such that #(∆(B), g) = #(3∆(B), g) = m.

Let g1 and h1 be defined as in Eqs. 1 and 2, and B1
1 be as defined in 2.2.

(B1
1 , 2, g1) and (B1

1 , 3, h1) are both algebraic clusters.

Definition 2 (Towers). We call tower a triple (B,m, f) where B = (B1, . . . , Bn)
is a polybox, m = (m1, . . . ,mn) is a vector of integers ≥ 1 and f = (f1, . . . , fn)
is a triangular system.

We call n the height of (B,m, f).

Definition 3 (Towers of Algebraic Clusters, TAC). Let (B,m, f) be a
tower of height n. (B,m, f) is a tower of algebraic clusters or TAC, if either
n = 1 and (B1,m1, f1) is an algebraic cluster, or n > 1 and

(i) (B,m, f) is a TAC and
(ii) ∀b ∈ ∆(B), (Ḃ, ṁ, (ḟ)b) is an algebraic cluster.

Note that if (B,m, g) is an algebraic cluster, Z(∆(B), g) is a natural cluster.
One can easily see with an inductive reasonning that if (B,m, f) is a TAC,
#(∆(B), f) = #(3∆(B), f) and ∆(B) is a natural cluster of solutions of f .

Let g,h be defined as in Eqs. 1 and 2 and B1 = (B1
1 , B

1
2), B2 = (B2

1 , B
2
2) be

as defined in 2.2. There exist no TAC for g having B1 or B2 as box: −2−δ, 0
and 2−δ are three points of B1

1 and B2
1 ; consider the three polynomials (g2)−2−δ ,

(g2)0 and (g2)2−δ . (g2)−2−δ and (g2)−2−δ have each 1 root of multiplicity 1 in
B1

2 while (g2)0 = z22 has 1 root of multiplicity 2 in B1
2 : there is no m that satisfy

condition (ii) of def. 3. In the case of B2, (g2)−2−δ and (g2)2−δ have both 1 root
of multiplicity 1 in B2

2 while (g2)0 has no root in B2
2 .

In contrast, if δ ≥ 3, (B1, (3, 3),h) and (B2, (3, 1),h) are 2-TACs. As it has
been remarked above, (B1

1 , 3, h1) is an algebraic cluster and since B2
1 = B1

1 so is
(B2

1 , 3, h1). Consider now the polynomial h2(z1, z2) = (z2 + 2δz21)2(z2 − 1)z2. If
z2 ∈ ∆(B1

2) then z2 <
3
16 < 1 and for any z1 ∈ B1

1 , h2 has 3 roots counted with
multiplicity in ∆(B1

2) and in 3∆(B1
2). Hence for any b ∈ B1

1 , (B1
2 , 3, (h2)b) is

an algebraic cluster, and (B1, (3, 3),h) is a 2-TAC. It is easy to apply the same
argument to show that (B2, (3, 1),h) is a 2-TAC.

One can count the sum of multiplicities of the solutions in a TAC with the
following formula:

Theorem 3. Let (B,m, f) be a TAC of height > 1. Then

#(∆(B), f) = ṁ×#(∆(B), f)

Proof. Let (B,m, f) be a TAC and a1, . . . ,al be the solutions in the cluster
Z(∆(B), f). From the definition of a TAC, one has ∀1 ≤ i ≤ l, (Ḃ, ṁ, (ḟ)

ai) is

an algebraic cluster and #(∆(Ḃ), (ḟ)
ai) = ṁ. One can then apply Thm. 2 to

obtain the consequence of Thm. 3. ut

Clustering Complex Zeros of Triangular System of Polynomials 9

2.4 A sufficient condition for a tower to be a TAC.

The TL∗ test described in Sec. 1.4 can be used to prove inductively that a tower
is a tower of algebraic clusters, as claimed in Thm. 4. Let us first introduce the
following technical lemma.

Lemma 1. Let n > 1, z = (z1, . . . , zn), L ≥ 1 an integer, g ∈ C[z] and c ∈
Cn−1. Let δn = δn(L, g, c) = L + (n − 1)(1 + dlog((d+1)Md

min(1, 1
d||g||)

e), where d is an

upper bound on the partial degrees of g and M = ||c||+1.
If b ∈ Cn−1 is a δn-bit approximation of c and g̃ ∈ C[z] is a δn-bit approxi-

mation of g then (g̃)c is an L-bit approximation of (g)b.

For convenience, in the following, we denote δn(L, g, c) as δ(L, g, c) when the
value of n is the number of variables of g. The proof of Lemma 1 is done by
induction on the dimension. The main technical tool is Lemma 2 bounding the
loss of precision by evaluation of a univariate polynomial.

Lemma 2. Let g be a univariate polynomial in C[z] of degree d, c ∈ C. Let L,
M and δ2 be defined as in Lemma 1.

If b ∈ C is a δ2-bit approximation of c and g̃ ∈ C[z] is a δ2-bit approximation
of g then (g̃)c = g̃(c) is an L-bit approximation of (g)b = g(b).

Proof. Writing g =
∑d
i=0 giz

i and g̃ =
∑d
i=0 g̃iz

i, one has ||g̃−g||= maxi=1...d|g̃i−
gi|≤ 2−δ2 .

