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Rémi Imbach ∗

Courant Institute of Mathematical Sciences
New York University, USA

Email: remi.imbach@nyu.edu

June 26, 2018

Abstract

This report is about finding clusters of complex solutions of triangular systems of polynomial
equations. We introduce the local solution clustering problem for a system of polynomial equa-
tions, that is grouping all its complex solutions lying in an initial complex domain in clusters
smaller than a given real number ε > 0, and counting the sum of multiplicities of the solutions
in each clusters. For triangular systems, we propose a criterion based on the Pellet theorem to
count the sum of the multiplicities of the solutions in a cluster. We also propose an algorithm
for solving the local solution clustering problem for triangular systems, based on a recent near-
optimal algorithm for clustering the complex roots of univariate polynomials. Our algorithm
is numeric and certified. We implemented it and compared it with two homotopy solvers for
randomly generated triangular systems. Our solver always give correct answers, is often faster
than the homotopy solver that gives often correct answers, and sometimes faster than the one
that gives sometimes correct results.

1 Introduction

This report considers the long-standing problem of finding the complex solutions of a system f(z) =
0 of d polynomial equations in d unknowns, where z = (z1, . . . , zd), f : Cd → Cd has components
f1, . . . , fd and fi ∈ C[z1, . . . , zd] for 1 ≤ i ≤ d.

We will say that f(z) = 0 is triangular if f1, . . . , fd satisfy fi ∈ C[z1, . . . , zi] for 1 ≤ i ≤ d. We
are interested here in finding clusters of solutions of triangular systems and counting the sums of
multiplicities of solutions in cluster. Solving triangular systems may be seen as a fundamental task
in polynomial equations solving, since algebraic approaches (Gröbner basis, CAD, resultants,. . . )
generally reduce the original system to a triangular system.

Isolating the complex solutions of a polynomial system in an initial domain can be set as follows:

Local solution isolation problem:
Given: a polynomial map f : Cd → Cd, a box B ⊂ Cd, ε > 0
Output: a set {∆1, . . . ,∆l} of pairwise disjoint polydiscs of radius ≤ ε where:

- each solution of f(z) = 0 in B is in a unique ∆j , and
- each ∆j contains a solution of f(z) = 0.

∗Rémi’s work has received funding from the European Union’s Horizon 2020 research and innovation programme
under grant agreement No. 676541. It has also been supported by NSF Grants # CCF-1563942 and # CCF-1564132.
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A polydisc ∆ is a vector (∆1, . . . ,∆d) of complex discs. The center of ∆ is the vector of the
centers of its components and the radius r(∆) of ∆ is the max of the radii of its components. If
δ is any positive real number, we note δ∆ the polydisc (δ∆1, . . . , δ∆d) that has the same center
than ∆ and radius δr(∆). A box B ∈ Cd is a vector (B1, . . . , Bd) of complex boxes. The center
of B is the vector of the centers of its components. A box B ∈ Cd is a square complex box if for
all 1 ≤ i ≤ d, the real and the imaginary parts of Bi have the same widths. The width of a square
complex box is the max of the widths of its components; we note it w(B). If δ is any positive real
number, we note δB the square complex box (δB1, . . . , δBd) that has the same center than B and
width δw(B).

We introduce three notions to define the local solution clustering problem. Let a ∈ Cd be a
solution of f(z) = 0. The multiplicity of a in f , also called the intersection multiplicity of a in f
is classically defined by localization of rings as in [ZFX11][Def. 1, p. 61]. An equivalent definition
uses dual spaces (see [DZ05][Def. 1, p. 117]). We will note it m(a, f).

For any set S ⊆ Cd, we note Z(S, f) the set of solutions of f in S, and #(S, f) the sum of
multiplicities of solutions of f in S.

Local solution clustering problem:
Given: a polynomial map f : Cd → Cd, a square complex box B ⊂ Cd, ε > 0
Output: a set of pairs {(∆1,m1), . . . , (∆l,ml)} where:

- the ∆js are pairwise disjoint polydiscs of radius ≤ ε,
- mj = #(∆j , f) = #(3∆j , f) for all 1 ≤ j ≤ l, and
- Z(B, f) ⊆

⋃l
j=1 Z(∆j , f).

Our contributions In this report, we propose an algorithm for solving the local solution clus-
tering problem for triangular systems.

To this end, we propose a formula to count the sum of multiplicities in a cluster Z(∆, f)
under some conditions on Z(∆, f). Our formula is derived from a result of [ZFX11] that links the
intersection multiplicity of a solution of a triangular systems to multiplicities in fibers.

We introduce the towers of algebraic clusters that encode clusters of solutions of triangular
systems in stacks (or towers) of clusters of roots of univariate polynomials and show that the so-
called T∗-test introduced in [BSSY17] and based on the Pellet theorem can be used to count the
sum of multiplicities of the solutions in a cluster encoded by a tower of algebraic clusters.

Our algorithm to solve the local solution clustering problem for triangular systems is based on
a recent clustering algorithm for univariate polynomial (see [BSS+16]). We prove its correctness
and its termination.

We implemented and experimented our algorithm; we show with two benchmarks that it com-
pares advantageously with two homotopy solvers: HOM4PS-2.0 that is fast but not robust and
Bertini that is more robust but slower.

Structure of the report Sec. 2 is about counting the sum of multiplicities of the solution in
a cluster. In Sec. 3 we describe our algorithm for clustering solutions of a triangular system, and
prove its correctness. Experimental results are proposed in 4.

The rest of the introduction is dedicated to a brief description of related works and to introducing
definitions and notations used throughout this report.
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1.1 Related works

We focus our discussion on polynomial systems, triangular or not, having of d equations involving
d unknowns and having a zero-dimensional set of solutions. One can divide approaches for solving
such polynomials in two categories: the numeric ones and the algebraic ones; the latter category
proceeds by making the system to solve triangular, then solving numerically the triangular system.

The numeric solvers using homotopy ([W+05]) have demonstrated their superiority in that they
can handle systems in higher dimension and with higher degrees than the other approaches. They
however rely on a numerical step, the homotopy path tracking, that is not certified in efficient
implementations1; the results of such implementations come with no guarantee of correctness.
There is a recent literature on using certified path tracking methods in homotopy solving and
providing a complexity analysis ([BL12, Lai17]).

Concerning algebraic solvers, there are plenty of papers in the literature describing how to
transform (non-triangular) system of polynomials into triangular polynomial systems, (called char-
acteristic sets, triangular sets of regular chains [ALM99]) via Gröbner basis computation, Rational
Univariate Representation or resultant theory ([ALM99, Rou99]).

