N
N

N

HAL

open science

An ns-3 distribution supporting MPTCP and
MPEG-DASH obtained by merging community models

Vitalii Poliakov, Damien Saucez, Lucile Sassatelli

» To cite this version:

Vitalii Poliakov, Damien Saucez, Lucile Sassatelli.
MPEG-DASH obtained by merging community models. WNS3 2018 - Workshop on ns-3, Jun 2018,

Mangalore, India. pp.1-3. hal-01825592

HAL Id: hal-01825592
https://hal.science/hal-01825592v1
Submitted on 11 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

An ns-3 distribution supporting MPTCP and


https://hal.science/hal-01825592v1
https://hal.archives-ouvertes.fr

An ns-3 distribution supporting MPTCP and MPEG-DASH
obtained by merging community models

Vitalii Poliakov
Université Cote d’Azur, CNRS,
13S, France
poliakov@i3s.unice.fr

ABSTRACT

MPEG-DASH and MPTCP are two technologies growing
in interest and put together they promise greater quality
of experience for video consumers and better network re-
source usage. However, while independent MPEG-DASH and
MPTCP implementations exist for ns-3, they are not directly
usable together as they suffer from incompatibilities. In this
work, we introduce a new ns-3 distribution that packages
the AMuSt Framework DASH implementation and the ns-3
MPTCP implementation from University of Sussex such that
they can be used together to nourish the flourishing research
on Internet video streaming.

1 INTRODUCTION

As volumes of online video streaming continue to grow, re-
searchers seek ways to make it more efficient. Apart from
developing better client- or server-side solutions, the research
on the video delivery over the network remains a difficult-to-
approach domain owing to the need to run large-scale exper-
iments. Such experiments should involve modern video deliv-
ery technologies like HT'TP Adaptive Streaming (HAS) [1, 6]
and Content Delivery Networks (CDN), as well as complex
network topologies. For these reasons, most of the research
in this domain remains done by teams in collaboration with
large CDNs and content providers (e.g., Akamai and Netflix).
Despite that ns-3 is an alternative to having a real de-
ployment, existing ns-3 models are quite diverse and have a
rather loose compatibility between each other. It results that
researchers often have to spend efforts to make several ns-3
modules gleaned from the Internet work together.
MPEG-DASH and MPTCP are two technologies that one
would naturally study together. However, even though ns-3
community provides MPEG-DASH and MPTCP implemen-
tations, it happens that they are not directly usable due
to incompatibilities. In this work, we present an ns-3 distri-
bution that packages the AMuSt Framework DASH imple-
mentation [5] and the ns-3 MPTCP implementation from
University of Sussex [4] such that they can be used together to
nourish the flourishing research on Internet video streaming.
In the following, we present the efforts that were needed
to package MPTCP and MPEG-DASH models together into
ns-3. As we show further, the seemingly simple task of merg-
ing community models turned out to be tricky as they were
based on different ns-3 releases. In order to make the two
models work together, we first had to overcome the incompati-
bilities between different ns-3 versions, and then to extend the

Damien Saucez
Université Cote d’Azur, Inria,
France
damien.saucez@inria.fr

Lucile Sassatelli
Université Cote d’Azur, CNRS,
13S, France
sassatelli@i3s.unice.fr

MPTCP implementation of ns-3 to support functionalities
needed by MPEG-DASH module.

This work is made as part of a work on simulating a
large-scale multipath-enabled video delivery system which
is now under development. The source code of the resulting
distribution is available on GitHub at:
https://github.com/vitaliipoliakov/ns3-dash-mptcp

2 SELECTING MODELS FOR
MULTIPATH AND MPEG-DASH

Multipath transport protocol today is represented by Mul-
tipath TCP (MPTCP). Several implementations of it exist
in ns-3 [3]. Naturally, one would want to use the newest and
most advanced implementation by Coudron and Secci [3];
however, in spite of offering benefits like full compliance with
MPTCP specifications and compatibility with the ns-3 TCP
socket API, we have found the current release of this imple-
mentation to be working unreliably in our scenario (excessive
DUPACK’s and inadequate subflow management when used
with data transmissions bigger than 1 MB). Given our time
frame, we moved to an older implementation developed by the
University of Sussex [4]. This older implementation, though
being developed for ns-3.19, has proven to work reliably with
big amounts of data to transmit, and also responding rea-
sonably well to path asymmetry (both bandwidth and delay)
and it turned out to be faster for us to adapt it to our needs
than modifying the implementation by Coudron and Secci.