The triangular inequality yields |g̃(c)− g(b)|≤ |g̃(c)− g(c)|+|g(c)− g(b)|.
The first term is bounded as follows:

|g̃(c)− g(c)| ≤
d∑
i=0

|g̃i − gi||c|i≤ ||g̃ − g||
d∑
i=0

(|c|+1)d ≤ 2−δ2(d+ 1)Md

≤ 2−L

2
2
−dlog((d+1)Md

min(1, 1
d||g||)

)e
(d+ 1)Md ≤ 2−L

2
2
− log(

(d+1)Md

min(1, 1
d||g||)

)

(d+ 1)Md

≤ 2−L

2

min(1, 1
d||g||)

(d+ 1)Md
(d+ 1)Md ≤ 2−L

2

For the second term, integrating g′ on the segment [b, c] yields that |g(c) −
g(b)|= |

∫
[b,c]

g′(t)|≤
∫
[b,c]
|g′(t)|≤ |b− c|maxt∈[b,c]|g′(t)|. In addition, b is a δ2-bit

approximation of c so that |b−c|≤ 2−δ2 ≤ 1 since δ2 ≥ 1. One can write t ∈ [b, c]
as t = c+ λ(b− c) with λ ∈ [0, 1], thus |t|≤ |c|+|c− b|≤ |c|+2−δ2 ≤ |c|+1 = M .
The second term is thus bounded as follows:

|g(c)− g(b)| ≤ |c− b|max
t∈[b,c]

|g′(t)|≤ 2−δ2 max
t∈[b,c]

d∑
i=0

i|gi||t|i−1≤ 2−δ2 ||g||
d∑
i=1

dM i−1

≤ 2−δ2d2||g||Md−1 ≤ 2−L

2

min(1, 1
d||g||)

(d+ 1)Md
d2||g||Md−1

≤ 2−L

2
min(1,

1

d||g||
)d||g|| dMd−1

(d+ 1)Md
≤ 2−L

2

10 R. Imbach et al.

One thus concludes that |g̃(c)−g(b)|≤ 2−L, that is g̃(c) is an L-bit approximation
of g(b). ut

Proof (of Lemma 1). The initial case of the induction is for n = 2, z = (z1, z2),
g ∈ C[z] and c ∈ C. Let b be a δ2-bit approximation of c and g̃ ∈ C[z] be a δ2-bit

approximation of g. Writing g =
∑d
i=0 gi(z1)zi2 and g̃ =

∑d
i=0 g̃i(z1)zi2, one has

||g̃i − gi||≤ ||g̃ − g||≤ 2−δ2 .
By Lemma 2, for all i ∈ {0, . . . , d}, g̃i(c) is a L-bit approximation of gi(b)

and thus

||(g̃)c − (g)b||= max
i∈{0,...,d}

|g̃i(c)− gi(b)|≤ 2−L

So that (g̃)c is an L-bit approximation of (g)b.
Assume the result holds for n− 1. Let g, g̃ ∈ C[z] = C[z1, . . . , zn] and c,b ∈

Cn−1 such that b is a δn-bit approximation of c and g̃ is a δn-bit approximation
of g. Writing g =

∑i=d
i=0 gi(z1, . . . , zn−1)zin and g̃ =

∑i=d
i=0 g̃i(z1, . . . , zn−1)zin, one

has g̃i is a δn-bit approximation of gi and (b1, . . . , bn−2) is δn-bit approximation
of (c1, . . . , cn−2). The induction hypothesis yields that (g̃i)(c1,...,cn−2) is a δ2-bit
approximation of (gi)(b1,...,bn−2).

In addition, bn−1 is a δn-bit approximation of cn−1 and hence also a δ2-bit
approximation cn−1. By Lemma 2, for all i ∈ {0, . . . , d}, (g̃i)(c1,...,cn−2)(cn−1) is
a L-bit approximation of (gi)(b1,...,bn−2)(bn−1). One concludes that

||(g̃)c − (g)b||= max
i∈{0,...,d}

|(g̃i)(c1,...,cn−2)(cn−1)− (gi)(b1,...,bn−2)(bn−1)|≤ 2−L

ut

Based on Lemma 1, we show that for a given tower (B,m, f) of height > 1
such that (B,m, f) is a TAC, and providing that the width of B is small enough,
the TL∗ test can be used to certify that (B,m, f) is a TAC.

Theorem 4. Let (B,m, f) be a tower of height > 1 such that (B,m, f) is a

TAC. Let c be the center of B, δ(L, ḟ , c) be defined as in Lemma 1 and f̃ be a
δ(L, ḟ , c)-bit approximation of ḟ .

(i) If r(∆(B)) ≤ 2−δ(L,ḟ ,c) then (f̃)c is an L-bit approximation of (ḟ)b for any
b ∈ ∆(B).

(ii) If TL∗ (∆(Ḃ), L, (f̃)c) = TL∗ (3∆(Ḃ), L, (f̃)c) = ṁ, then (B,m, f) is a TAC.

Proof. (i): if c is the center of ∆(B) and r(∆(B)) ≤ 2−δ(L,ḟ ,c) then ∀b ∈ ∆(B),

||c− b||≤ 2−δ(L,ḟ ,c) and from Lemma 1, (f̃)c is an L-bit approximation of (ḟ)b.

(ii): from (i), (f̃)c is an L-bit approximation of (ḟ)b for any b ∈ ∆(B) and, from
the specification of the TL∗ test (see Algo. 1 in subsec. 1.4) one has #(∆(Ḃ), (ḟ)b) =
#(3∆(Ḃ), (ḟ)b) = ṁ for any b ∈ ∆(B). As a consequence, the triple (Ḃ, ṁ, (ḟ)b)
is an algebraic cluster for any b ∈ ∆(B) and (B,m, f) is a TAC. ut

Clustering Complex Zeros of Triangular System of Polynomials 11

Algorithm 3 clusterTriSys(f ,B, ε)

Input: A triangular system f(z) = 0 where f = (f1, . . . , fn), a polybox B =
(B1, . . . , Bn) ⊂ Cn, a real number ε ∈ R s.t. 0 < ε < 1

2
.

Output: A list {(Bj ,mj , f)|1 ≤ j ≤ l} of TACs of height n satisfying (a), (b), (c), (d)
of Prop. 1.

