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ABSTRACT

Spectral computed tomography exploits energy-resolved de-
tectors to recover the material composition of an object. Ma-
terial decomposition is a challenging nonlinear and ill-posed
inverse problem. While regularization improves the decom-
position, the resulting material maps do not satisfy physical
constraints (e.g., positivity). In this work, we propose a fast
second-order algorithm for constrained material decomposi-
tion. The proposed constrained Gauss-Newton algorithm is
compared to a standard (unconstrained) Gauss-Newton algo-
rithm on two realistic numerical phantoms. An improved de-
composition is obtained for both phantoms. We also found
that the constraints must be enforced progressively during the
iterations.

Index Terms— Constrained minimization, spectral com-
puted tomography, material decomposition, inverse problem

1. INTRODUCTION

Spectral computed tomography (CT) consists in acquiring
energy-resolved projections that can be used to recover the
concentration of the materials an object is made of. This
modality can either exploit multiple X-ray source spectra
or energy-resolved detectors. Of particular interest are the
recent energy-resolved photon-counting detectors [1]. With
such detectors, the numbers of photons within multiple en-
ergy bins are recorded considering only one X-ray source.
Spectral CT is expected to have many applications in medical
imaging, e.g., high-Z contrast agents imaging [2].

Spectral computed tomography assumes that the object
can be decomposed onto some physical (e.g. photoelectric
and Compton effect) [3] or materials bases [4]. There are
several ways to perform material decomposition. Three-
dimensional (3D) material density volumes can be retrieved
from energy-resolved volumes, i.e., after the tomographic re-
construction [5]. Material decomposition can also be done in
a one-step approach, i.e., simultaneously to the tomographic
reconstruction [6], or in the projection domain, i.e., prior to
the tomographic reconstruction. While most methods have
been tested on simulations, the results provided on practical
systems remains limited in terms of accuracy and signal to

noise ratio due to the limited photon counts in each energy
bin and the non linearity of the detector response [1, 4].

In this work, material decomposition in the projection do-
main is considered since it allows to decompose each pro-
jection in parallel. As in [7], we propose to address mate-
rial decomposition as a nonlinear, ill-posed inverse problem.
In [8], we proposed a Gauss-Newton algorithm to minimize
a regularized cost function [8]. This approach enjoys a fast
convergence but, contrary to [7], it does not ensure the solu-
tions to be positive. Our contribution here is to provide a fast
constrained algorithm.

More specifically, we investigate box constraints for
which bounds are set from prior knowledge about the pro-
jected mass density of the different materials of the sample.
Simple strategies for constrained optimization are available
for first-order algorithms [9]. However, they usually suf-
fer from slow convergence. In this paper, we introduce two
versions of a fast second-order algorithm, referred to as pro-
jected Gauss-Newton with fixed bounds (PGN-FB) and with
evolving bounds (PGN-EB). These algorithms are evalu-
ated considering the projections of two realistic numerical
phantoms and compared to a standard Gauss-Newton (GN)
algorithm.

2. MATERIAL DECOMPOSITION IN SPECTRAL CT

2.1. Forward model

The following spectral CT forward model [8, 10] is consid-
ered:

si(u) =

∫
R

di(E)n0(E) exp

(
−

M∑
m=1

am(u)τm(E)

)
dE,

(1)
where

am =

∫
L(u)

ρm(x)dx (2)

is the projection of all the mass of the material m along the
X-ray path L(u), si(u) is the number of photons hitting the
detector in the i-th energy bin at the pixel u, n0(E) is the
number of photons send to each energy E, di(E) is the re-
sponse function for the i-th energy bin, ρm(x) is the mass of
the material m at the voxel x in g.cm−3 and τm(E) is a well-



chosen function that describes the attenuation of the material
m at energy E.

2.2. Discretization and noise

Assuming that the detector contains P pixels and I energy
bins, the measured data can be gathered in a vector s ∈ RIP

s = [s1,1, ..., sI,1, ..., sI,P ]T (3)

Similarly, the map of materials a ∈ RMP is defined by
a = [a1,1, ..., aM,1, ..., aM,P ]T (4)

2.3. Inverse problem

Material decomposition consists in recovering the material
map a from the data s. Let s = F(a) be the forward model
defined in Eq. (1). The map of materials is recovered mini-
mizing the following cost function:

C(a) = D(a) + αR(a) (5)

We consider a weighted least squares data fidelity term, i.e.,

D(a) =
1

2
||W (s−F(a)) ||2, (6)

where W = diag( 1√
s
) is the weighting matrix, and diag(x)

is a diagonal matrix composed of the element of x. The regu-
larization term allows having a stabilized solution in the pres-
ence of the noise. Following [8] and considering three ma-
terials (soft tissues, bones and gadolinium as a marker), we
choose

R(a) = ||∆asoft||22 + ||∇abone||22 + ||∇aGd||1 (7)

where ∇ and ∆ are first- and second-order differential oper-
ator. The operators ||.||2 and ||.||1 are the `2- and `1-norm,
respectively.