A plethora of MPEG-DASH models have been imple-
mented by the ns-3 community; in our work we use the
implementation of Kreuzberger et al. [5], the AMuST-DASH
framework, because it is directly built on top of a largely
adopted Linux DASH library developed by Bitmovin *. This
ns-3 module has been developed for ns-3.24.

3 PUTTING MPTCP AND
MPEG-DASH TOGETHER

In the following we describe the main manipulations that we
did to make our two models work together.

3.1 Modifications for MPTCP

The selected implementation of MPTCP seems to be focused
on making the connection initiator to be the transmitting
entity, therefore some of the features of the socket do not
work when the other party has to transmit data as well. In
addition to that, the implementation does not directly allow

Thttps://github.com/bitmovin/libdash


https://github.com/vitaliipoliakov/ns3-dash-mptcp
https://github.com/bitmovin/libdash

one to send real data from applications. Here we discuss mod-
ifications which mitigate those limitations; unless otherwise
noted, they only concern the file
src/internet/model/mp-tcp-socket-base. cc (together with
its header file) of the original distribution.

3.1.1 Connection receiver’s limitations. Distinction between
the connection initiator and connection receiver is represented
by socket’s methods which can only be called by the particu-
lar endpoint according to the logical flow of MPTCP. The
methods specific to the connection receiver are underdevel-
oped, so the following modifications are required to allow it
to transmit data.

The ProcessSynRcvd method sets up the MPTCP socket
upon receiving an incoming session and respond back; how-
ever, the implementation seems to never change the default
value (0 Bytes) of congestion window of the socket. We ini-
tialize the congestion window to a value of one (1) MSS as it
is done for the connection initiator methods; note that it is,
however, not an optimal value [2].

The SendPendingData checks whether the currently se-
lected MPTCP subflow has already been established; other-
wise, the next subflow is selected. However, in the latter case
the connection receiver’s socket fails to change the subflow
and hence ceases to transmit. We have not been able to
identify the cause of this, though calling getSubflowToUse
method inside of the (mentioned above) conditional clause
solves the issue without any side effects.

3.1.2 Transmitting real data. The Add and Retrieve meth-
ods implemented for the socket’s TX and RX buffers (file
mp-tcp-typedefs.cc) do not allow handling actual user data.
In fact, they accept/return merely the amount of bytes as an
argument/output correspondingly. As MPEG-DASH is based
on packet contents, we have therefore added the AddRealData
and RetrieveRealData methods, which effectively handle
real data in the MPTCP socket.

3.1.3 Work in progress. The RTO functionality of the
socket implementation does not seem to be finished on the con-
nection receiver side: the corresponding method (ReTxTimeout)
can only be executed when called by the initiator. Removing
this limitation, nevertheless, allows the socket to run without
visible issues, though it has to be tested more.

Upon receiving the unordered data the socket proceeds
with storing it in the right order. One of the conditional
clauses checks if the Data Sequence Number (DSN) of the
received mapping is smaller than the last stored DSN. In case
it is, it checks the same for corresponding Subflow Sequence
Numbers (SSN) and exits the program if the last is false. To
the best of our knowledge, in MPTCP the latter condition
cannot be false if the former condition is true; nevertheless,
we have observed this happen for unknown reasons. Unable
to solve it, we have removed the last condition and have not
observed any issues with data ordering since then.

3.2 Modifications for AMuSt-DASH

The selected implementation of MPTCP does not replace
the stock TCP socket, but instead comes in complement to
it. Therefore, all applications written willing to use MPTCP
must be updated to use this specific multipath socket — in-
cluding the AMuSt-DASH model. As mentioned before, the
MPTCP we use makes it fairly easy to convert applications
for multipath: though the API itself is rather different, the
specifics of MPTCP protocol — like subflow establishment —
are done entirely by the socket itself without any need to
program them in the application. As a result, the application
will follow exactly the same steps for establishing/receiving an
MPTCP connection than for TCP but with minor differences
in methods called, as explained below.