Only a few are interested in solving triangular polynomial systems. For systems having only
regular solutions, this task reduces to iteratively isolate roots of univariate polynomials in fibers.
It however requires to be able to isolate roots in fibers with high precision. In most cases, only
the real solutions are sought, and the Descartes’ rule of signs combined with subdivision provides
an efficient way to do so (see [KRS16] for a recent implementation). Some works address the case
where a triangular system has non-regular solutions, i.e. solutions with multiplicities greater than
1. In this context, a numerical root isolator may not terminate; an idea exposed in [CGY09] is
to use, jointly with a numerical root isolator based on the rule of signs, evaluation bounds for a
system to decide that a solution has multiplicity greater than one; remark that this approach does
not allow to compute the multiplicity of a solution. The authors of [ZFX11] propose a formula to
compute the multiplicity of a solution of a triangular system: the latter multiplicity is the product
of the multiplicities of the components of a solution in the fibers. Then, by using square free
factorization of univariate polynomials specialized in fibers, they describe an algorithm to retrieve
the real solutions of a triangular system with their multiplicities.

Here we “soften” the problem of isolating the solutions of a triangular system of polynomial
equations while counting their multiplicities by translating it in the local solution clustering prob-
lem. We also search clusters of complex solutions. For this, we leverage of a recent algorithm for
solving the local root clustering problem, (i.e the univariate case of the local solution clustering
problem) proposed in [BSS+16]. It is based on subdivision of the initial complex square box, and
uses the Pellet theorem combined with Graeffe iterations to count the sum of multiplicities of the
roots in a cluster. It does not require the knowledge of the exact coefficients of the polynomial, but
instead uses a black-box that, for a given precision L ∈ N, L > 1, returns L-bit approximations of
its coefficients. Hence, the polynomial the roots are sought can have any numbers as coefficients,
in particular algebraic numbers, that come with such a black-box.

1.2 Definitions and notations

Let a = (a1, . . . , ad) be a point of Cd, ∆ be the polydisc (∆1, . . . ,∆d), B be the complex box
(B1, . . . , Bd), f : Cd → Cd be the polynomial map which components are (f1, . . . , fd), and z be

1 we considered here HOM4PS-2.0 and Bertini
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(z1, . . . zd). For any 1 ≤ i ≤ d, we note:

• a[i] the point (a1, . . . , ai) ∈ Ci,

• ∆[i] the polydisc (∆1, . . . ,∆i),

• B[i] the complex box (B1, . . . , Bi),

• f [i] : Ci → Ci the polynomial map which components are (f1, . . . , fi),

• z[i] the vector of i unknowns (z1, . . . zi),

• m(a[i], f [i]) the multiplicity of a[i] in f [i].

If 1 < i ≤ d, and b = (b1, . . . , bi−1) is any point in Ci−1, we note (fi)b the univariate polynomial
in C[zi] obtained by specializing fi in b. If a is a solution of f , we call multiplicity of ai in fi in the
fiber a[i−1] the multiplicity of the root ai of the polynomial (fi)a[i−1] . We note it m(ai, (fi)a[i−1]).

If B ⊂ C is a square complex box with center c and width w, we note ∆(B) the disc with center
c and radius 3

4w: ∆(B) contains B. If B = (B1, . . . , Bd) ⊂ Cd is a square complex box, We note
∆(B) the polydisc (∆(B1), . . . ,∆(Bd)): ∆(B) contains B.

A polydisk ∆ is called an isolator if #(∆, f) = #(3∆, f). Any non-empty set of the form
Z(∆, f) is called a cluster of solutions of f(z) = 0, and it is a natural cluster if ∆ is an isolator.

We call L-bit approximation of a ∈ C a dyadic complex number ã that coincides with a to L bits
after the binary point, that is |a − ã|≤ 2−L. We call L-bit approximation of a = (a1, . . . , ai) ∈ Ci
a vector ã ∈ Ci such that ãj is an L-bit approximation of aj for 1 ≤ j ≤ i. If g is a univariate
polynomial, we call L-bit approximation of g a univariate polynomial g̃ which coefficients are L-bit
approximations of the coefficients of g.

2 Sum of multiplicities in clusters of solutions

[ZFX11] links the multiplicity of the solutions of a triangular system to multiplicities in fibers. In
subsec. 2.2, we elaborate on this result and define some conditions under which it can be applied.
We introduce in subsec. 2.3 the notions of algebraic clusters and towers of algebraic clusters that
are a special instance of clusters of solutions of triangular systems verifying the above conditions.

The T∗-test defined in [BSSY17] is based on the Pellet theorem and Graeffe iterations, and
allows to compute the sum of multiplicities of the roots of a univariate polynomial in a disc. In
subsec. 2.4 we show how this test to compute towers of algebraic clusters by computing sums of
multiplicities of roots in a disc in a fiber of multivariate polynomials.

We first introduce in subsec. 2.1 two thought examples to illustrate our discussion.

2.1 Two examples

Let δ be a strictly positive integer. We define the triangular system g(z) = 0 where g = (g1, g2) as
follows: {

(z1 − 2−δ)(z1 + 2−δ) = 0
(z2 − 22δz21)z2 = 0

(1)

g(z) = 0 has 4 solutions that are real: a1 = (2−δ, 0), a2 = (2−δ, 1), a3 = (−2−δ, 1) and
a4 = (−2−δ, 0).
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Figure 1: Left: the solutions of g(z) = 0 defined in Eq. 1, with δ = 1. Right: the solutions of
h(z) = 0 defined in Eq. 2, with δ = 1. B1 (resp. B2) is the square complex box of C2 with center
(0, 0) (resp. (0, 1)) and width 2 ∗ 2−δ.

We define the triangular system h(z) = 0 where h = (h1, h2) as follows:{
(z1 − 2−δ)2(z1 + 2−δ) = 0
(z2 − 2δz21)2(z2 − 1)z2 = 0

(2)

h(z) = 0 has 5 solutions that are real: a1, a2, a3, a4, a5 = (−2−δ,−2−δ) and a6 = (2−δ,−2−δ).
For 1 ≤ i ≤ 6, we will note ai = (ai1, a

i
2). The solutions of both g(z) = 0 and h(z) = 0 are depicted

in Fig. 1.

2.2 Sum of multiplicities in a cluster

Let us recall the following result that allows to count the multiplicity of a solution of a triangular
system when knowing multiplicities in fibers.

Theorem 1 ([ZFX11]). The multiplicity of a solution a = (a1, . . . , ad) of f(z) = 0 where f =
(f1, . . . , fd) is

∏d
i=1mi, where m1 is the multiplicity of the root a1 in f1 and for 2 ≤ i ≤ d, mi is

the multiplicity of the root ai in (fi)a[i−1].

We apply this result to compute the multiplicities of solutions of the systems g(z) = 0 and
h(z) = 0 respectively defined in Eq. 1 and Eq. 2. a1 has multiplicity 1 in g: m(a1,g) = m(a11, g1) ∗
m(a12, (g2)a11) = 1 ∗ 1. a1 has multiplicity 2 in h: m(a1,h) = m(a11, h1) ∗m(a12, (h2)a11) = 2 ∗ 1. With

the same computations, we have: a2 has multiplicity 1 in g and 2 in h, a3 and a4 have multiplicity
1 in g and in h, a5 has multiplicity 2 in h and a6 has multiplicity 4 in h.