1: R← ∅
2: if n > 1 then
3: S ← clusterTriSys(f ,B, ε) //recursive call; S contains TACs of height n− 1
4: while S is not empty do
5: (Bcur,mcur, f)← pop(S)
6: f ← ApproximateInF iber(., ḟ , (Bcur,mcur, f),S)
7: T ← clusterPol(f, Ḃ, ε) //possibly appends TACs of height n− 1 to S
8: for (Bj ,mj) ∈ T do
9: R← R∪ {((Bcur, Bj), (mcur,mj), (f , ḟ))}

10: else //n = 1
11: T ← clusterPol(f1, B1, ε) //the terminal case
12: for (Bj ,mj) ∈ T do
13: R← R∪ {(Bj ,mj , f1)}
14: return R

3 Clustering the solutions of a triangular system

Our main procedure clusterTriSys(f ,B, ε), defined in Algo. 3, computes natural
clusters of size at most ε of the triangular system f = 0 where f = (f1, . . . , fn),
in the polybox B. f1, . . . , fn are given as procedures returning L-bits approxi-
mations of f1, . . . , fn for a given L. It returns the clusters in a list R of TACs of
height n. Proposition 1 shows that it solves the local solution clustering problem.

Proposition 1. Let n ≥ 1, f(z) = 0 be a triangular system, B be a polybox and
ε be a real number, 0 < ε ≤ 1

2 . Algorithm clusterTriSys(f ,B, ε) terminates and
returns a list {(B1,m1, f), . . . , (Bl,ml, f)} with l ≥ 0, such that:

(a) the polydiscs ∆(Bj) are pairwise disjoint with r(∆(Bj)) ≤ ε,
(b) ∀1 ≤ j ≤ l, let mj = (mj

1, . . . ,m
j
n); then Πn

k=1m
j
k = #(Bj , f) = #(∆(Bj), f) =

#(3∆(Bj), f) (i.e. Z(∆(Bj), f) is a natural cluster),
(c)

⋃
1≤j≤l Z(∆(Bj), f) ⊆ Z(2B, f)

(d) Z(B, f) ⊆
⋃

1≤j≤l Z(∆(Bj), f).

3.1 The terminal case (n = 1)

The terminal case, i.e. finding clusters of roots of f1 ∈ C[z1] of size less that ε
in the square complex box B1 ⊂ C is addressed by calling clusterPol (Algo. 2).
For each pair (Bj ,mj) in the output of clusterPol(f1, B1, ε), the TAC of height
1, (Bj ,mj , f1), is constructed in Step 13 of Algo. 3.

Since the procedure clusterPol solves the clustering problem for n = 1,
Prop. 1 is true for n = 1.

12 R. Imbach et al.

3.2 The non-terminal case (n > 1)

Let us suppose that n > 1 and that Prop. 1 is true until rank n−1. The recursive
call clusterTriSys(f ,B, ε) in Step 3 of Algo. 3 terminates and returns a list S of
TACs of height n−1. If S is empty, Z(B, f) is empty and clusterTriSys(f ,B, ε)
terminates and returns an empty list R.

Suppose now that S is not empty, and let S = {(B1,m1, f), . . . , (Bl,ml, f)}
with l ≥ 1. By hypothesis at rank n− 1, one has

(a’) the polydiscs ∆(Bj) are pairwise disjoint with r(∆(Bj)) ≤ ε,
(b’) ∀1 ≤ j ≤ l, let mj = (mj

1, . . . ,m
j
n); then Πn

k=1m
j
k = #(Bj , f) = #(∆(Bj), f) =

#(3∆(Bj), f),
(c’)

⋃
1≤j≤l Z(∆(Bj), f) ⊆ Z(2B, f)

(d’) Z(B, f) ⊆
⋃

1≤j≤l Z(∆(Bj), f).

As a consequence of (a’), (b’) and (d’), any solution a of f in B is in exactly
one (Bj , Ḃ). The next step is then, for all ∆(Bj) in S, to isolate the clusters of
solutions of the polynomial ḟ specialized in the fiber c, where c = c(Bj).

In Step 5 of Algo. 3, (Bcur,mcur, f) is a TAC of height n−1 in S, let c be the
center of Bcur and L > 1 be an integer. According to Thm. 4, there exists δ > L
so that if r(∆(Bcur)) ≤ 2−δ, f̃ is an δ-bit approximation of ḟ and B ⊂ Ḃ satisfies

TL∗ (∆(B), L, (f̃)c) = TL∗ (3∆(B), L, (f̃)c) = ṁ, then ((Bcur, B), (mcur,m), f) is
a TAC of height n. In other words, when r(∆(Bcur)) is small enough, one can
find all the clusters of solutions of radius less that ε of (ḟ)c in Ḃ with clusterPol.

However r(∆(Bcur)) may not be small enough and Bcur has to be refined by
calling clusterTriSys(f ,Bcur, ε′) with the suitable value of ε′; notice that this
will possibly split the TAC (Bcur,mcur, f) of height n− 1 into several TACs. In
that case, (Bcur,mcur, f) is taken as one of these TACs, and the others are ap-
pended to S. This refinement of Bcur is done by the call to ApproximateInFiber
that computes an L-bit approximation of (ḟ)b for any b ∈ ∆(Bcur). The func-
tion ApproximateInFiber is described in Algo. 4 and satisfies the following
proposition whose proof is postponed to Sec. 3.3.

Proposition 2. Let L > 1, n ≥ 1, f ∈ C[z1, . . . , zn], (B,m, f) be a TAC of
height n−1 and S be a list of TACs of height n−1. Suppose that Prop. 1 is true
until rank n−1, then ApproximateInFiber(L, f, (B,m, f),S) terminates. After
its execution, (B,m, f) is modified in (B′,m′, f) and S in S ′, satisfying: for any
a ∈ Z(B, f), there is a unique TAC (B′′,m′′, f) in {(B′,m′, f)} ∪ S ′ such that
a ∈ Z(B′′, f).

The procedure returns an L-bit approximation f̃ of (f)b for any b ∈∆(B′).

In Step 7 of Algo. 3, ApproximateInFiber(L, ḟ , (Bcur,mcur, f),S) is used as
the approximation function for clusterPol, to find the clusters of solutions of ḟ
over the fiber Bcur.

