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Some Introductory and Historical Remarks
on Mechanics of Microstructured Materials

Francesco dell’Isola and Victor A. Eremeyev

Abstract Here we present few remarks on the development of the models of

microstuctured media and the generalized continua.

1 Structured Media i.e. Modeling Complexity:
A Change of Paradigm?

In recent literature a great attention has been paid to the so called “structured media”.

These are media in which the macroscopic behavior is dictated by the micro struc-

ture of the considered systems. Of course the related theory of structures, which was

originated for describing the behavior of bridges and building, then applied to air-

planes, spaceships and robotics uses methods and techniques which are very close.

Therefore the most modern theory did exploit the results and the ideas developed in

the elder one.

The standard Cauchy continuum theory is clearly not suitable to describe the

physical behavior of structured continua. For a detailed discussion of this point the

reader can refer for instance to [1–4].

For this reason different generalizations were proposed. The works which we con-

sider more enlightening and systematic are those due to Germain and Eringen (see

[5–7]) and we refer to [1, 4, 8–16] and references there cited for a more detailed

discussion of the explored theoretical possibilities.

The ideas of Cauchy having found brave champions (see e.g. [17]) a part of the

community of mechanicians did believe that the whole continuum mechanics was
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covered by what is indeed a particular case. Cauchy first gradient continua, while

representing a particular and very important case of continua, do not exhaust all

logical and physical possibilities, when one decides to introduce a continuous model

for deformable bodies (see e.g. [4, 5, 7, 18]).

This circumstance had as a consequence that mechanics needed to experience (in

a small scale and in a limited subgroup rather localized in space and time) a rather

sharp change of paradigm (see for the discussion of the concept of paradigm and for

the particular paradigm change considered here e.g. [8, 19–25]) in order to recover

the capacity of describing complexity via continuum models.

The complexity at micro level do require extra kinematic descriptors at macro

level: sometimes it is enough to introduce as deformation measures higher gradi-

ents of displacements (see e.g. [6, 18]) but in general other completely independent

descriptors are needed. If one limits to continua where it is enough to introduce bal-

ance of torque then one gets Cosserat continua (see the founding work [26] and e.g.

the elegant contribution by [24, 27–32]).

Otherwise one needs variational principles and a family of new and completely

independent kinematic descriptors as discussed e.g. in [5, 7, 18, 33, 34].

A possible way for getting well posed theory may consist in introducing homog-

enization techniques, by starting from a discrete or continuous micro-model being

characterized by simple mechanical properties and complex geometry.

Gabrio Piola (translated in [35]) seems to have been one of the first scholars in

proposing a kind of asymptotic homogenization and actually he ended by introducing

peridynamics and high gradient models (see e.g. [1, 4, 8, 19]).

More recently more rigorous homogenization procedures are applied and used

(see e.g. the fundamental book [36–49]) based on various functional analytical con-

cepts, including Gamma-convergence. All these procedures however, while gaining

in mathematical rigor, do not supply in general a heuristic tool: they are only to

be used in order to justify mathematically a conjecture which has to be obtained via

some other conceptual tools. Moreover the great majority of them assume some start-

ing hypotheses which lead and limit to first gradient continua. However it has been

proven that higher gradient models can be obtained via homogenization of highly

contrasted micro structures (see e.g. [3, 50–61]). The conjecture which leads to these

class of continua by means of asymptotic expansions is simple: different elasticity

coefficients must be rescaled with the expansion parameter to diverge with suitably

large power. This statement formulates precisely the condition of “presence of high

contrast” in material parameters. This situation is exactly as for layered plates and

shells with hight contrast in elastic moduli of layers. For low contrast the classic

model of shear-deformable plates and shells can be applied whereas for high con-

trast the extended models that is layer-wised ones are necessary, see [62, 63].

It is worth to mentioned that the homogenization is a reach source for consti-

tutive models of extended continue. For example it was used for derivation of the

constitutive relations of micropolar solids in [33, 64–74].

The homogenization techniques can be applied also in in the case of microstruc-

tured coatings such as applied to produce superhydro- and oleo-phobic surfaces in

order to obtain the models of surface elasticity developed by [75, 76] and by [77,

78], see e.g. [79].