We derive the following formula from Thm. 1:

Corollary 2 (of Thm. 1). With the notations of Thm. 1, one has: ∀1 < i ≤ d, m(a[i], f [i]) =
m(ai, (fi)a[i−1])×m(a[i−1], f [i−1])

We generalize thm. 1 to compute the sum of multiplicities of the solutions in a cluster.
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Theorem 3. Let Z(∆, f) be a cluster of solutions with ∆ = (∆1, . . . ,∆d) and f = (f1, . . . , fd).
Let the integers m1, . . . ,md be such that:

(i) m1 = #(∆1, f1) (m1 is the sum of multiplicities of roots of f1 in ∆1), and

(ii) ∀a ∈ Z(∆, f), ∀1 < i ≤ d, mi = #(∆i, (fi)a[i−1]) (mi is the sum of multiplicities of the roots
of (fi)a[i−1] for any solution a in the cluster).

Then #(∆, f) = m1 ×m2 × . . .×md.

Before proving this result, we illustrate it with the systems g(z) = 0 and g(z) = 0 defined
in Eq. 1 and Eq. 2. Let B1 = (B1

1 , B
1
2) be the square complex box centered in (0, 0) having

width 2 ∗ 2−δ and g(z) = 0, g(z) = 0 be defined as in Eq. 1 and Eq. 2. We apply Thm. 3 to
compute multiplicities in ∆(B1): #(∆(B1),g) = 2. Indeed, Z(∆(B1),g) = {a1,a4}. If m1 = 2
and m2 = 1, one has: m1 = #(∆(B1

1), g1) and the condition (i) of Thm. 3 is satisfied. Then
m2 = #(∆(B1

2), (g2)a11) = #(∆(B1
2), (g2)a41) and the condition (ii) of Thm. 3 is satisfied.

One also has #(∆(B1),h) = 9; let m1 = 3 and m2 = 3. First, Z(∆(B1),h) = {a1,a4,a5,a6},
and recall that a11 = a61 = 2−δ and a41 = a51 = −2−δ. One has m1 = #(∆(B1

1), h1) and the condition
(i) of Thm. 3 is satisfied. Then m2 = #(∆(B1

2), (h2)a11) = #(∆(B1
2), (h2)a41), and the condition (ii)

of Thm. 3 is satisfied.
Let B2 = (B2

1 , B
2
2) be the square complex box centered in (0, 1) having width 2 ∗ 2−δ. With

the same reasoning, #(∆(B2),g) = 2 ∗ 1, and #(∆(B2),h) = 3 ∗ 1. The real parts of ∆(B1) and
∆(B2) are depicted in Fig. 1.

Proof of Thm 3: Let 1 < i ≤ d. We note Πi−1 : Ci → Ci−1 the projection of a point on its i− 1
first components, and Πi : Ci → C the projection of a point on its last component. We extend
these maps to subsets of Ci: if S ⊆ Ci, Πi−1(S) and Πi(S) are the sets which elements are the
projections of elements of S.

Suppose that Πi−1(Z(∆[i], f [i])) has l distinct points a1, . . . ,al with respective multiplicities
m1, . . . ,ml in f [i−1] and let m =

∑l
j=1m

j . Z(∆[i], f [i]) can be partitioned in l sets S1, . . . , Sl such

that a solution a ∈ Z(∆[i], f [i]) is in Sj if and only if Πi−1(a) = aj .
Remark that Z(Πi(Sj), (fi)aj ) = Z(∆i, (fi)aj ); then #(Πi(Sj), (fi)aj ) = mi from hypothesis

(ii) of Thm 3. We can now apply corollary 2 and obtain #(Sj , (fi)aj ) = #(∆i, (fi)aj )×m(aj , f [i]).
We now sum the #(Sj , (fi)aj ) over j and obtain: #(∆[i], f∆[i]) = mi ×m.

We use this argument in an inductive scheme to obtain the formula of Thm. 3.

2.3 Towers of algebraic clusters

We introduce here the notions of algebraic clusters and towers of algebraic clusters. Towers of
algebraic clusters are special instances of clusters satisfying conditions of Thm. 3 that can be
computed with the T∗-test of [BSSY17].

Definition 4 (Algebraic clusters). We call algebraic cluster a triplet (B,m, g) where B ⊂ C is a
square complex box, m ≥ 1 is an integer and g is a univariate polynomial, such that #(B, g) =
#(∆(B), g) = m and Z(∆(B), g) is a natural cluster.

Consider g1 and h1 respectively defined in Eq. 1 and in Eq. 2. Let B1
1 be the square complex

box centered in 0 with width 2 ∗ 2−δ. (B1
1 , 2, g1) and (B1

1 , 3, h1) are both algebraic clusters.
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We introduce now Towers of algebraic clusters representing clusters of solutions of f(z) = 0 as
stacks of clusters of solutions.

Definition 5 (Towers of Algebraic Clusters, TAC). We call d-dimensional tower of algebraic
clusters, or d-TAC, a triple (B,m, f) where B = (B1, . . . , Bd) and the Bi’s are square complex
boxes, m = (m1, . . . ,md) and the mi’s are integers greater than 1, and f = (f1, . . . , fm) such that:

(1) (B1,m1, f1) is an algebraic cluster,

(2) ∀2 ≤ i ≤ d, (Bi,mi, (fi)b[i−1]) is an algebraic cluster, where b is any point in ∆(B).

If the triple (B,m, f) is a d-TAC, then for any 1 ≤ i ≤ d, (B[i],m[i], f [i]) is an i-TAC.

Let B1 and B2 be defined as in subsec. 2.2, and g,h be defined as in Eq. 1 and Eq. 2. There
exist no 2-TAC for g having B1 or B2 as box. To see this, remark that −2−δ, 0 and 2−δ are three
points of B1

1, and consider the three polynomials (g2)−2−δ , (g2)0 and (g2)2−δ . (g2)−2−δ and (g2)−2−δ
have each 1 root of multiplicity 1 in B1

2 while (g2)0 = z22 has 1 root of multiplicity 2 in B1
2, hence it

is not possible to satisfy condition (2) of def. 5. In the case of B2, (g2)−2−δ and (g2)2−δ have both
1 root of multiplicity 1 in B2

2 while (g2)0 has no root in B2
2.

In contrast, if δ ≥ 3, (B1, (3, 3),h) and (B2, (3, 1),h) are 2-TACs. As it has been remarked
above, (B1

1 , 3, h1) is an algebraic cluster and since B2
1 = B1

1 so is (B2
1 , 3, h1). Consider now the

polynomial h2(z1, z1) = (z2−z1)2(z2−1)z2. If z2 ∈ δ(B1
2) then z2 <

3
16 < 1 and for any z1 ∈ B1

1 , h2
has 3 roots counted with multiplicity in δ(B1

2) and in 3δ(B1
2). Hence for any b ∈ B1

1 , (B1
2 , 3, (h2)b)

is an algebraic cluster, and (B1, (3, 3),h) is a 2-TAC. It is easy to apply the same argument to show
that (B2, (3, 1),h) is a 2-TAC.