To finish the proof of Prop. 1, we make the following remarks. At any exe-
cution of the while loop in Step 4 of Algo. 3:

Clustering Complex Zeros of Triangular System of Polynomials 13

(i) for the TAC (Bcur,mcur, f) of height n− 1 obtained in Step 5 of Algo. 3,
the call to clusterPol in Step 7 of Algo. 3 terminates, returns a list
{(Bj ,mj)|1 ≤ j ≤ l} and modifies (Bcur,mcur, f) in (B′,m′, f) satisfy-
ing:
(a”) the ∆((B′, Bj))’s are pairwise disjoint polydiscs of radius less than ε,
(b”) the ((B′, Bj), (m′,mj), f)’s are TACs of height n,
(c”)

⋃
j Z((B′, Bj), f) ⊆ Z((B, , 2Ḃ), f),

(d”) for any a ∈ Z((Bcur, Ḃ), f), a is either in a (B′, Bj), or in a (B′′, Ḃ)
where (B′′,m′′, f) is a TAC in S,

(ii) R is a list of TACs of height n satisfying properties (a), (b), (c) of Prop. 1
(iii) S is a list of TACs of height n−1 satisfying properties (a′), (b′), (c′) stated

above,
(iv) for any a ∈ Z(B, f), there is either a TAC (B′,m′, f) of height n in R so

that a ∈ B′ or a TAC (B′′,m′′, f) of height n− 1 in S so that a ∈ B′′ and
ȧ ∈ Ḃ

(i) is a consequence of Prop. 2 and Lem. ?? for the termination, (a”) and (c”);
(b”) and (d”) are consequences of Prop. 2 and Thm. 4.
(ii) is a direct consequence of (i), (iii) is a consequence of Prop. 1 at rank n− 1
and Prop. 2, and (iv) is a consequence of (i), (ii) and (iii).

After the execution of the while loop in Step 4 of Algo. 3, S is empty and from
(iv) above, R is a list of TACs of height n satisfying properties (a), (b), (c), (d)
of Prop. 1, which concludes the proof of Prop. 1.

3.3 Approximating a polynomial specialized in a fiber

The approximation function ApproximateInFiber(L, f, (B,m, f),S) defined in
Algo. 4 computes, for a given L > 1, a given polynomial f ∈ C[z] and a
given TAC (B,m, f) of height n − 1 an L-bit approximation of (f)b for any
b ∈ ∆(B); this requires the width of B to be small enough. If it is not,
(B,m, f) is refined, i.e. (B,m, f) is modified in (B′,m′, f) so that the width
of B′ is small enough. This refinement process may require to split (B,m, f)
into several TACs (Bj ,mj , f) for 1 ≤ j ≤ l so that any solution of f in
B is in exactly one Bj . In that case, (B′,m′, f) is chosen as (B1,m1, f) and
ApproximateInFiber(L, f, (B,m, f),S) will output an L-bit approximation of
(f)b for any b ∈ ∆(B′) and append (B2,m2, f), . . . , (Bl,ml, f) to the list S of
TACs of height n − 1. A TAC (B,m, f) of height n − 1 with r(∆(B)) ≤ ε′, is
refined at size ε < ε′ with clusterTriSys(f ,B, ε).

In Algo. 4 and in the proof of Prop. 2 below we assume that we can compute
δ(L, f, c) as defined in Lemma. 1. In practice, we do not compute it but increase
the value of L′ with trials and errors using ball arithmetic (see Subsec. 4.1).

Proof (of Prop. 2). From the termination and correctness of clusterTriSys(f ,B, ε)
at rank n− 1 and from Lemma 1, if the condition of the while loop is reached,
ApproximateInFiber(L, f, (B,m, f),S) terminates and is correct. In order to
prove the termination of the while loop, we remark that δ(L, g, c) is bounded
for c ∈ B. ut

14 R. Imbach et al.

Algorithm 4 ApproximateInFiber(L, f, (B,m, f),S)

Input: A precision L ∈ N s.t L > 1, f ∈ C[z1, . . . , zn], a TAC (B,m, f) of height n−1
and a list S of TACs of height n− 1.

Output: Modifies in-place (B,m, f) in (B′,m′, f) and S in S ′ satisfying S ⊆ S ′ and
for any a ∈ Z(B, f), there is a unique TAC (B′′,m′′, f) in {(B′,m′, f)} ∪ S ′ such
that a ∈ Z(B′′, f).
Returns an L-bit approximation f̃ of (f)b for any b ∈∆(B′).

1: (B′,m′, f)← (B,m, f)
2: c← center of B′

3: L′ ← δ(L, f, c) as defined in Lemma 1

4: while r(∆(B′)) > 2−L
′

do

5: T ← clusterTriSys(f ,B′, 2−L
′
)

6: (B′,m′, f)← pop(T)
7: S ← S ∪ T
8: c← center of B′

9: L′ ← δ(L, f, c) as defined in Lemma 1

10: f̃ ← L′-bit approximation of f
11: f̃ ← substitute (z1, . . . , zn−1) with c in f̃
12: (B,m, f)← (B′,m′, f)
13: return f̃

4 Implementation and benchmarks

We implemented in Julia4 a prototype version of the procedure clusterTriSys
given in Algo. 3, named hereafter tcluster. This prototype uses, as routine for
clustering roots of univariate polynomials given by approximations, the function
ccluster provided by the Julia package Ccluster.jl.5 implementing proce-
dure of Algo. 2.

In tcluster, the way a polynomial specialized in a fiber is approximated dif-
fers from the procedure depicted in Algo. 4. We describe the implemented proce-
dure in Sec. 4.1. In Sec. 4.2 we show how tcluster performs on systems having
clusters of solutions. In Sec. 4.3 we propose benchmarks for solving random dense
triangular systems with only regular solutions, and with solutions with multi-
plicities; tcluster is compared with two homotopy solvers. In Sec. 4.4 we use
tcluster to cluster solutions of system triangularized with regular chains.

All the timings given below have been obtained on a Intel(R) Core(TM)
i7-7600U CPU @ 2.80GHz machine with linux.