It has to be remarked that in statistical mechanics some rigorous results are

obtained which prove rigorously how one can get fluid continua from discrete micro-

scopic systems (see the exhaustive reviews presented in [80–82]).

Actually while one can obtain relevant and rigorous results in homogenizing

microscopically inhomogeneous systems, also including in the picture thermal phe-

nomena for systems behaving macroscopically as fluids (see the e.g. [83–87]) and

also for different class of biological systems (see e.g. [88, 89]), it is an open prob-

lem the determination, via statistical mechanics and rigorous reasonings, of micro

properties leading, at macro level, to solid behavior.

Therefore one has to expect that heuristic methods, mixed micro-macro

approaches and ad hoc phenomenological continuum models still play a relevant

role in the efforts for describing structured media.

2 Did Piola Formulate Already A Method of Asymptotic
Homogenization?

While Piola did not produce results comparable in rigor to the results cited in the

previous introduction (clearly the concept of rigor in mathematical proof is chang-

ing in time and in space) he did formulate generalized continuum model, like those

presented in this volume.

Homogenization procedures start by considering two different levels at which

modeling is performed. We talk about respectively micro and macro descriptions

and they correspond to relatively smaller or larger length scales.

As we have discussed there are two different class of homogenization results:

the first class of these results is based on heuristic considerations leading to conjec-

ture, having accepted more or less clear assumptions, that a specific set of discrete

micro models, if the characteristic length-scale tends to zero, can converge to a cer-

tain macro continuous model, at least under well specified phenomenological con-

ditions. If one is lucky (or clever enough) these heuristic analyses can lead to the

identification of continuum constitutive parameters in function of the properties of

the micro discrete systems.

The second class consists in producing precise mathematical results: the micro

problem and the limit macro problem are compared and the difference of their solu-

tions is estimated by introducing an upper bound, which, eventually, is proven to

vanish when the homogenization parameter tends to zero. As the methods used in

this second class are modern they did not belong to the generation of mathematicians

of Piola: it is useful to distinguish them as results based either on the functional anal-

ysis [36, 37, 45, 49], or on Gamma-convergence (see e.g. [3, 39, 41, 42, 50, 51,

53, 54]), or on a priori estimated techniques (see e.g. [55]).

Remark that when one starts from a micro model one can reach a macro model

only after having accepted suitable kinematical and simplifying assumptions. These

assumptions actually characterize the macro target model and this macro model is



assumed to be able to describe the overall behavior of the micro model only in some

and well specified physical instances.

Actually there are (eventually infinite) many micro motions which can correspond

to a unique specifically chosen macro motion: in statistical mechanics and in any

homogenization procedure one has to make a limiting choice of one specific class of

micro motions for each macro motion in order to develop the macro model: this is

an intrinsic characteristic of the “averaging” procedure.

Based on this correspondence one must also try to identify the evolution equa-

tions of the macro motion starting from the geometrical and mechanical properties

of micro system.

We stress that it has to be recognized that Piola’s contribution to mechanics must

include his identification of a micro motion for a discrete lattice material particles

systems in terms of a macro motion as given by the placement fields for the homog-

enized continuum, as functions of space and time.

This is exactly the method which he uses to formulate (see [4]) his generalized

continuum macro models, which are very advanced even nowadays and which has

been rediscovered more than 150 years later.

Of course one can object that Piola did not “prove” that starting from micro-

motions, as solutions of micro evolution equations, and considering macro-motions,

as solution of macro evolution equations, when the chosen micro-level length-scale

tends to zero, the micro motions tend to produce exactly the considered macro

motions, once a suitable way for measuring their distance has been introduced.

This procedure requires to preliminary find a well-posedness result for both micro

and macro problems and the capacity of finding a functional space to which both

macro and micro motions belong. Many different techniques have been developed:

see e.g. the following references: ([3, 36, 37, 39, 41, 42, 45, 49–51, 53–55]). The

reader will not be surprised to see that considered models at micro scale are some-

times infinite dimensional continuous and other times finite dimensional models:

macro models, instead, are nearly always continuous.