Theorem 6. Let (B,m, f) be a d-TAC where m = (m1, . . . ,md). Then Z(∆(B), f) is a natural
cluster of solutions of f(z) = 0, and #(B, f) = #(∆(B), f) = Πd

i=1mi.

Proof of Thm 6: We give the proof for d = 2. It is straightforward to generalyze it. Let
((B1, B2), (m1,m2), (f1, f2)) be a 2-TAC. Then (B1,m1, f1) is an algebraic cluster: #(B1, f1) =
#(∆(B1), f1) = #(3∆(B1), f1) = m1. Let Z(B1, f1) = {a1, . . . , al}.

(B2,m2, (f2)a) is an algebraic cluster for any a ∈ ∆(B1), and in particular for a1, . . . , al. Hence
for any 1 ≤ i ≤ l, (B2,m2, (f2)ai) is an algebraic cluster: #(B2, (f2)ai) = #(∆(B2), (f2)ai) =
#(3∆(B2), (f2)ai) = m2. Let Z(B2, (f2)ai) = {ai,1, . . . , ai,li}.

It is a consequence of Thm. 3 that #(∆((B1, B2)), (f1, f2)) = Π2
i=1mi = m1 ∗ m2. Then

∀1 ≤ i ≤ l, ∀1 ≤ j ≤ li, (ai, ai,j) is a solution of (f1, f2) and is in Z((B1, B2), (f1, f2)) but also
in Z(∆(B1, B2), (f1, f2)) and in Z(3∆(B1, B2), (f1, f2)). Finally, Z(3∆(B1, B2), (f1, f2)) do not
contain other solution than the (ai, ai,j)’s because Z(B1, f1) and Z(B2, (f2)ai) are natural clusters
for any i = 1, . . . , l.

2.4 Computing towers of algebraic clusters with the T∗-test.

We show here how to use the T∗-test defined in [BSSY17] to check that a triplet (B,m, f) is a tower
of algebraic clusters. To check the condition (2) of Def. 5, for a given 1 < i ≤ d, one has to count
the sum of multiplicities of roots of all the univariate polynomials (fi)b that are the specializations
of the multivariate polynomial fi for any b in the polydisk ∆(B[i−1]).

The T∗-test counts the sum of multiplicites of the roots of a univariate polynomial g in a complex
disc ∆. g is given to the T∗-test as a black-box that, for a given precision L ∈ N, L > 1, returns
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Algorithm 1 getAppTAC(L,B)

Input: An integer L > 1, a square complex box B ⊂ Ci.
Output: A pair (c, success) where c is an L-bit approximation of the center of B and success ∈
{0, 1}. If success = 1, c is an L-bit approximation of any b in ∆(B).

1: (c, success)← ( an L-bit approximation of the center of B, 0)
2: if r(∆(B)) ≤ 2−L then
3: success← 1
4: return (c, success)

Algorithm 2 getAppFib(L,B, g)

Input: An integer L > 1, a square complex box B ⊂ Ci−1, a polynomial g ∈ C[z1, . . . , zi].
Output: A pair (g̃, success) where g̃ is an L-bit approximation of (g)c with c the center of B, and

success ∈ {0, 1}. If success = 1, g̃ is an L-bit approximation of (g)b for any b in ∆(B).
1: L′ ← L
2: repeat
3: (c, success)← getAppTAC(L′,B)
4: g̃ ← L′-bit approximation of g
5: g̃ ← substitute z[i−1] with c in g̃
6: L′ ← 2 ∗ L′
7: until g̃ is a L-bit approximation or success = 0
8: return (g̃, success)

an L-bit approximation of g. Hence, the coefficients of g can be any number, particularly algebraic
numbers, that come with such a black-box.

We provide in Algo. 1 the black-box getAppTAC(L,B) computing for a given precision L and a
square complex box B an L-bit approximation of the center of B. If the radius of ∆(B) is less than
2−L, then an L-bit approximation of the center of B is an L-bit approximation of any b ∈ ∆(B).
getAppTAC(L,B) fails when r(∆(B)) > 2−L; if it successes it returns an L-bit approximation of
any b ∈∆(B).

The procedure getAppFib(L,B, g) defined in Algo. 2 computes, for a precision L, a square
complex box B ⊂ Ci−1 and g ∈ C[z[i]], an L-bit approximation g̃ of g specialized in the center
of B. For this, it computes an L′-bit approximation, with L′ ≥ L, of the center of B with
getAppTAC(L′,B), and fails if the latter procedure fails. As a consequence, if getAppFib(L,B, g)
successes, its output is an L-bit approximation of (g)b for any b ∈∆(B).

We now consider a version of the T∗-test noted T∗(∆, getApp) modified as follows. The black-
box getApp given in input can fail. If the latter situation happens, T∗(∆, getApp) returns −1.
Otherwise, T∗(∆, getApp) returns −1 or a positive number as defined in [BSSY17]. If it returns
a positive integer m, then ∆ contains m roots counted with multiplicities (of the polynomial
approximated by the black-box getApp).

The following assertion holds:

Lemma 7. Let B ⊂ Ci−1 be a square complex box, ∆ ⊂ C be a disk and g a polynomial in C[z[i]].
If T∗(∆, getAppFib(.,B, g)) = m ≥ 0, then #(∆, (g)b) = m for any b ∈∆(B).

Let getAppPol(L, g) be a black box returning an L-bit approximation of g ∈ C[z1] (it never
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fails). The following proposition is a consequence of Lem. 7 and states how to check that the triple
(B,m, f) is a TAC.

Proposition 8. Let (B,m, f) be a triple where B = (B1, . . . , Bd), m = (m1, . . . ,md) and f =
(f1, . . . , ff ) satisfy:

(i) T∗(∆(B1), getAppPol(., f1)) = T∗(3∆(B1), getAppPol(., f1)) = m1,

(ii) ∀2 ≤ i ≤ d, T∗(∆(Bi), getAppFib(.,B
[i−1], fi)) = T∗(3∆(Bi), getAppFib(.,B

[i−1], fi)) = mi.

Then (B,m, f) is a d-TAC.

3 Clustering the solutions of a triangular system

We build on the clustering algorithm of [BSS+16] a recursive algorithm that solves the local solution
clustering problem for triangular systems. We suppose the existence of the procedure ccluster
specified in Lem. 10 and using the T∗-test, that implements the clustering algorithm of [BSS+16].

In Algo. 3 we propose a recursive procedure clusterTriSys(f ,B, ε) solving the local solution
clustering problem for f ,B, ε where f(z) = 0 is a triangular systems, as asserted in Prop. 9 below.

Proposition 9. Let d > 0 and 1 ≤ i ≤ d be two integers, f(z) = 0 be a triangular system where
f = (f1, . . . , fd), B = (B1, . . . , Bd) ⊂ Cd be a square complex box and ε ∈ R s.t. 0 < ε < 1

2 .