4.1 Approximating a polynomial in a fiber

The description of procedure ApproximateInFiber in Algo. 4 uses an upper
bound of the loss of precision when evaluating an L′-bit approximation of a
polynomial f ∈ C[z] on c ∈ Cn−1 which is an L′-bit approximation of b ∈
4 https://julialang.org/
5 https://github.com/rimbach/Ccluster.jl

 https://julialang.org/
 https://github.com/rimbach/Ccluster.jl

Clustering Complex Zeros of Triangular System of Polynomials 15

Cn−1. Instead of using this upper bound, we rely in our implementation on ball
arithmetic, a variant of interval arithmetic, to get an L-bit approximation of f
specialized in any point of ∆(B) where B = (B1, . . . , Bn−1) as follows.

A complex ball is a square6 complex box. We note �C[z] the set of polyno-
mials in z which coefficients are square complex boxes. Let �f ∈ �C[z]; we note
w(�f) the width of its widest coefficient and c(�f) the polynomial in C[z] which
coefficients are the centers of the coefficients of �f . Remark that if w(�f) ≤
2−L

′
, then c(�f) is an L′-bit approximation of any f ∈ �f where f ∈ C[z] (f

and �f are considered as the vectors of their coefficients in the monomial basis
for ∈). For a given polybox B = (B1, . . . , Bn−1), one can evaluate �f on 3

2B to
obtain (�f) 3

2B
7 satisfying ∀b ∈ ∆(B), (f)b ∈ (�f) 3

2B. If w((�f) 3
2B) ≤ 2−L,

then c((�f) 3
2B) is an L-bit approximation of (f)b, ∀b ∈ ∆(B); otherwise we

increase L′, refine B with clusterTriSys(f ,B, 2−L
′
) (and possibly split the clus-

ter), use the black-box to obtain �f with w(�f) ≤ 2−L
′

and evaluate �f on
3
2B until w((�f) 3

2B) ≤ 2−L.

We used the ball arithmetic library arb (see [14]), interfaced in Julia through
the package Nemo8 in our implementation.

4.2 Clustering ability

We present here the clustering ability of our solver on toy examples of triangular
systems though to have solutions in clusters. Consider the triangular systems
g = (f, g2) = 0 and h = (f, h2) = 0 defined as:

(g = 0) :

{
zd11 − (2δz1 − 1)c = 0

zd22 z
d2
1 − 1 = 0

(3)

(h = 0) :

{
zd11 − (2δz1 − 1)c = 0

zd22 − z
d2
1 = 0

(4)

f has a cluster of c roots of multiplicity 1 in a disk centered in 2−δ with radius
2−b where b = (d1δ+δ−1)/c (see [17]); we note S1 the set of roots in this cluster.
When d1 > c > 1, the roots in S1 have modulus less than 2−δ+2−b ≤ 2−δ+1 = γ̂.
We note S2 the d1 − c roots of f that are not in S1. The roots in S2 have all
multiplicity 1 and have modulus of the order of γ = 2a where a = cδ

d1−c .
The d2 roots of g2 are on a complex circle centered in 0 with radius greater

than γ̂−1 when z1 ∈ S1, and of order γ−1 when z1 ∈ S2. The d2 roots of h2 are
on a complex circle centered in 0 with radius less than γ̂ when z1 ∈ S1, and of
order γ when z1 ∈ S2.

We suppose now d1 = 30, c = 10, δ = 128 and d2 = 10. Therefore, one
has γ = 264, b ' 397 and γ̂ = 2−127; all the solutions of g = 0 and h = 0

6 here we restrict complex balls to square boxes for the sake of simplicity. General
description do not need this restriction.

7 this is defined up to an evaluation scheme; in practice we use the multivariate ex-
tension of the Horner scheme given by the ordering z1, . . . , zn of the variables.

8 http://nemocas.org/links.html

http://nemocas.org/links.html

16 R. Imbach et al.

g = 0 h = 0
log2(ε) #Sols t (s) (m,M) #Sols t (s) (m,M)

-53 0 + 30× 10 0.79 (-212,- 424) 200 + 0× 10 + 1× 100 0.92 (-212, -212)
-106 200 + 10× 10 1.01 (-212,- 424) 200 + 0× 10 + 1× 100 0.95 (-212, -424)
-212 300 + 0× 10 9.09 (-424,- 848) 200 + 10× 10 + 0× 100 1.03 (-212, -848)
-424 300 + 0× 10 9.36 (-848,-1696) 300 + 0× 10 + 0× 100 9.24 (-848, -848)
Table 1. Clustering the solutions of systems in Eq. 3 and Eq. 4 with d1 = 30, c = 10,
δ = 128 and d2 = 10 for four values of ε in polybox B centered in 0 with width 1040.

are included in the polybox B centered in 0 with width 1040. We computed
clusters of solutions for the two systems with tcluster in the initial box B for
four values of ε. Table. 1 gives: the cluster structure of the solutions in columns
#Sols (c1 + c2 × 10 + c3 × 100 means c1 clusters with sum of multiplicities 1, c2
clusters with sum of multiplicities 10 and c3 clusters with sum of multiplicities
100), the solving time in seconds in columns t and the minimum and maximums
precision required on clusters of f1 in columns M and m (i.e. the log2 of the
radius of the disk isolating the clusters).

The system (g = 0) has d1 − c = 20 clusters of d2 = 10 solutions above
each root in S2; the pairwise distance between solutions in such clusters is about
γ−1 = 2−64. It has also c = 10 clusters of d2 = 10 solutions above the cluster
of roots S1; the pairwise distance between solutions in such clusters is less than
2−b ' 2−397. This cluster structure is the one found by tcluster with ε = 2−53.
When ε = 2−106, the 20 clusters above roots in S2 are split, while the ones above
roots in S1 are preserved. When ε = 2−212, the clusters above roots in S1 are
split even if the pairwise distances between solutions in these clusters are far
smaller than 2−212; this happens because isolating roots of g2 with error less
than ε = 2−212 requires more precision on roots of f , as shown is column (m,M).
When ε = 2−424, all the clusters are split.

The system (h = 0) has (d1 − c)d2 = 200 solutions above roots in S2 and
a cluster containing cd2 = 100 simple solutions above roots in S1. The first
components of the solutions in this cluster are in a complex disc of radius less
that 2−b ' 2−397 and the second components are in a complex disc of radius less
than γ̂ = 2−127. This cluster structure is found by tcluster with ε = 2−53 and
ε = 2−106. When ε = 2−212, the cluster of 100 solutions is split in 10 clusters of
10 solutions. When ε = 2−424, the cluster is split in 100 solutions.