Using his identification procedure Piola manage to formulate continuum models

which are more general than those studied by Cauchy: however these last class of

models attracted the attention of the majority of engineering scientists and there-

fore when both at micro and macro levels one considers Cauchy (i.e. first gradient)

continua it is possible to find, in modern literature, many interesting results which

frame homogenization in very advanced mathematic al theories: Gamma conver-

gence and many other functional analysis concepts were developed under the push

of the demands from this mechanical problem: the reader is referred for more details,

for instance, to [36, 37, 39–47, 49, 90]. All mathematical results in this context are

based on the rigorous proof of the convergence of micro energies to macro energies

when the introduced micro scale vanishes.

It has to be remarked that Piola considers at micro-level a system of particles

placed in a lattice: they may experience also long range interactions and their place-

ment may be changed under the action of external actions. As long range interactions

among particles are allowed the continuum limit which he obtains results to be a gen-

eralized continuum. Remark that Piola did not know that subsequent literature would



be bound to consider Cauchy particular class of continua: therefore he calls what in

modern times are “generalized continua” simply “continua”. Piola’s continua, actu-

ally were bound to be rediscovered in XXI century: they are the object of the study

in so called Peridynamics (see for a more detailed discussion the work [4]).

Piola seems to attribute to discrete systems a specific and relevant physical mean-

ing, as was customary in his époque. Later science was shacked by the terrible con-

troversy between Mach and Boltzmann. It seems to us that Piola would have shared

the ideas expressed by Boltzmann. It has to be remarked that Piola had no ideas

of the true dimensions of atoms and molecules and that his considerations do not

include temperature. Some homogenization results (and very rigorous ones) have

been obtained, for discrete systems, in statistical mechanics. With these results one

can prove rigorously how fluid continua can be seen as a limit of discrete micro-

scopic systems, see the interesting reviews in [80–82]. These results in homoge-

nizing microscopically inhomogeneous systems, which manage to interpret thermal

phenomena in systems which behave macroscopically as fluids (see e.g. the papers

[83–87]) and in some biological systems (see e.g. [88, 89]), were not extended, up to

now, to determine, by means of rigorous statistical mechanical methods, which are

those micro properties which produce, at macro level, deformable solids.

As a consequence the old fashioned heuristic methods à la Piola can still be top-

ical, as it may represent the only available conceptual tool to model some specific

complex mechanical systems. An example of their application is presented in [91–

93], while in [58, 59, 91] some mixed micro-macro approaches are attempted. Also

numerical identifications (see e.g. [94, 95]) and ad hoc phenomenological contin-

uum models in [2, 5, 26, 58, 59, 91–93, 96, 97] still play a relevant role in the

efforts for describing structured media.

Exactly as happens in statistical mechanics the system that Piola considers at

micro level is finite dimensional: in modern literature one finds less attention to the

homogenization of this kind of models (see e.g. [38, 39]).

We believe that starting from lattices of interacting particles it is more natural to

arrive to macro homogenized models which do not verify the basic assumptions by

Cauchy: and indeed Piola did easily formulate such a kind of models. Also it has to

be noticed that the modern debates and discussions questioning the use and the role

of second or higher gradient continuum theories in mechanical sciences are not new.

Francesco Brioschi edited the last work by Piola translated in [35], posthumous in

1856: in the title of this work the word “controversial” appeared in a evident position.

Cauchy, Navier and Poisson, changing the direction given to the French mechanics

school by Lagrange and D’Alembert, did not believe any more to the powerful heuris-

tic importance of variational methods.

More recently the French school (leaded by Paul Germain see e.g. [6, 7]) came

back to the ancient ideas by Lagrange, as divulged by Piola.

Therefore we have an apparently paradoxical situation: even if the results pre-

sented by Piola are not as rigorous as required by the modern standards in the math-

ematical theory of homogenization, they are often, and by far, more general than

those presented in the great majority of recent papers and textbooks in continuum

mechanics.



We believe that the Piola’s micro-macro identification procedure can be easily

used as a heuristic guidance to new and very interesting rigorous results: Piola iden-

tifies macro virtual work in terms of macro kinematical descriptors by imposing its

equality with micro virtual work. To do so he assumes what we want to call Piola’s
Ansatz:

(i) one assumes that a smooth macro displacement field exists which describes at

this length scale the overall behavior of studied complex system,

(ii) one identifies the displacements of the particles forming the micro-lattice by

means of the values of the macro displacement in the nodes of the lattice;

(iii) he identifies finite differences with derivatives and in this way he identifies the

expression of macro deformation and kinetic energy and macro virtual work in

terms of micro geometrical and physical properties.