The procedure clusterTriSys(f [i],B[i], ε) defined in Algo. 3 terminates and returns a list
{(Bj ,mj , f [i])|1 ≤ j ≤ l} of i-TACs. Letting mj = (mj

1, . . . ,m
j
i ) for 1 ≤ j ≤ l, the set

{Z(∆(Bj), f [i]),Πi
k=1m

j
k)|1 ≤ j ≤ l} satisfies:

(a) ∆(Bj) are pairwise disjoint polydiscs of radius ≤ ε,

(b) Πi
k=1m

j
k = #(∆(Bj), f [i]) = #(3∆(Bj), f [i]) for all j,

(c) Z(B[i], f [i]) ⊆
⋃

1≤j∈l Z(∆(Bj), f [i]) ⊆ Z(2B[i], f [i]).

If we prove that Prop. 9 holds for i = d, then Algo. 3 computes a solution of the local solution
clustering problem.

We prove this by induction in Subsec. 3.4. Before describing our main algorithm, we specify
the procedure ccluster:

Lemma 10 (see [BSS+16]). Let g be a univariate polynomial and getApp(L, g) be a black-box
computing an L-bit approximation of g for any L > 1, B ⊂ C be a square complex box and ε ∈ R
such that 0 < ε < 1. ccluster(getApp(., g), B, ε) terminates and computes a set {(Bj ,mj)|1 ≤ j ≤ l}
satisfying:

1. the ∆(Bj)’s are pairwise disjoint discs with of radius less than ε,

2. mj = #(∆(Bj), g) = #(3∆(Bj), g), and

3. Z(B, g) ⊆
⋃
j Z(Bj , g) ⊆ Z(2B, g).
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The procedure clusterTriSys(f ,B, ε) defined in Algo. 3 computes d-TACs for the system f(z) =
0. It first computes d− 1-TACs for the system f [d−1](z[d−1]) = 0 with the recursive call in step 3.
This step provides a list S = {(Bj

∗,m
j
∗, f

[d−1])|1 ≤ j ≤ l′} of d− 1-TACs. Then for each d− 1-TAC
(Bj
∗,m

j
∗, f

[d−1]) of S, the clusters of (f)d specialized in any point of Bj
∗ are computed in step 5.

While performing this step, (Bj
∗,m

j
∗, f

[d−1]) is possibly split into several TACs. This is performed
by Algo. 5 and Algo. 6 described in subsec. 3.2 and subsec. 3.3.

The terminal case of Algo. 3 is the case where d = 1, i.e. f(z) = 0 is a system of one polynomial
equation. This case is discussed in subsec. 3.1.

Algorithm 3 clusterTriSys(f ,B, ε)

Input: A triangular system f(z) = 0 where f = (f1, . . . , fd), a square complex box B =
(B1, . . . , Bd) ⊂ Cd, a real number ε ∈ R s.t. 0 < ε < 1

2 .
Output: A list {(Bj ,mj , f)|1 ≤ j ≤ l} of d-TACs .

1: R ← ∅, S ← ∅
2: if d > 1 then
3: S ← clusterTriSys(f [d−1],B[d−1], ε) //recursive call
4: for (Bcur,mcur, f [d−1]) ∈ S do
5: Rtemp ← clusterPolInF iber(fd, (B

cur,mcur, f [d−1]), Bd, ε) //see Algo. 5
6: append(R,Rtemp)
7: else //d = 1
8: R ← clusterPol(f1, B1, ε) //the terminal case: see Algo. 4

9: return R

3.1 The terminal case

The terminal case, i.e. finding clusters of roots of f1 ∈ C[z1] of size less that ε in the square complex
box B ⊂ C is addressed by calling ccluster(getAppPol(., f1), B, ε)

The procedure clusterPol(g,B, ε) defined in Algo. 4 calls ccluster and for each pair (Bj ,mj)
in the output of ccluster, forms the triplet (Bj ,mj , (g)) as in step 4. of Algo. 4.

Algorithm 4 clusterPol(g,B, ε)

Input: A polynomial g ∈ C[x1], an initial box B, a real number ε ∈ R s.t. 0 < ε < 1
2 .

Output: A list {(Bj ,mj , f)|1 ≤ j ≤ l}, with f = (g), of 1-TACs.
1: R ← ∅, S ← ∅
2: S ← ccluster(getAppPol(., g), B, ε)
3: for (Bj ,mj) ∈ S do
4: R = R∪ {((Bj), (mj), (g))}
5: return R

3.2 The non-terminal case

We consider now the non-terminal case, that is, be given an i−1-TAC (B,m, f [i−1]) where 1 < i ≤ d,
compute the clusters of solutions of fi specialized in any point of B.
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This case is addressed in the procedure clusterPolInF iber defined in Algo. 5 by calling the
clustering procedure ccluster. For this, we define the black-box getAppFib2 (see Algo. 6 in sub-
sec. 3.3). This black-box computes an L-bit approximation of fi specialized in any point of ∆(B).
It never fails in computing such an approximation: if the radius of ∆(B) is to big to do so, the
i− 1-TAC (B,m, f [i−1]) is shrunk and possibly split in several i− 1-TACs that are appended to a
working list L.

clusterPolInFiber pops the working list L initialized to {(B,m, f [i−1])} and processes the
i− 1-TACs until L is empty.

Algorithm 5 clusterPolInF iber(g, (B,m, f), B, ε)

Input: A polynomial g ∈ C[z[i]], an i − 1-TAC (B,m, f), a square complex box B ⊂ C, a real
number ε ∈ R s.t. 0 < ε < 1

2 .
Output: A list {(Bj ,mj , f ′)|1 ≤ j ≤ l}, with f ′ = (f , g), of i-TACs.

1: L ← {(B,m, f)}
2: R ← ∅, S ← ∅
3: while L 6= ∅ do
4: (Bcur,mcur, f)← pop(L)
5: getApp← getAppFib2(., g, (Bcur,mcur, f),L) //see Algo. 6
6: S ← ccluster(getApp,B, ε) // (Bcur,mcur, f) and L are possibly modified
7: for (Bj ,mj) ∈ S do
8: R = R∪ {((Bcur, Bj), (mcur,mj), (f , g))}
9: return R

3.3 The black box

Algo. 6 defines the black-box getAppFib2(L, g, (B,m, f),L) that computes an L-bit approximation
g̃ of (g)b for any point of ∆(B). It uses the procedure getAppFib(L,B, g) defined in Algo. 2
but never fails: when the latter call fails, the TAC (B,m, f) is shrunk until getAppFib(L,B, g)
successes.

If i− 1 = 1, the i− 1-TAC (B,m, f) is shrunk by calling clusterPol(f1,B
[1], 2−L

′
), that returns

a list {(Bj ,mj , f)|1 ≤ j ≤ l} of i− 1-TACs such that the radius of ∆(Bj) is smaller than 2−L
′
.

If i − 1 > 1, the i − 1-TAC (B,m, f) is shrunk by calling clusterPolInF iber as in step 6 that
returns a list {(Bj ,mj , f)|1 ≤ j ≤ l} of i−1-TACs where the radius of ∆(Bj) is smaller than 2−L

′
.

Shrinking a TAC can obviously split it into several TACs. If so, one of the obtained TAC
replaces (B,m, f) and the other ones are stored in the list L.