4.3 Benchmarks with random dense systems

We present benchmarks for randomly generated triangular systems without
and with multiple solutions. We compare the efficiency and the robustness of
tcluster and two homotopy solvers.

Homotopy solvers. Homotopy solving is a two steps proccess. First, an upper
bound D on the number of solutions (counted with multiplicities) of the sys-

Clustering Complex Zeros of Triangular System of Polynomials 17

tem is computed. D can be the Bézout’s bound, or obtained with the so-called
polyhedral homotopy (see [12]) in which case it is sharper. In a second step, D
paths are followed until they end up at a finite solution of the system, or they
are decided to go to a solution at infinity.

HOM4PS-2.09 and Bertini10 (see [2]) are two homotopy solvers. HOM4PS-2.0
is known for being very fast but not robust (i.e. in certain cases, it can miss some
solutions). It does not compute the multiplicity structure of the solutions. It im-
plements polyhedral homotopy. Bertini is in general slower than HOM4PS-2.0

but much more robust; it can use an Adaptive Multi-Precision (AMP) arith-
metic and computes the multiplicities of solutions. Below Bertini AMP refers to
Bertini with AMP. It takes D as the Bézout’s bound.

Systems. We follow the approach of [7] to generate triangular systems with and
without multiple solutions. The type of a triangular system f(z) = 0 where
f = (f1, . . . , fn) is the list (d1, . . . , dn) where di = degzi(fi).

A random dense polynomial fi in C[z1, . . . , zi] of degree di in zi is generated

as follows. If i > 1, fi =
∑di
j=0 gjz

j
i where gj ∈ C[z1, . . . , zi−1] is a random dense

polynomial of degree di − j in zi−1. If i = 1, fi is a dense polynomial in C[z1]
of degree d1. A random dense triangular system f(z) = 0 of type (d1, . . . , dn) is
obtained by generating successively random dense polynomials fi of degrees di
in zi.

A triangular system f(z) = 0 of type (d1, . . . , dn) with multiple solutions is
generated as follows: f1 is a random dense polynomial in C[z1] of degree d1. For

i = 2, . . . , n, fi = a2i (bizi+ci)
b di+1

2 c−b di2 c where ai is a random dense polynomial
in z1, . . . , zi with degree bdi2 c in zi and bi, ci are random dense polynomials in
z1, . . . , zi−1 of degrees di in zi−1.

Benchmarks. In Table 2, we compare the two homotopy solvers and tcluster on
triangular systems of random dense polynomial equations randomly generated as
explained above, with integer coefficients in [−28, 28], without and with multiple
solutions. In both cases, we generated 5 systems of each type (see column type)
and solved the systems with HOM4PS-2.0, Bertini AMP and tcluster with ε =
2−53. tcluster is first called with an initial polybox centered in 0 and width
2 (columns tcluster local), then with width 106 (columns tcluster global).
For the systems we tested, tcluster with initial polybox of width 106 found
all the solutions but in general this is not guaranteed. The columns #Sols give
the average number of solutions found by each solver and the columns t(s) the
average sequential times in seconds. For tcluster, the columns #Clus give
the average number of clusters found. All the systems we generated have d1 ×
. . . × dn solutions (where (d1, . . . , dn) is the type of the system) counted with
multiplicities, which is the Bézout’s bound of the system; therefore the homotopy
solvers have to follow this number of paths.

9 http://www.math.nsysu.edu.tw/∼leetsung/works/HOM4PS soft.htm
10 https://bertini.nd.edu/

http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft.htm
https://bertini.nd.edu/

18 R. Imbach et al.

tcluster local tcluster global HOM4PS-2.0 Bertini AMP

type #Sols, #Clus t (s) #Sols, #Clus t (s) #Sols t (s) #Sols t (s)

Systems with only simple solutions

(6,6,6) 34.2, 34.2 0.07 216, 216 0.51 0 0.06 216 1.17

(9,9,9) 149, 149 0.42 729, 729 2.11 713 0.47 729 29.3

(6,6,6,6) 63.4, 63.4 0.26 1296, 1296 3.86 1274 1.37 1296 24.2

(9,9,9,9) 559, 559 2.94 6561, 6561 26.8 6036 111 6560 1605

(6,6,6,6,6) 155, 155 1.61 7776, 7776 36.6 7730 28.6 7776 318

(9,9,9,9,9) 1739, 1739 27.6 59049, 59049 416 - - ? >3600

Systems with multiple solutions

(6,6) 10.8, 5.40 0.02 36, 18 0.08 36 0.00 18 3.63

(9,9) 23.8, 13.6 0.05 81, 45 0.24 67.4 0.06 45 218

(6,6,6) 35.2, 8.80 0.06 216, 54 0.33 210 0.16 54 47.9

(9,9,9) 113, 37.6 0.37 729, 225 1.72 357 18.9 ? >3600
Table 2. Solving random dense triangular systems with tcluster, HOM4PS-2.0 and
Bertini AMP. tcluster is called with ε = 53 and an initial polybox centered in 0. For
tcluster local (resp. global), the initial box has width 2 (resp. 106).

Systems with only simple solutions. For type (9,9,9,9,9), Bertini AMP has been
stop after 1 hour and HOM4PS-2.0 terminates with a segmentation fault. Ho-
motopy solvers should find all the solutions of a system. Bertini AMP failed in
this task for one system of type (9, 9, 9, 9) but acknowledged that solutions could
be missing. HOM4PS-2.0 returns incorrect results without warnings. In contrast,
tcluster global always finds the correct number of solutions. Regardless of the
correction of the results, tcluster global is in average faster than Bertini AMP

for all the types of systems we tested, and is faster than HOM4PS-2.0 for systems
of types (9, 9, 9, 9). Using tcluster to find solutions in a small initial polybox
(tcluster local) is significantly faster than the other approaches when one is
only interested in the solutions in this polybox.