In our opinion this process is due to Piola (again we are ready to discover a further

occurrence of Stigler’s law) and we call it: Piola identification process.

3 Variational Principles as a Guide for Formulating New
Models: The Case of Hencky and Euler Beams

Which postulation scheme is needed when one needs to formulate new models for

describing the physical behavior of systems not yet studied?

Many possible epistemological choices can be used: D’Alembert, Lagrange and

Piola are among the founders of a school whose postulation is based on variational

principle. The most general of such principles is the Principle of Virtual Work, of

which the Hamilton Principle can be regarded as a particular case.

It is relevant to understand when this principles were introduced at first. In our

opinion in many cases new mathematical models could be formulated only after

having approached the problem by using the postulation scheme based on variational

principles. For historical remarks on various variational principles we refer also to

[98].

This opinion can be tested only by checking all possible instance of novel models,

as introduced in different époques: of course in this context it is essential to deter-

mine the first formulation of a given model. Indeed once formulated a models, for

instance starting from a variational principle, it is easy to reformulate it by assuming

a postulation scheme based on balance principles.

From an epistemological point of view it is essential to establish if the discovery is

more frequent when one starts from variational principles or if he starts from balance

principles.

Therefore while the fight for priority may be futile, to establish which postulation

scheme was more successful may be of relevance.

We discuss here two examples.



3.1 First Formulations of Hamilton Principle

For sure in the work by Piola published in 1825 one finds the following statement:

“Concluderemo adunque che le funzioni di t volute dalle leggi della natura e che

esprimono le coordinate di tutti i punti del sistema alla fine di un tempo qualunque,

hanno quelle stesse forme che rendono massima o minima la primitiva della funzione

𝛺 − U − 1
2
∑(

dx2 + dy2 + dz2
)

definita fra i due limiti valori del tempo”.

This statement can be translated as follows:

“We will therefore conclude that the functions of the time t which are wanted by

the laws of nature and which express the coordinates of all the points of the system at

the end of any time whatsoever, have exactly the same forms which render maximal

or minimal the primitive of the function 𝛺 − U − 1
2
∑(

dx2 + dy2 + dz2
)

as defined

between the two limit values of the time”.

Few years later such a statement has been called “the Principle of Hamilton”. The

reader will remark that this variational principle has been placed at the basis of the

mechanics of material bodies in the two papers “On a General Method in Dynamics”

which were published in the Philosophical Transactions in 1834 and 1835 (see [99]).

In [99] Hamilton writes: “But when this well known law of least, or as it might be

better called, of stationary action, is applied to the determination of the actual motion

of the system, it serves only to form, by the rules of the calculus of variations, the

differential equations of motion of the second order, which can always be otherwise

found.” ....

Therefore it seems that also Hamilton needed to discuss and support his varia-

tional point of view, if he feels the need to support it by confirming its results with

those obtained in another way.

“A different estimate, perhaps, will be formed of that other principle which has

been introduced in the present paper, under the name of the law of varying action,

in which we pass from an actual motion to another motion dynamically possible, by

varying the extreme positions of the system, and (in general) the quantity H, and

which serves to express, by means of a single function, not the mere differential

equations of motion, but their intermediate and their final integrals.”

In reading Hamilton one must deduce that he did not know Piola’s previous work.

There are no reasons to doubt about this fact: indeed he expresses his total admiration

of the work of his predecessors and in particular those due to Lagrange. He claims:

The theoretical development of the laws of motion of bodies is a problem of such interest and

importance, that it has engaged the attention of all the most eminent mathematicians, since

the invention of dynamics as a mathematical science by Galileo, and especially since the

wonderful extension which was given to that science by Newton. Among the successors of

those illustrious men, Lagrange has perhaps done more than any other analyst, to give extent

and harmony to such deductive researches, by showing that the most varied consequences

respecting the motions of systems of bodies may be derived from one radical formula; the

beauty of the method so suiting the dignity of the results, as to make of his great work a kind

of scientific poem.