3.4 Correctness and termination

We use an induction scheme to prove Prop. 9. Let n be an integer such that 1 ≤ n ≤ d. We note
P[9](n) the property: Prop. 9 is true for i = n.

When called with inputs f [1] = f1, B[1] = (B) where B ⊂ C and ε, clusterTriSys(f [1],B[1], ε)
calls clusterPol(f1, B, ε) and returns its output. To prove P[9](1), we introduce the following
corollary that is a direct consequence of Lem. 10.
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Algorithm 6 getAppFib2(L, g, (B,m, f),L)

Input: A precision L ∈ N s.t L > 1, g ∈ C[z[i]], an i − 1-TAC (B,m, f) where f = (f1, . . . , fi−1)
and B = (B1, . . . , Bi−1), a list L of i− 1-TACs.

Output: Modifies in-place (B,m, f) in (B′,m′, f) and L in L′ such that L ⊆ L′ and if a ∈ Z(B, f ,),
then a is either in Z(B′, f ,) or in a TAC in L′.
Returns an L-bit approximation g̃ of (g)b for any b ∈∆(B′).

1: L′ ← L, S ← ∅
2: (g̃, success)← getAppFib(L,B, g) //see Algo. 2
3: while success = 0 do
4: L′ ← 2L′

5: if i− 1 > 1 then
6: S ← clusterPolInF iber(fi−1, (B

[i−2],m[i−2], f [i−2]), Bi−1, 2
−L′) //see Algo. 5

7: else
8: S ← clusterPol(f1,B

[1], 2−L
′
)

9: (B,m, f)← pop(S)
10: append(L,S) and S ← ∅
11: (g̃, success)← getAppFib(L,B, g) //see Algo. 2

12: return g̃

Corollary 11 (of Lem. 10). For any univariate polynomial f1 ∈ C[z1], for any square complex box
B ⊂ C and any real number ε s.t. 0 < ε < 1

2 , clusterPol(f1, B, ε) terminates and returns a list

{(Bj ,mj , (f1))|1 ≤ j ≤ l} of 1-TACs, where mj = (mj
1) for 1 ≤ j ≤ l, satisfying:

(1.a) ∆(Bj) are pairwise disjoints polydiscs of radius ≤ ε,

(1.b) Π1
i=1m

j
i = #(∆(Bj), (f1)) = #(3∆(Bj), (f1)) for all j, and

(1.c) Z(B, (f1)) ⊆
⋃

1≤i∈l Z(∆(Bj), (f1)) ⊆ Z(2B), (f1)).

Let now n ≥ 1 and suppose that P[9](n) holds. We show that P[9](n + 1) holds. When
d ≥ n+1 > 1, clusterTriSys(f [n+1],B[n+1], ε) calls clusterTriSys(f [n],B[n], ε) that terminates and
returns a list S of n-TACs satisfying (a), (b) and (c) of Prop. 9 for i = n. Then it calls
clusterPolInF iber(fn+1, (B

cur,mcur, f [n]), Bn+1, ε) for each n-TAC (Bcur,mcur, f [n]) in S, and ap-
pends the output in a list R. We introduce the following proposition, of which we postpone the
proof:

Proposition 12. Let 1 ≤ i < d, fi+1 ∈ C[zi+1], (B,m, f [i]) be an i-TAC, B ⊂ C be a square
complex box and ε ∈ R s.t. 0 < ε < 1

2 .

clusterPolInFiber(fi+1, (B,m, f [i]), B, ε) terminates and returns a list {(Bj ,mj , f [i+1])|1 ≤ j ≤
l} of i+ 1-TACs, where mj = (mj

1, . . . ,m
j
i+1) for 1 ≤ j ≤ l, satisfying:

(2.a) ∆(Bj) are pairwise disjoints polydiscs of radius ≤ ε,

(2.b) Πi+1
k=1m

j
k = #(∆(Bj), f [i+1]) = #(3∆(Bj), f [i+1]) for all j, and

(2.c) Z((B, B), f [i+1]) ⊆
⋃

1≤i∈l Z(∆(Bj), f [i+1]) ⊆ Z(2(B, B), f [i+1]).
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From Prop. 12 with i = n, clusterTriSys(f [n+1],B[n+1], ε) terminates and returns a list R =
{(Bj ,mj , f [n+1])|1 ≤ j ≤ l}. From Prop. 12 with i = n, any element of this list is an n+ 1-TAC.

The ∆(Bj)’s have radius less than ε and are pairwise disjoints because for k 6= l, if ∆(Bj)[n] 6=
∆(Bk)[n] then ∆(Bj)[n] and ∆(Bk)[n] are pairwise disjoint (property (a) of Prop. 9 for i = n).
Otherwise, (∆(Bj)[n] = ∆(Bk)[n]), the ∆(Bj)[n] and ∆(Bk)[n] (property (2.a) of Prop. 12 for
i = n). Hence property (a) of Prop. 9 for i = n+ 1 holds.

Property (b) of Prop. 9 for i = n + 1 is a direct consequence of property (2.b) of Prop. 12 for
i = n.

To prove the first inclusion of property (c) of Prop. 9 for i = n + 1, we consider a point
a = (a1, . . . , an+1) of Z((B[n], Bn+1), f

[n+1]). From property (c) of Prop. 9 for i = n, it exists an
n-TAC (Bcur,mcur, f [n]) returned by clusterTriSys(f [n],B[n], ε) such that a[n] ∈ ∆(Bcur). Since
an+1 ∈ Bn+1 and from property (2.c) of Prop. 12 for i = n, a is in an n + 1-TAC returned
by clusterPolInF iber(fn+1, (B

cur,mcur, f [n]), Bn+1, ε), hence it exists a j such that a ∈ ∆(Bj).
To prove the second inclusion of property (c) of Prop. 9 for i = n + 1, we consider a j and a
point a = (a1, . . . , an+1) of Z((Bj , Bn+1), f

[n+1]). It exists an n-TAC (Bcur,mcur, f [n]) returned by
clusterTriSys(f [n],B[n], ε) such that a[n] ∈ ∆(Bcur) and from property (c) of Prop. 9 for i = n,
a[n] ∈ Z(2B[n], f [n]), and from property (2.c) of Prop. 12 for i = n, an+1 is in 2Bn+1.

Then the n+1-TACs returned by clusterTriSys(f [n+1],B[n+1], ε) satisfy properties (a), (b) and
(c) of Prop. 9 for i = n + 1 and we have P[9](n) ⇒ P[9](n + 1), what concludes the proof or
Prop. 9.

Proof of Prop. 12: We also provide an inductive proof for Prop. 12. Let n be an integer such
that 1 ≤ n < d. We note P[12](n) the property: Prop. 12 is true for i = n.

Since the procedure clusterPolInF iber calls indirectly the procedure getAppFib2, we introduce
the following proposition:

Proposition 13. Let 1 ≤ i < d, let (B,m, f [i]) be an i-TAC and fi+1 ∈ C[z[i+1]]. Then
getAppFib2(L, fi+1, (B,m, f [i]),L) terminates. Let ˜fi+1 be the output of this call and let (B′,m′, f [i])
and L′ be the modified instances of (B,m, f [i]) and L′.