First, each method of the application handling a socket
has to cast it to an MPTCP socket using a DynamicCast
directive.

Second, the selected implementation of MPTCP does not
have a Send(Ptr<Packet>) method. Instead, one needs to
fill the TX buffer with data using FillBuffer, and then call
the SendBufferedData method to initiate data transmission.

4 COMPILING THE MERGED
DISTRIBUTION

The two models mentioned above have been developed for
different ns-3 versions which are not fully compatible with
each other. This leads to compilation errors once the files are
merged together; here we discuss them and explain fixes.

Since the implementation of MPTCP is rather compli-
cated and spans across multiple files, we have decided to
use its distribution as a substrate and merge the AMuSt-
DASH (which is an application) into it. This requires copy-
ing the AMuSt-DASH-specific files (i.e., models, headers,
and helpers) from applications module into the distri-
bution supporting MPTCP, without forgetting to update
src/applications/wscript and src/wscript scripts to cor-
rectly build the modified modules.

The header file src/internet/model/tcp-socket.h has
been changed between ns-3.19 and ns-3.24 as the TCP states
declaration has been rethought; the version included in ns-3.19
(MPTCP) declares the states outside of the TcpSocket class,
while the one in ns-3.24 (DASH) has them inside. We have
adopted the newer version of the file, which hence required up-
dating seldom references to the TCP states in the TCP/MPTCP
socket of the substrate distribution such that they are ac-
cessed from the TcpSocket namespace.

Next, AMuSt-DASH requires custom string handling func-
tions: string_ends_width(), z1ib_compress_string(), and
zlib_decompress_string (). These functions are implemented
in file sre/core/model/string.cc of the original AMuSt-DASH
distribution and can safely be added in the module. It has to
be noted, however, that two last functions depend on ZLib li-
brary 2, so its support has to be added in the src/core/wscript
(exactly as it is done in the DASH distribution).

Zhttps://zlib.net/


https://zlib.net/

5 CONCLUSION

In spite of the several unclear points (that we have men-
tioned above), and the fact that the resulting distribution is
based on ns-3.19, our tests until this moment suggest that
the distribution is rather stable and usable for performing
experiments involving MPEG-DASH and MPTCP.

Ultimately, we would like to create a stand-alone module
holding the mentioned implementations of MPEG-DASH
and MPTCP, that could be used with an ns-3 distribution
of choice. Unfortunately, the implementation of MPTCP re-
quires modifications to essential files such as tcp-14-protocol.cc,
which might differ between releases of ns-3. Therefore, cre-
ating a proper module of this kind will most likely require
having MPTCP supported by the official releases of the
simulator.

REFERENCES

[1] M Christopher. 2015. MPEG-DASH vs. Apple HLS vs. Microsoft
Smooth Streaming vs. Adobe HDS. (2015).

[2] Jerry Chu, Yuchung Cheng, Nandita Dukkipati, and Matt Mathis.
2013. Increasing TCP’s initial window. (2013).

[3] Matthieu Coudron and Stefano Secci. 2017. An implementation of
multipath TCP in ns3. Computer Networks 116 (2017), 1-11.

[4] Morteza Kheirkhah, Ian Wakeman, and George Parisis. 2015.
Multipath-TCP in ns-3. arXiv preprint arXiv:1510.07721 (2015).

[5] Christian Kreuzberger, Daniel Posch, and Hermann Hellwagner.

2016. AMuSt Framework - Adaptive Multimedia Streaming Simu-

lation Framework for ns-3 and ndnSIM. (2016).

Iraj Sodagar. 2011. The mpeg-dash standard for multimedia stream-

ing over the internet. IEEE MultiMedia 18, 4 (2011), 62-67.

[6



	Abstract
	1 Introduction
	2 Selecting models for Multipath and MPEG-DASH
	3 Putting MPTCP and MPEG-DASH together
	3.1 Modifications for MPTCP
	3.2 Modifications for AMuSt-DASH

	4 Compiling the merged distribution
	5 Conclusion
	References