The cost function (5) can be efficiently minimized us-
ing the Gauss-Newton algorithm implemented in the SPRAY
Matlab toolbox [8, 11] (denoted RWLS-GN in the original
paper). It has been used as a reference to benchmark our pro-
posed algorithm.

3. CONSTRAINED NEWTON ALGORITHM

In this paper, we investigate the resolution of the box-
constrained decomposition problem given by

min
a
C(a) s.t. Lm ≤ am,p ≤ Um, ∀m,∀p (8)

where Lm and Um are lower and upper bounds for the m-th
material map. In particular, we consider iterative projection
methods

ak+1 = PΩ(ak − λkδak) (9)

where δak is a descent direction, λk is a step length, and PΩ

is projector onto Ω used to enforce the constraints. Here, we
have Ωm = [Lm, Um]P and Ω = (Ωm)1≤m≤M . Note that
second-order methods are considered, i.e., δak is computed
using an approximation of the Hessian of the cost function C
(or its inverse). In the following, let Hk and gk denote the
Hessian and the gradient of C at ak, respectively.

3.1. Projected quasi Newton

Kim et al. have introduced a projected quasi-Newton algo-
rithm with box-type constraints [12]. As in [13], the descent
direction is computed after partitioning the variables into two
groups, free and fixed. However, the fixed variables are cho-
sen using both the gradient and second-order information.
The step length is computed by backtracking, i.e., by finding
the smaller non-negative integer tk that verifies the following
inequality [13]:
C(ak)− C(PΩ[ak − γσtkδak]) ≥ τγσtk(gk)>δak (10)

where γ > 0, σ and τ ∈ (0, 1) are some scalars. The step
length is then set to λk = γσtk .
3.2. Projected Gauss-Newton

In comparison to the projected quasi Newton algorithm, our
proposed projected Gauss-Newton exploits the Hessian of C,
not an approximation of its inverse obtained using first-order
information only. The set of fixed variables is obtained using
the gradient (see index set Ik1 in Algorithm 1) and also solv-
ing a linear system of equation involving both the Hessian Hk

and the active gradient g̃k (see index set Ik2 in Algorithm 1).
The descent direction is computed solving a second system
of linear equations. The Hessian being sparse [8], its inverse
can be computed efficiently using dedicated solvers. This al-
gorithm is referred to as projected Gauss-Newton with fixed
bounds (PGN-FB) and is detailed in Algorithm 1.

As show in Section 5, PGN-FB may fail to converge to
acceptable solutions. Hence, we propose a simple variant, re-
ferred to as PGN with evolving bounds (PGN-EB), that incor-
porates the constraints in a progressive manner. The key idea
is to build a sequence of constraint sets that tend towards the
desired constraint set Ω [14]. We define Ωm,k = [`km, Um]P ,
where `km is the evolving lower bound for the m-th mate-
rial, which is chosen so as to satisfy `km ≤ Lm, ∀k and
Ωk = (Ωm,k)1≤m≤M . Then, the resulting sequence of con-
straint sets is such that Ω0 ⊃ Ω1 · · · ⊃ Ω. In practice, the
strategy described in Algorithm 2 is adopted. Starting from
`0m, the lower bound is chosen at each iteration as the mini-
mum of Lm and akm. If the evolving lower bound for a given
material is not increasing, i.e., if `k+1

m = `km, then it is steered
towards Lm by a percentage pmin. `0m is chosen very low to
perform the first iteration without boundaries, and if the value
is low enough it doesn’t change the behavior of the algorithm.
Finally, if the stopping criteria are satisfied and `m 6= Lm for
any given material, the lower bounds are set to Lm and one
more iteration is made. Note that an evolving upper bound
can be defined in a similar way.

4. NUMERICAL EXPERIMENTS

In this work, the proposed algorithms are evaluated on two
numerical phantoms: an anthropomorphic thorax (240 ×
185 × 83 voxels) [15] and mouse (104 × 190 × 496 voxels)
[16]. Both are made of M = 3 materials, namely soft tissues,



Algorithm 1: Projected Gauss-Newton with fixed
bounds (PGN-FB) algorithm [12]

Let j = (m, p)
while Stopping criteria are not met do
Ik1 = {j|akj = Lm ∧ gkj > 0, or akj = Um ∧ gkj < 0}

g̃kj =

{
gkj if j /∈ Ik1
0 otherwise

solve(Hkδãk = g̃k)

δâkj =

{
δãkj if j /∈ Ik1
0 otherwise

Ik2 = {j|akj = Lm ∧ δâkj > 0, or akj = Um ∧ δâkj < 0}
Ik = Ik1 ∪ Ik2
ĝkj =

{
g̃kj if j /∈ Ik
0 otherwise

solve(Hkδâk = ĝk)

δakj =

{
ˆδakj if j /∈ Ik

0 otherwise
Find λk using the Armijo Rule (10)
ak+1 = PΩ(ak − λkδak)
k = k + 1

end

bones, and gadolinium. The gadolinium is placed into the
portal vein of the thorax phantom and in the heart of the Digi-
Mouse. Projections for the angles θ = {0◦, 90◦} are obtained
using the radon Matlab’s function.