Then ˜fi+1 is an L-bit approximation of (fi+1)b for any b ∈ ∆(B′). Furthermore, (L′ \ L) ∪
{(B′,m′, f [i])} = {(Bj ,mj , f [i])|1 ≤ j ≤ l} is a set of i-TACs, where mj = (mj

1, . . . ,m
j
i ) for

1 ≤ j ≤ l, satisfying:

(3.a) ∆(Bj) are pairwise disjoints polydiscs of radius ≤ ε,

(3.b) Πi
k=1m

j
k = #(∆(Bj), f [i]) = #(3∆(Bj), f [i]) for all j, and

(3.c) Z(B, f [i]) =
⋃

1≤i∈l Z(∆(Bj), f [i]).

We note P[13](n) the property: Prop. 13 is true for i = n.

We first prove P[13](1). First, getAppFib(L,B, f1) given in Algo. 2 terminates for any L and B
and if B if sufficiently small, it returns a pair (1, f̃1) where f̃1 is an L-bit approximation of (f1)b for
any b ∈∆(B). In getAppFib2(L, f2, (B,m, f [1]),L), B is shrink with clusterPol(f1,B, 2

−L′) with
increasing L′ until it is sufficiently small so that getAppFib(L,B, f1) successes. Since clusterPol
terminates (Corollary. 11), getAppFib2(L, f2, (B,m, f [1]),L) terminates, and f̃2 is L-bit approxi-
mation of (f2)b for any b ∈∆(B′).

The call clusterPol(f1,B, 2
−L′) returns a list of 1-TAC verifying conditions (1.a), (1.b) and

(1.c) of Corollary. 11. It is clear that they satisfy conditions (3.a), (3.b) of Prop. 13. The equality
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in condition (3.c) holds because (B,m, f [1]) is a TAC, and as a consequence Z(B, f [1]) is a natural
cluster, then Z(B, f [1]) = Z(2B, f [1]).

We now prove P[12](1). Each (Bcur,mcur, f) in the working list L managed by
clusterPolInF iber(f2, (B,m, f [1]), B, ε) is an 1-TAC and after the call to ccluster that terminates
from Lem. 10, any solution that was in Z(Bcur, f1) before the call to ccluster is either in Z(Bcur, f1)
or in an i-TAC in L. Then ccluster finds all the clusters of roots of f2 in B in the fiber over Bcur,
and properties (2.a), (2.b) and (2.c) of Prop. 12 holds.

Let now n ≥ 1 and suppose that P[12](n) holds. Then P[12](n + 1) holds. One can easily
transform the proof of P[13](1) into the proof of P[13](n + 1), and the proof of P[12](1) into the
proof of P[12](n+ 1). It concludes the proof of Prop. 12.

4 Implementation and benchmarks

In this section we describe briefly a prototype implementation of our local solution clustering
algorithm for triangular systems. Then we present comparative results with two homotopy solvers.

4.1 A prototype implementation

We described recently our implementation of the root clustering algorithm of [BSS+16]. The
C implementation2 comes with an interface for Julia 3 called Ccluster.jl4. The package provides
the function ccluster that implements the eponymous procedure described in Subsec. 3.1. This
function also accepts in input a black-box delivering L-bit approximation of the coefficients of a
polynomial.

We used Ccluster.jl as the corner stone of our Julia implementation of the local solution
clustering algorithm for triangular systems described in Sec. 3. This implementation provides solver
called tcluster that takes as input a triangular system f(z) = 0, a square complex box B and a
size ε.

We used tcluster to cluster the solutions of g(z) = 0, where g is defined as in Eq. 1. For any
δ and any input size ε, we obtain 4 clusters containing respectively the solutions a1, a2, a3, a4 of
g(z) = 0, and the sum of multiplicities in each cluster is 1.

Let now δ = 100, and consider the system h(z) = 0, where h is defined as in Eq. 2. When
clustering its solutions with tcluster and ε = 2−10, we obtain 2 clusters: one contains a1, a4, a5,
a6 and has a sum of multiplicities 9, the other ones contains a2, a3, and has a sum of multiplicities
3. When calling tcluster with ε = 2−50, we obtain 4 clusters: one contains a1, a6 and the sum of
multiplicities is 6, one contains a4, a5 and the sum of multiplicities is 3, and the other ones contain
respectively a2 and a3 with multiplicities 2 and 1. When calling tcluster with ε = 2−100, the 6
solutions are each in a cluster with the appropriated multiplicity.

4.2 Benchmarks

Here we present benchmarks of tcluster for randomly generated triangular systems of polynomial
equations with or without multiple solutions. We compare our solver with two homotopy solvers.

2 https://github.com/rimbach/Ccluster
3https://julialang.org/
4https://github.com/rimbach/Ccluster.jl
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The homotopy solvers The homotopy-continuation approach to solve a system of d polynomial
equations in d unknowns, called target system, proceeds in two steps. First, an upper bound D on
the number of solutions (counted with multiplicities) of the target system is computed and an initial
system having D complex solutions, which solutions are known, is generated. Then, an homotopy
is defined that links by one-dimensional smooth manifolds, called homotopy paths, each solution of
the initial system to a solution of the target system. Each complex solution of the target system is
the end-point of an homotopy path. However, when the homotopy paths are tracked with numerical
non-certified method, as it is the case for efficient existing implementations, some solutions can be
missing in particular when the path tracker jumps from a path to another. Note also that when a
solution of the target system has a multiplicity m > 1, m homotopy paths have this solution as an
endpoint. Deciding that to paths have the same end-point in a numerical framework requires some
dedicated techniques.

HOM4PS-2.0 5 and Bertini 6 ([BHSW]) are two homotopy solvers. HOM4PS-2.0 is known for
being very fast but not robust at all (i.e. it does not find all the solutions). Bertini is in general
slower than HOM4PS-2.0 but much more robust; it implements a path-tracker using Adaptive Multi-
Precision (AMP) that is an option for Bertini . Below we will use this option for Bertini and
call it Bertini AMP . Bertini AMP uses a test based on α-theory to decide that two paths have the
same end-point.

The systems We use here the approach proposed in [CGY09] to generate triangular systems of
polynomial equations without multiple solutions or with multiple solutions. The type of a triangular
system f(z) = 0 where f = (f1, . . . , fd) is a list (n1, . . . , nd) where ni = degzi(fi). Notice that the
number of solutions counted with multiplicities of a system of generic dense polynomials of type
(n1, . . . , nd) is d1 × . . .× dn.