The previous excerption by Hamilton expresses an opinion fully shared by Piola.

Both Hamilton and Piola are to be considered immediate successors of Lagrange in



the leadership of the mechanical school basing the study of physical systems on a

postulation which has as central point the Principle of Hamilton, or its weaker form

(later used systematically by Piola) given by the Principle of Virtual Work.

We can easily accept that Hamilton and Piola are among the brightest scientists

in mechanical sciences. They both regarded themselves as continuators of the work

of D’Alembert, in the spirit (i.e. following his metaphysics, using Piola’s expression)

of Lagrange.

We cannot be sure that Piola is actually the true originator of modern generalized

continuum theories: we are aware of the fact that in [100], Stigler’s law of eponymy

is formulated “no scientific discovery is named after its original discoverer”.

3.2 Hencky Discrete Models and Euler Continuum Models
for Beams

In 1825 Piola published his first scientific Memoir. Piola considers more fundamental

and more physically understandable a model for planar beams based on the consid-

eration of an “equivalent” system of bars and concentrated springs. He regards an

Euler beam as the limit of a set of bars: each bar can be elongated and the relative

angle between two bars can change. Both elongation and angle variations determine

a variation of deformation energy, whose expression in left arbitrary. Actually Piola

formulates a principle of virtual work by specifying suitable deformation energies

and by determining the dual quantities of these deformations.

Piola’s discrete model will be studied by Hencky nearly one century later, regard-

ing it as an approximation of Euler beam. Piola regards as more understandable the

described discrete system: he finds possible the formulation of the Euler model only

regarding it as a limit of a discrete system of bars. Both Piola and Euler (see e.g.

[101] for a detailed discussion of the original works of Euler and his choice of bas-

ing his investigations on variational principles) systematically formulate, as the most

fundamental assumption, a principle of virtual work.

Consider that Euler was among the first authors studying the deformation of

Elasticas and that Piola is one of the first authors studying Hencky type models for

beams.

We can read some excerptions from the Memoir of 1825 by Piola, when he talks

about elastic curves:

In the elastic curves it occurs to have to consider internal forces as those recalled in the n

199; they can be, as we will see, of three kinds; but if one wants to conceive their action, it

is possible to do so only by using the approximating polygon (193).

It is obvious then that for Piola the ontological reality resides only in discrete

models, while the continua are only some mathematical tools which can be of use

when looking for the solution of specific applicative problems: he relies for this on

the powerful methods of mathematical analysis.

Piola continues by stating that:



Therefore this is what we will do, by recalling that it is not important to be able to form in

our mind the image of the way of action of elastic forces in the curves: for what concerns

the effects, they can be found as could be found if it would not occur (occurrence which still

is indispensable) the disappearance of every representation in the passage from the polygon

to the curve, which is its limit (see again 193).

Here Piola states clearly the fact that he refrains from the consideration of internal

forces: he considers the efforts in this direction “not important”.

Finally he lists the three kinds of elasticity which can be observed in elastic

curves:

At first the one related to elongations:

The first kind of elasticity, to which one wanted to give the name of tension, is that elasticity

for which, even if there were not external applied forces, one would change every side of the

subtended polygon by elongation or contacting it.

then the kind related to bending

The second kind of elasticity, or that kind of elasticity to which the recent writers have left

the name without any specific adjective, is imagined to act on the angle formed by two

consecutive sides of the polygon and along all the polygon itself. However, in order to find

the term which this kind of elasticity has introduced in the general equation, it is convenient

to determine, at first, the function F (199) which said elasticity tends to make vary.

Piola manages to determine some measures of deformation able to account for

the bending, starting from the placement function of the elastic curve. In [102] the

spirit of Piola is evoked to find an expression of continuous deformation energy

and to formulate the equilibrium minimization problem for pantographic structures.

Exactly as forecast by Piola the obtained models are generalized second gradient

continua.

Then Piola proves that the limit of his Hencky type discrete beam leads exactly

to the fundamental conjecture by Euler and Bernoulli: bending deformation energy

depends on the curvature of the elastica.