We considered a 120-keV X-ray source generated using
the spekCalc software [17] and a photon counting detector
with I = 4 bins of energy. We define the number of pho-
tons sent at every pixel by N0 =

∫
R
n0(E)dE. The Digi-

Mouse phantom being less attenuating than the thorax phan-
tom, different number of photons are considered. We choose
N0 = 107 photons for the thorax and N0 = 104.5 photons
for DigiMouse.

For both phantoms, all algorithms are initialized with the
same uniform material maps (asoft = 1 g.cm−2 and abone =
aGd = 0 g.cm−2). All algorithms are stopped if the rela-
tive decrease of the cost function is lower than 0.1%, or if
λk is lower than 5.10−3, or if the iteration number k is larger
than 150. Bounds are set to Lm = 0 g.cm−2 and Um = 50
g.cm−2. For PGN-EB, `0m = −50 g.cm−2 and the percentage
pmin is set to 20%.

Since the ground truth is known, a relative decomposition
error ξθ of the θ-th projection can be computed as:

ξθ =

M∑
m=1

||adec
m (θ)− atrue

m (θ)||
||atrue

m (θ)||
(11)

A wide range of regularization parameter were tested, α ∈
[10−2, 102]. The choice of the optimal regularization param-
eter was performed following [18], i.e the regularization pa-
rameter was chosen such that D(aα) ' P × I , where P × I
represents the number of noisy Poisson variables.

Algorithm 2: Projected Gauss-Newton algorithm with
evolving bounds (PGN-EB) algorithm

while Stopping criteria are not met do
Computation of ak+1 using Algorithm 1
`k+1
m = min(ak+1

m , Lm)
if `k+1

m = `km then
`k+1
m = `km + pmin|Lm − `km|

end
if stopping criteria are met AND `k+1

m 6= Lm then
`k+1
m = Lm

One more iteration is done
end
k = k + 1

end

ξθ CPU Time (second)
θ Algorithm DigiMouse Thorax DigiMouse Thorax

GN 1.08 1.66 23.5 23.5

0◦ PGN-EB 0.62 1.21 55.7 15.8

PGN-FB 116 4.35 6.4 3.93

GN 1.18 1.41 22.6 21.5

90◦ PGN-EB 0.73 1.01 51.5 10.8

PGN-FB 84.02 3.25 5.7 5.52

Table 1. Relative decomposition error for all algorithms and
both phantoms, considering two different θ.

5. RESULTS AND DISCUSSION
The relative decomposition errors ξθ and CPU time are re-
ported in Table 1, for both angles θ and both phantoms. It
is observed that PGN-EB achieves the smallest error between
the three algorithms, regardless the phantom and view angle.
Moreover, PGN-FB leads to a very bad decomposition since
it constraints the solution too much. We can see that PGN-
EB is slower than GN since it needs to solve two more linear
equations than GN. The difference is noticeable for large di-
mension images, e.g. for DigiMouse.

The number of iterations for PGN-EB and GN are similar.
For DigiMouse PGN-EB converges after 6 iterations and GN
after 5. For the thorax phantom, the GN algorithm took 25
iterations to converge while PGN-EB needs only 9.

Figure 1 shows the decomposition of DigiMouse for θ =
0◦ (left) and θ = 90◦ (right). There is a better contrast with
PGN-EB than with GN since the background is more like
what we can expect with PGN-EB. Similar results are ob-
tained with the thorax phantom but are not shown here, due
to limited space.

6. CONCLUSION

In this work, we introduce a fast algorithm for material de-
composition in spectral CT. It is a simple modification of a
standard Gauss-Newton (GN) algorithm, which can enforce
box constraints iteratively. Compared to GN, it improves the
three-material decomposition of a mouse and thorax phan-
toms. This could benefit to applications where only projec-



Fig. 1. Decomposition of DigiMouse (θ = 0◦ (left) and θ = 90◦ (right)). Ground truth (top row), GN (middle row) and
PGN-EB (bottom row) for the 3 different materials: soft tissues (left), bones (middle) and gadolinium (right), for each angle.

tions are considered (e.g. interventional radiology or airport
security). In the future, we will address tomographic recon-
structions from decomposed projections. We anticipate that
improved projected maps result in improved density maps.
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