Systems with multiple solutions. For a multiple solution that is well isolated
from the others, tcluster finds a cluster containing it and reports the sum of
multiplicities in the cluster (i.e. the multiplicity of the solution). For each sys-
tem, the number of clusters found by tcluster global is the number of distinct
complex solutions of the system. HOM4PS-2.0 fails in finding all the solutions.
Bertini AMP computes the multiplicity of solutions and its output is correct for
all the systems we tested. For type (9,9,9), Bertini AMP has been stopped after
1 hour. tcluster global is in average faster than Bertini AMP for the systems
we tested, and faster than HOM4PS-2.0 for systems of type (9, 9, 9).

4.4 Systems obtained by triangularization

In this subsection, we report on using tcluster for clustering the solutions of
triangular systems f(z) = 0 obtained from a non-triangular system g(z) = 0
with Regular Chains (RC, see for instance [1,8]). Algorithms for triangularizing

Clustering Complex Zeros of Triangular System of Polynomials 19

systems with RC produce a set of triangular systems {f1(z) = 0, . . . , fl(z) = 0}
having distinct solutions whose union is the set of distinct solutions of f(z) = 0.
Notice that the multiplicities of solutions are not preserved by this process.
We used the RegularChains package of Maple implementing the RC algorithm
described in [16].

Systems. We consider non-triangular systems g(z) = 0 both classical and ran-
domly generated. We generate sparse random systems g(z) = 0 where g =
(g1, . . . , gn) and each gi has the form gi(z) = zdii − g′i(z) where g′i is a poly-
nomial in Z[z] having total degree di − 1, integers coefficients in [−28, 28] and
5 monomials. The type of such a system is the tuple (d1, . . . , dn). The classi-
cal systems come from [6]. The set of all the examples can be found at https:
//cims.nyu.edu/∼imbach/IPY19/IPY19.txt.

The benchmark For each of the types (4, 4, 4), (5, 5, 5), (4, 3, 3, 3), (4, 4, 3, 3) we
generated randomly a system as described above, and computed a triangular
system with the Maple function Triangularize of the RegularChains package,
using the option ’probability’=0.9. For the classical systems, we used no
option. In table 3, the time required to compute the regular chains is reported
in column RC. We solved all systems with Bertini AMP (see group of columns
Bertini AMP in table 3) and report the number of solutions with the multiplicity
structure found by Bertini (c1+c2×m2+c3×m3 means c1 solutions with sum of
multiplicities 1, c2 solutions with sum of multiplicities m2 and c3 solutions with
sum of multiplicities m3), the number of paths followed (column #Paths) and the
solving time. We solved all systems with the function RootFinding[Isolate]

of Maple with the options digits=15, output=interval, method=’RC’ (i.e.
using regular chains) and reported the number of real solutions of the system and
the solving time (see group of columns Isolate RC in table 3). For all systems,
we used tcluster with ε = 2−53 and an initial polybox centered in 0 with width
106. For all the systems we tested, tcluster is faster than the numerical solver
of RootFinding[Isolate] (when using RC) that finds only real solutions. We
also tested HOM4PS-2.0 for these systems: the number of paths followed for each
system is about the number of solutions of the system, and the running time is
always less than 0.05s, However the number of solutions reported is wrong for
systems (5, 5, 5) (97 instead of 125) and 5-body-homog (93 instead of 99).

Random systems in table 3. For these systems, the number of solutions is equal
to the Bézout’s bound; therefore Bertini AMP follows one path per solution.
Homotopy solving in these cases is much more efficient than triangularizing the
system with RC and solving it with tcluster. For these systems, the RC algo-
rithm produces a triangular system of type (d, 1, . . . , 1) where d is the Bézout’s
bound, with a huge bitsize. For the system of type (3, 3, 4, 4), the triangular sys-
tem has type (144, 1, 1, 1) and each equation has bitsize about 738. In that case,
tcluster has to isolate some solutions of the first equation in disks of radius less
than 2−424. Solving the first equation with ccluster and ε = 2−424 takes 26.13s:
tcluster spends most of the time in isolating roots of the first polynomial. Any

https://cims.nyu.edu/~imbach/IPY19/IPY19.txt
https://cims.nyu.edu/~imbach/IPY19/IPY19.txt

20 R. Imbach et al.

Bertini AMP Isolate RC RC tcluster global

type/name #Sols #Paths t (s) #Sols t (s) t (s) #Sols t (s)

Random systems

(4,4,4) 64 64 0.06 6 7.53 3.82 64 1.48
(5,5,5) 125 125 0.30 ? >1000 24.2 125 18.7

(3,3,3,4) 108 108 0.13 ? >1000 52.4 108 7.25
(3,3,4,4) 144 144 0.26 ? >1000 68.7 144 25.7

Classical systems with only simple solutions

Arnborg-Lazard 20 120 0.80 8 3.09 0.08 20 0.22
Czapor-Geddes-Wang 24 720 28.6 2 1.87 0.17 24 0.59

cyclic-5 70 120 0.35 10 1.92 0.55 70 0.81

Classical systems with multiple solutions

5-body-homog 45 + 2× 3 + 2× 24 224 7.63 11 8.30 0.16 49 0.80
Caprasse 24 + 8× 4 144 0.25 18 1.49 0.24 32 0.27

neural-network 90 + 18× 2 162 0.36 22 5.82 0.13 108 0.89

Table 3. Solving systems of polynomial equations with regular chains and tcluster,
and Bertini AMP. tcluster is called with ε = 53 and an initial polybox centered in 0
with width 106.

improvement of ccluster will directly benefit to tcluster. For three of these
systems, RootFinding[Isolate] has been stopped after 1000s.

Classical systems with only simple solutions in table 3. These systems have few
finite solutions compared to their Bézout’s bounds, and Bertini AMP wastes
time in following paths going to infinity. In contrast, tcluster is sensitive to the
number of solutions in the initial solving domain. This explains why computing
triangular systems and solving it with tcluster is faster than Bertini AMP for
systems Arnborg-Lazard, Czapor-Geddes-Wang.