Again quoting Piola (his Memoir 1825):

Therefore (199) in the term SE𝛿f introduced by that elastic force the f will have the just

determined value. As then, being R the radius of curvature, one knows that

R =
(
Dx2 + Dy2 + Dz2

) 3
2

√{(
DxD2z − DzD2x

)2 +
(
DyD2z − DzD2y

)2 +
(
DxD2y − DyD2x

)2}

in this way it can be seen how we get

f =
Ds
R

′′

To complete his analysis Piola considers beams having non planar actual

configurations:



Mister Binet (J) was the first author who introduced the consideration of a third kind of

elasticity, and he wanted to call it torsion: this kind of elasticity had escaped the analysis

of Lagrange, and nevertheless one cannot deny that it can be observed also in nature. To

understand what it is [such a concept] let us consider three consecutive sides of the subtended

polygon (199), and it is very well clear that the plane formed by the first two sides will not

generally be the same plane which contains the last two sides: these two planes will form

an angle and it is on this angle that the new elasticity is intended to act. Once called F this

angle of the polygon, if we will manage to transform it into the usual form 𝜔f + 𝜔
2k + etc.,

we will also know the term SE𝛿f introduced by the torsion in the general equation (199).

Again here, as in the previous paragraph and for a similar reason, I will give a new way for

finding this angle.

We conclude with two remarks:

(i) Piola’s mathematical investigations gave an important contribution to the mod-

ern theory of one dimensional extensional continua, moving in space and capa-

ble to store bending and twisting energy;

(ii) Piola’s results established the mathematical basis of the numerical study of Euler

or Hencky beams, basing the formulation of their evolution equations on the firm

basis of variational principles.

4 Discrete Versus Continuous Description: An Ancient
Dichotomy

Greek philosophers debated about the true ontological nature of matter. Epicurean

believed in its discrete nature, as they considered atoms as the smallest indivisible

constituent of matter. On the other side Heraclitus did believe that the ontological

nature of matter was intrinsically continuous.

However already Archimedes was aware of the difficulty in reaching any definite

conclusion about the ultimate true nature of matter (and any other physical phe-

nomenology): in fact he was aware that any mathematical theory had a specific use

limited to describe only a well determined class of phenomena.

Therefore the question concerning discrete of continuous description has to be

considered simply as a matter of opportunity: in a given context which is the most

suitable approach? It seems rather difficult to establish that one description between

the one give by discrete models or the other one based on continuous models is the

closest to reality.

Archimedes (and the modern scientists) refrain from any effort of attaining any

definite truth about the ultimate nature of matter. We must be content to find the class

of model which more suitably describes a given class of phenomena. It seems that

also Piola accepts such a point of view. The principle of Virtual Work is at the basis

of the whole set of memoirs by Piola: all the models which he considers starts from

the postulation of the internal and external work functionals. He prefers to start his

analysis by considering discrete models for the lattices of particles which he wants to

consider and he claims to be able to understand clearly the physical meaning of such



discrete models: he believes that continuum models represent as mental construction

useful to describe the behavior of discrete systems as a whole and only in some

specific and well determined situations. Actually he considers continuous models as

a mathematical tool to calculate solutions to equilibrium or motion problems: partial

differential equations are considered in his époque (see also for instance the results

by Hamilton leading to Hamilton-Jacobi partial differential equation) as a tool useful

to calculate the solution of systems of ordinary differential equations having many

unknown time varying function.

For those who may ask themselves how it is possible to believe that more com-

plex PDEs may be of use in solving simpler ODEs we remark here that it can happen

that PDEs can be solved with less efforts that the original ODEs: the French school

in engineering sciences obtained wonderful results using this method, mainly when

dealing with linearized equations. For instance De Saint Venant opened for engi-

neering applications all the results for linear elasticity and had a great impact in

engineering capacity of designing structures.

In our opinion, for Piola and many scientists of his generation, continuum mechan-

ics represents a “computational tool”. It is a “mathematical trick” which allows for

computation of some solutions which are relevant in the engineering applications. As

sometimes happens in science, what was born as a computational tool became a foun-

dational concept: the choice of considering balance equations as the most fundamen-

tal concepts in mechanics (due probably to Cauchy, but who knows? Maybe Stigler’s

law applies also here) produced the consequence of considering the principle of vir-

tual work as a less fundamental concept. This lead to the following oxymoron: “we

prove now the theorem of the principle of virtual work”. Further investigations are

now needed to districate such an oxymoron and many other related ones.