A random dense polynomial fi in C[z[i]] of degree ni in zi with integer coefficients in [−2−9, 29]
is recursively generated as follows: if i = 1, f1 is a dense polynomial in C[z1] of degree n1 which
coefficients are random integers in the range [−2−9, 29]. If i > 1, fi =

∑ni
j=0 gjz

j
i where gj ∈ C[z[i−1]]

is a random dense polynomial of degree ni − j in zi−1 with integer coefficients in [−2−9, 29]. A
random dense triangular system f(z) = 0 of type (n1, . . . , nd) is generated by generating successively
random dense polynomials fi of degrees ni in zi with integer coefficients in [−2−9, 29]. We will
assume that such systems have only solutions of multiplicity one.

A triangular system f(z) = 0 of type (n1, . . . , nd) with multiple solutions is generated as follows
(see [CGY09]): f1 is a random dense polynomial in C[z1] of degree n1 with integer coefficients in

[−2−9, 29]. For i = 2, . . . , n, fi = a2i (bizi + ci)
bn1+1

2
c−b di

2
c where ai is a random dense polynomial

in z[i] with degree bni2 c in z1 with integer coefficients in [−2−9, 29], and bi, ci are random dense

polynomials in z[i−1] of degrees ni in zi−1 with integer coefficients in [−2−9, 29].

The benchmarks We propose two benchmarks: one concerning solving triangular systems with
different types without multiple solutions (see Table. 1) and one concerning triangular systems with
multiple solutions (see Table. 2).

In both cases, we generated 5 systems of each type (see columns #sys in Tables) and solved
systems with the two homotopy solvers (columns HOM4PS-2.0 and Bertini AMP ) and two versions

5 http://www.math.nsysu.edu.tw/~leetsung/works/HOM4PS_soft.htm
6https://bertini.nd.edu/
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tcluster local tcluster global HOM4PS-2.0 Bertini AMP

type #sys (#Sols:#Clus) τ` (s) (#Sols:#Clus) τg (s) #Sols τh (s) #Sols τb (s)

(3,3) 5 (2.00,2.00) 0.01 (9 ,9 ) 0.02 9 0.00 9 0.0

(6,6) 5 (11.4,11.4) 0.02 (36 ,36 ) 0.08 36 0.00 36 0.06

(9,9) 5 (31.2,31.2) 0.08 (81 ,81 ) 0.28 81 0.00 81 0.37

(3,3,3) 5 (4.00,4.00) 0.02 (27 ,27 ) 0.10 27 0.00 27 0.02

(6,6,6) 5 (34.2,34.2) 0.11 (216 ,216) 0.68 216 0.06 216 1.17

(9,9,9) 5 (149,149) 0.55 (729 ,729) 2.40 713 0.47 729 29.3

(3,3,3,3) 5 (3.00,3.00) 0.02 (81 ,81 ) 0.31 81 0.01 81 0.16

(6,6,6,6) 5 (63.4,63.4) 0.38 (1296 ,1296) 4.92 1274 1.37 1296 24.2

(9,9,9,9) 5 (559,559) 4.08 (6561 ,6561) 33.2 6036 111 6560 1605

(3,3,3,3,3) 5 (5.00,5.00) 0.08 (243 ,243) 1.47 243 0.11 243 0.64

(6,6,6,6,6) 5 (155,155) 2.42 (7776 ,7776) 49.6 7730 28.6 7776 318

(9,9,9,9,9) 5 (1739,1739) 36.5 (59049,59049) 523 - - ? >3600

Table 1: Solving triangular systems of randomly generated polynomials with tcluster ,
HOM4PS-2.0 and Bertini AMP . For tcluster local (resp. global) we used ε = 53 and the ini-
tial initial domain is ([−1, 1] +

√
−1[−1, 1])d (resp. ([−5, 5]× 105 +

√
−1[−5, 5]× 105)d).

of tcluster : “tcluster local” searches the clusters in the initial domain ([−1, 1] +
√
−1[−1, 1])d

(where d is the dimension of the system) and “tcluster global” searches the clusters in the initial
domain ([−5, 5]× 105 +

√
−1[−5, 5]× 105)d.

The columns #Sols give the average number of solutions found by each solver for each type,
and τ`, τg, τh and τb the average sequential times in seconds required by each solver, on a Intel(R)
Core(TM) i7-7600U CPU @ 2.80GHz machine with linux. For tcluster local and tcluster global,
the columns #Clus give the average number of clusters found.

For the system we tested, tcluster global found all the solutions: it can be verified by com-
paring for each type (n1, . . . , nd) #Sols to

∏d
i=1 ni.

Table 1 reports benchmarks for triangular systems whose equations are random dense polyno-
mials with integers coefficients within [−2−9, 29]. For type (9,9,9,9,9), Bertini AMP has been stop
after 1 hour. For type (9,9,9,9,9) HOM4PS-2.0 terminates with a segmentation fault.

Homotopy solvers should find all the solutions of a system. Bertini AMP failed in this task
for one system of type (9, 9, 9, 9) but acknowledged that two paths have crossed. HOM4PS-2.0 re-
turns incorrect results but do not warn about this. In contrast, tcluster global always finds the
appropriated number of solutions.

Regardless of the correction of the results, tcluster global is faster that HOM4PS-2.0 for systems
of types (9, 9, 9, 9), and faster that Bertini AMP for systems which components have a degree greater
than 3. The local version of tcluster is in general faster than the other solvers.

Table 2 reports benchmarks for triangular systems having multiple solutions. For systems of each
type, tcluster finds clusters containing one solution and for each cluster, the sum of multiplicities
of the solutions in the cluster is the multiplicity of the unique solution it contains. For each system,
the number of clusters found by tcluster global is then the number of distinct complex solutions
the system has. HOM4PS-2.0 fails in finding all the solutions. Bertini AMP also computes the
multiplicity of solutions, and its output is correct except for one system of type (6,6) where it fails
to decide equality of solutions. For type (9,9,9), Bertini AMP has been stop after 1 hour.
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tcluster local tcluster global HOM4PS-2.0 Bertini AMP

type #sys (#Sols:#Clus) τ` (s) (#Sols:#Clus) τg (s) #Sols τh (s) #Sols τb (s)

(3,3) 5 (3.60,2.40) 0.03 (9 ,6) 0.02 8.60 0.00 6 1.59

(6,6) 5 (10.8,5.40) 0.02 (36 ,18) 0.09 36 0.00 21.8 3.63

(9,9) 5 (23.8,13.6) 0.08 (81 ,45) 0.29 67.4 0.06 45 218

(3,3,3) 5 (7.00,3.60) 0.04 (27 ,12) 0.07 25 0.01 12 25.1

(6,6,6) 5 (35.2,8.80) 0.11 (216,54) 0.49 210 0.16 54 47.9

(9,9,9) 5 (113,37.6) 0.56 (729,225) 2.46 357 18.9 ? >3600

Table 2: Solving triangular systems of randomly generated polynomials with multiple roots with
tcluster , HOM4PS-2.0 and Bertini AMP . For tcluster local (resp. global) we used ε = 53 and
the initial initial domain is ([−1, 1] +

√
−1[−1, 1])d (resp. ([−5, 5]× 105 +

√
−1[−5, 5]× 105)d).

tcluster global is always faster than Bertini AMP , and is faster than HOM4PS-2.0 for systems
of type (9, 9, 9).
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