Classical systems with multiple solutions in table 3. For these systems, Bertini
AMP reports the multiplicity structure of the solutions. The triangularization step
removes the multiplicity, and the RCs obtained are easier to solve; tcluster
finds only clusters with one solution counted with multiplicity.

References

1. Aubry, P., Lazard, D., Maza, M.M.: On the theories of triangu-
lar sets. Journal of Symbolic Computation 28(1), 105 – 124 (1999).
https://doi.org/10.1006/jsco.1999.0269

2. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini:
Software for numerical algebraic geometry. Available at bertini.nd.edu.
https://doi.org/10.7274/R0H41PB5

3. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation. pp. 71–78. ISSAC ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2930889.2930939

https://doi.org/10.1006/jsco.1999.0269
https://doi.org/10.7274/R0H41PB5
https://doi.org/10.1145/2930889.2930939

Clustering Complex Zeros of Triangular System of Polynomials 21

4. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algo-
rithm for complex root isolation based on the pellet test and newton iteration. Jour-
nal of Symbolic Computation (2017). https://doi.org/10.1016/j.jsc.2017.03.009

5. Beltrán, C., Leykin, A.: Certified numerical homotopy tracking. Experimental
Mathematics 21(1), 69–83 (2012). https://doi.org/10.1080/10586458.2011.606184

6. Boulier, F., Chen, C., Lemaire, F., Moreno Maza, M.: Real root isolation
of regular chains. In: Feng, R., Lee, W.s., Sato, Y. (eds.) Computer Math-
ematics. pp. 33–48. Springer Berlin Heidelberg, Berlin, Heidelberg (2014).
https://doi.org/10.1007/978-3-662-43799-5˙4

7. Cheng, J.S., Gao, X.S., Yap, C.K.: Complete numerical isolation of real roots in
zero-dimensional triangular systems. Journal of Symbolic Computation 44(7), 768–
785 (2009). https://doi.org/10.1016/j.jsc.2008.04.017

8. Dahan, X., Maza, M.M., Schost, E., Wu, W., Xie, Y.: Lifting techniques for tri-
angular decompositions. In: Proceedings of the 2005 International Symposium on
Symbolic and Algebraic Computation. pp. 108–115. ISSAC ’05, ACM, New York,
NY, USA (2005). https://doi.org/10.1145/1073884.1073901

9. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solv-
ing polynomial systems. In: Proceedings of the 2005 international sympo-
sium on Symbolic and algebraic computation. pp. 116–123. ACM (2005).
https://doi.org/10.1145/1073884.1073902

10. Dickenstein, A., Emiris, I. (eds.): Solving Polynomial Equations: Foun-
dations, Algorithms, and Applications. Springer Berlin Heidelberg (2005).
https://doi.org/10.1007/B138957

11. Giusti, M., Lecerf, G., Salvy, B., Yakoubsohn, J.C.: On location and approximation
of clusters of zeros: Case of embedding dimension one. Foundations of Computa-
tional Mathematics 7(1), 1–58 (2007). https://doi.org/10.1007/s10208-004-0159-5

12. Huber, B., Sturmfels, B.: A polyhedral method for solving sparse poly-
nomial systems. Mathematics of computation 64(212), 1541–1555 (1995).
https://doi.org/10.1090/S0025-5718-1995-1297471-4

13. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
Mathematical Software – ICMS 2018. pp. 235–244. Springer International Publish-
ing, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8˙28

14. Johansson, F.: Arb: efficient arbitrary-precision midpoint-radius inter-
val arithmetic. IEEE Transactions on Computers 66, 1281–1292 (2017).
https://doi.org/10.1109/TC.2017.2690633

15. Kobel, A., Rouillier, F., Sagraloff, M.: Computing real roots of real polynomials
... and now for real! In: Proceedings of the ACM on International Symposium on
Symbolic and Algebraic Computation. pp. 303–310. ISSAC ’16, ACM, New York,
NY, USA (2016). https://doi.org/10.1145/2930889.2930937

16. Maza, M.M.: On triangular decompositions of algebraic varieties. Tech. rep., Cite-
seer (2000)

17. Mignotte, M.: On the distance between the roots of a polynomial. Applicable Al-
gebra in Engineering, Communication and Computing 6(6), 327–332 (Nov 1995).
https://doi.org/10.1007/BF01198012

18. Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to interval analysis. Siam
(2009)

19. Wampler, I.C.W., et al.: The Numerical solution of systems of polynomials arising
in engineering and science. World Scientific (2005)

https://doi.org/10.1016/j.jsc.2017.03.009
https://doi.org/10.1080/10586458.2011.606184
https://doi.org/10.1007/978-3-662-43799-5_4
https://doi.org/10.1016/j.jsc.2008.04.017
https://doi.org/10.1145/1073884.1073901
https://doi.org/10.1145/1073884.1073902
https://doi.org/10.1007/B138957
https://doi.org/10.1007/s10208-004-0159-5
https://doi.org/10.1090/S0025-5718-1995-1297471-4
https://doi.org/10.1007/978-3-319-96418-8_28
https://doi.org/10.1109/TC.2017.2690633
https://doi.org/10.1145/2930889.2930937
https://doi.org/10.1007/BF01198012

22 R. Imbach et al.

20. Xu, J., Burr, M., Yap, C.: An approach for certifying homotopy continuation paths:
Univariate case. In: Proceedings of the 2018 ACM International Symposium on
Symbolic and Algebraic Computation. pp. 399–406. ISSAC ’18, ACM, New York,
NY, USA (2018). https://doi.org/10.1145/3208976.3209010

21. Zhang, Z., Fang, T., Xia, B.: Real solution isolation with multiplicity of zero-
dimensional triangular systems. Science China Information Sciences 54(1), 60–69
(2011). https://doi.org/10.1007/s11432-010-4154-y

https://doi.org/10.1145/3208976.3209010
https://doi.org/10.1007/s11432-010-4154-y

	Clustering Complex Zeros of Triangular System of Polynomials