The dichotomy discrete/continuous was present in the whole history of science

and we cannot discuss in a small space it: such dichotomy has so many aspects which

it could be a gigantic work simply to give a short review about its historical devel-

opment. Piola surely consider atomistic models more fundamental, but we believe

that he did not manage to arrive to a formulation close to modern statistical mechan-

ics as he does not manage to conceive any kinetic concept leading to the concept of

temperature and heat flux. Piola explicitly states that he develops mechanics with a

postulation where Thermodynamics does not play any role. It is very important to

remark that, in order to use computer aided simulations, leading to numerical predic-

tion of considered phenomena, in general the literature one considers Euler-Lagrange

equations (i.e. balance equations) as the most fundamental concepts to be postulated

as basic principle. Then one multiplies by test functions (suitably regular) and after a

painful integration by parts he is lead to get a variational principle for the continuous

system which is considered. Finally one discretizes via a finite elements the obtained

expression for internal and external work to compute, with a numerical integration

scheme, the desired discrete approximation of the continuous field solution of the

problem formulated with the continuous model.

This seems to be a vicious circle and therefore one may ask a question: is it

really necessary to homogenize and then discretize again? Maybe it is much better

to study the discrete system which we have at the beginning! It is possible, probably



sometimes easier, to make computations based on the discrete systems which one

can postulate directly without any intermediate step. This is spirit which inspired,

for instance, the papers [103–108]. Indeed they central idea of the numerical simu-

lations presented there is simple: one does not model pantographic structures with

a continuum (which is necessarily to be chosen in the class of second gradient con-

tinua). Actually such continuum is inspired by a homogenization process similar to

the one due to Piola and Hencky: in order to get some meaningful numerical pre-

dictions a subsequent PE discretization is needed, which must involve suitably reg-

ular elements. On the contrary a discrete Lagrangian model is postulated since the

very beginning and the numerical code needed to find the motion is adapted to use

directly it.

In some sense the continual models using PDEs were widely applied since these

models give some very useful tool for analytical analysis whereas discrete models

require almost always numerical methods. So it was one of reasons to replace a lattice

model with atoms and molecules by a continual counterpart. Nowadays, there are

many developments in the theory of lattices considered as discrete systems, see e.g.

[109–114].

It is remarkable how some conceptual tools initially introduced to meet the

needs imposed by computing (here we consider, as examples, the partial differential

equations obtained as Euler Lagrange stationarity conditions or also the Ptolemaic

epicycles in the calculations needed to study, in Hellenistic époque, the mechanics of

celestial bodies) may have changed their role in the process of formulating theories

in different cultural paradigms.

Instead of representing a tool for getting the solution of engineering problems in

a given milieux they could become the most fundamental concepts in the views of

some schools.

This is what happened to PDEs: being essentially equivalent to balance equa-

tions in continuum mechanics they were regarded to supply the most fundamental

conceptual tool in physics. Exactly as happened to the theory of epicycles and def-

erents: from being a computational tool they were transformed in middle ages as the

most basic concepts in the study of celestial motion (the reader can find more details

in [19, 115]).

5 Some Conclusions: History of Mechanics as a Tool
in Finding Models for Fabrics, 3D Printed Prototypes
and Various Complex Systems

Gabrio Piola has been an Italian scientist whose contributions have been generally

neglected. However he has left a trace in mechanical and mathematical literature

and his works were widely distributed in the main world libraries, although written

in Italian (for instance in Vienna [116, 117] and at the University of Wisconsin,

Google books could find many copies of his works). Hellinger was aware of some of



his contributions (see [9–11]) and Piola was cited also in [17]. For a more detailed

discussion aimed to assess the true influence of Piola on subsequent research the

reader is referred to [4] and also to [8].

