
Clustering Complex Zeros of Triangular System
of Polynomials?

Rémi Imbach1, Marc Pouget2, and Chee Yap1

1 Courant Institute of Mathematical Sciences, New York University, USA
remi.imbach@nyu.edu, yap@cs.nyu.edu

2 Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
marc.pouget@inria.fr

Abstract. This paper gives the first algorithm for finding a set of nat-
ural ε-clusters of complex zeros of a triangular system of polynomials
within a given polybox in Cn, for any given ε > 0. Our algorithm is
based on a recent near-optimal algorithm of Becker et al (2016) for clus-
tering the complex roots of a univariate polynomial where the coefficients
are represented by number oracles.

Our algorithm is numeric, produces guaranteed results and is based on
subdivision. We implemented it and compared it with state of the art
solvers on various triangular systems, including systems with clusters of
solutions or multiple solutions.

Keywords: complex root finding · triangular polynomial system · near-
optimal root isolation · certified algorithm · complex root isolation ·
oracle multivariable polynomial · subdivision algorithm · Pellet’s theo-
rem.

1 Introduction

This report considers the fundamental problem of finding the complex solutions
of a system f(z) = 0 of n polynomial equations in n complex variables z =
(z1, . . . , zn). We will call triangular a system f = (f1, . . . , fn) : Cn → Cn where
fi ∈ C[z1, . . . , zi] for 1 ≤ i ≤ n. Throughout this paper, we use boldface symbols
to denote vectors and tuples; for instance 0 stands for (0, . . . , 0).

We are interested in finding clusters of solutions of triangular systems and in
counting the total multiplicity of solutions in clusters. Solving triangular systems
is a fundamental task in polynomial equations solving, since many algebraic
approaches (Gröbner basis, CAD, resultants,. . .) generally reduce the original
system to triangular systems.

? Rémi’s work is supported by the European Union’s Horizon 2020 research and inno-
vation programme No. 676541, NSF Grants # CCF-1563942, # CCF-1564132 and
CCF-1708884. Chee’s work is supported by NSF Grants # CCF-1423228 and
CCF-1564132.

2 R. Imbach et al.

The problem of isolating the complex solutions of a polynomial system in an
initial region-of-interest (ROI) is defined as follows: let Zero(B, f) denote the set
of solutions of f in B, regarded3 as a multiset.

Local Isolation Problem (LIP):
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set {∆1, . . . ,∆l} of pairwise disjoint polydiscs of radius ≤ ε
where

- Zero(B, f) =
⋃l

j=1 Zero(∆j , f).

- each Zero(∆j , f) is a singleton.

This is “local” because we restrict attention to roots in a ROI B. There are
two issues with (LIP) as formulated above: deciding if Zero(∆j , f) is a singleton,
and deciding if such a singleton lies in B, are two “zero problems” that require
exact computation. Generally, this can only be decided if f is algebraic. Even in
the algebraic case, this may be very expensive. In [5,1] these two issues are side-
stepped for the univariate case by defining the local clustering problem which is
described next in a multivariate setting.

Before proceeding, we fix some notations. A polydisc ∆ is a vector of complex
discs. The center (resp. radius r(∆)) of ∆ is the vector of the centers (resp. radii)
of its components. If δ is any positive real number, we denote by δ∆ the polydisc
that has the same center than ∆ and radius δr(∆). We also say r(∆) ≤ δ if
each component of r(∆) is ≤ δ. A (square complex) box B is a complex interval
[`1, u1] + i([`2, u2]) where u2 − `2 = u1 − `1 and i :=

√
−1; the width w(B) of B

is u1 − `1 and the center of B is u1 + w(B)
2 + i(u2 + w(B)

2). A polybox B ∈ Cn is
a vector boxes. The center (resp. width w(B)) of B is the vector of the centers
(resp. widths) of its components. If δ is any positive real number, we denote by
δB the polybox that has the same center than B and width δw(B).

We introduce three notions to define the local solution clustering problem.
Let a ∈ Cn be a solution of f(z) = 0. The multiplicity of a in f , also called the
intersection multiplicity of a in f is classically defined by localization of rings as
in [6, Def. 1, p. 61], we denote it by #(a, f). An equivalent definition uses dual
spaces, see [3, Def. 1, p. 117]. For any set S ⊆ Cn, we denote by Zero(S, f) the
multiset of zeros of f in S, and #(S, f) the total multiplicity of Zero(S, f). If S is
a polydisc so that Zero(S, f)is non-empty, we call Zero(S, f) a cluster and S an
isolator of the cluster. If in addition, we have that Zero(S, f) = Zero(3 ·S, f), we
call Zero(S, f) a natural cluster and call S a natural isolator. In the context of
numerical algorithm, the notion of cluster of solutions is more meaningful than
that of solution with multiplicity since the perturbation of a multiple solution

3 A multiset S is a pair (S, µ) where S is an ordinary set called the underlying set and
µ : S → N assigns a positive integer µ(x) to each x ∈ S. Call µ(x) the multiplicity
of x in S, and µ(S) :=

∑
x∈S µ(x) the total multiplicity of S. Also, let |S| denote

the cardinality of S. If |S|= 1, then S is called a singleton. We can form the union
S ∪ S′ of two multisets with underlying set S ∪ S′, and the multiplicities add up as
expected.

Clustering Complex Zeros of Triangular System of Polynomials 3

generates a cluster. We thus “soften” the problem of isolating the solutions of a
triangular system of polynomial equations while counting their multiplicities by
translating it into the local solution clustering problem defined as follows:

Local Clustering Problem (LCP):
Given: a polynomial map f : Cn → Cn, a polybox B ⊂ Cn, ε > 0
Output: a set of pairs {(∆1,m1), . . . , (∆l,ml)} where:

- the ∆js are pairwise disjoint polydiscs of radius ≤ ε,
- each mj = #(∆j , f) = #(3∆j , f)

- Zero(B, f) ⊆
⋃l

j=1 Zero(∆j , f) ⊆ Zero(2B, f).

In this (LCP) reformulation of (LIP), we have removed the two “zero problems”
noted above: we output clusters to avoid the first one, and we allow the output
to contain zeroes outside the ROI B to avoid the second one. We choose 2B for
simplicity; it is easy to replace the factor of 2 by 1 + δ for any desired δ > 0.

2 Our contributions

We propose an algorithm for solving the (LCP), i.e. computing natural clusters,
for a triangular system f(z) = 0 with a zero-dimensional solution set. To this
end, we propose a formula to count the sum of multiplicities of solutions in a
cluster. Our formula is derived from a result of [6] that links the intersection
multiplicity of a solution of a triangular system to multiplicities in fibers. We
define towers of clusters to encode clusters of solutions of a triangular system in
stacks (or towers) of clusters of roots of univariate polynomials.

Our algorithm leverages from the triangular form of f : it computes first clus-
ters of solutions of f1 = · · · = fn−1 = 0, then clusters of roots of fn on fibers
over clusters previously found. The components of those fibers are clusters of
roots of univariate polynomials that are advantageously represented by oracles;
oracle means here a procedure providing approximations at any precision.

We propose a bound on the loss of accuracy induced by the specialization of
fn on a fiber approximated at a given precision; the coefficients of fn specialized
in oracle fibers are thus also known by oracles.

To compute clusters of roots of a univariate polynomial given as an oracle,
we rely on the recent algorithm described in [1], based on a predicate introduced
in [2] that combines Pellet’s theorem and Graeffe iterations to determine the
number of roots counted with multiplicities in a complex disc; this predicate is
called soft because it only requires the polynomial to be known as approxima-
tions. It is used in a subdivision framework combined with Newton iterations to
achieve a near optimal complexity. An implementation of [1] is described in [4].

We also implemented our algorithm and made this implementation available
to the community4 as a package for Julia5. We compare our algorithm with
state of the art solvers for solving triangular algebraic systems. We also consider

4 https://github.com/rimbach/Ccluster.jl
5 https://julialang.org/

https://github.com/rimbach/Ccluster.jl
https://julialang.org/

4 R. Imbach et al.

the case of triangular systems obtained by triangularization with regular chains
algorithms. Our implementation appears to be particularly efficient for systems
with a small number of variables but with high degrees. Another interesting
feature is the ability to solve locally, that is over a small polybox.

References

1. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root
clustering for a complex polynomial. In: Proceedings of the ACM on International
Symposium on Symbolic and Algebraic Computation. pp. 71–78. ISSAC ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2930889.2930939

2. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm
for complex root isolation based on Pellet test and Newton iteration. J. Symbolic
Computation 86, 51–96 (May-June 2018)

3. Dayton, B.H., Zeng, Z.: Computing the multiplicity structure in solving polynomial
systems. In: Proceedings of the 2005 international symposium on Symbolic and
algebraic computation. pp. 116–123. ACM (2005)

4. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root
clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.)
Mathematical Software – ICMS 2018. pp. 235–244. Springer International Publish-
ing, Cham (2018)

5. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: A complete algorithm
using soft zero tests. In: The Nature of Computation. Logic, Algorithms, Applica-
tions. LNCS, vol. 7921, pp. 434–444. Springer (2013)

6. Zhang, Z., Fang, T., Xia, B.: Real solution isolation with multiplicity of zero-
dimensional triangular systems. Science China Information Sciences 54(1), 60–69
(2011)

https://doi.org/10.1145/2930889.2930939

	Clustering Complex Zeros of Triangular System of Polynomials