Piola gives a visionary presentation of variational principles and tries to teach

to his successors those methods that he believes are more suitable to invent new

models. He writes in “lntorno alle equazioni fondamentali del movimento di corpi
qualsivogliono, considerati secondo la naturale loro forma e costituzione.” page 4,

as translated in [118]:

If it is well founded or not the statement that the Lagrangian methods are sufficient to the

description of all mechanical phenomena, and are so powerful that they are suitable for all

further possible researches, this is what shall be decided later, and before rebutting my point

of view, it will be fair to leave me to expose all arguments which I have gathered to defend

my point of view. I hope to clarify in the following Memoir that the only reason for which

the Analytical Mechanics seemed to be insufficient in the solution of some problems, is that

Lagrange, while writing the conditions for equilibrium and motion of a three dimensional

body, did not detailed his model by assigning the equations relative to every material point

belonging to it. If he had done this, and he could very well do it without departing from

the methods imparted in his book, he would have obtained easily the same equations to

which the French Geometers of our times arrived very painfully, [equations] which now are

the foundation of new theories. However those results which he could not obtain, because

death subtracted him to sciences before he could complete his great oeuvre, these results

can be obtained by others: this is the assumption which led me to start some efforts since

the years 1832 and 1835 (See the Memoir della Meccanica dei carpi naturalmente estesi

inserted in the 1st Tome of Opuscoli matematici e fisici; Milano, Giusti, 1832: and the other

Sulla nuova analisi per tutte le quistioni della Meccanica molecolare in the Tome XXI of

these Proceedings).

Following, more or less consciously, the indication of Piola many generalized

continuum or Lagrangian discrete models have been used by some successors of

Lagrange:

(i) for modeling fabrics used to built reinforced composites (see e.g. [91, 93, 119–

123]): the complexity at micro level of such systems very often imposes the

formulation of generalized continuum models at macro level; however it must

be remarked that, always using Lagrangian mechanics, such complex systems

may be modeled directly by means of discrete models as done for instance in

[103–108]. Hencky type models, generalizing the discrete description of Euler

beams, can be very useful in formulating numerical codes suitable to predict

the behavior of metamaterials and complex fabrics;

(ii) to develop more sophisticated description of deformation phenomena (see e.g.

[2, 18, 26, 48, 53, 56, 57, 59, 61, 97, 124–127] and also the fundamental

papers [6, 7, 24]): this effort has been, paradoxically, blocked by the undoubted

success of the simpler Cauchy continuum models whose range of applicability

is, however, rather limited in the considered instances;

(iii) to guide the invention of novel meta materials by using the technology of

3D printing (see e.g. [61, 91, 93, 102, 119, 123, 126, 128]): exotic behav-

ior forecast for generalized continua can be transformed into real phenomena



occurring to objects whose internal architecture is so finely specified and whose

microstructure is optimized for specific applications;

(iv) to obtain novel micro-macro identification results (see e.g. [3, 37, 50, 51, 53,

54, 58–60, 103–108, 121, 122, 129–131]): reduced order models are very

useful to save computing time and to make possible the required predictions

concerning the physical behavior of complex systems;

(v) to obtain interesting models of biomechanics phenomena (see e.g. [96, 132–

135]): many different length scales appear in biomechanical systems and when

modeling them the standard Cauchy continuum mechanics is very often not

suitable to fully describe relevant phenomena.

Gabrio Piola describes in his first published work in 1825 a homogenization pro-

cedure allowing for the determination of a continuum model for a discrete systems

constituted by a lattice of particles in the reference configuration. He also obtains an

identification of macro parameters when micro geometrical and mechanical proper-

ties are known. Piola’s homogenization procedure has been used often in the subse-

quent literature as it is very useful to model the behavior of complex systems.

However we are aware of Stigler’s law of eponymy: therefore we do not give

as granted that Piola was indeed the first scientist who did introduce the heuristic

method of asymptotic homogenization which he describes in his works.

On the other hand there are some precise statements which can be assessed:

(i) many results by Piola seem to have been rediscovered also 150 years later,

(ii) Piola variational postulation of (continuum) mechanics is more encompassing

than the postulation proposed by Cauchy, between 1822 and 1850),

(iii) Piola does not use tetrahedron argument, as he bases all his analysis on the

principle of virtual work,

(iv) Piola prefers to start with discrete finite dimensional particle models of mechan-

ical complex systems, and he uses the ideas and the concepts from continuum

mechanics as a purely computational tool,

(v) Piola believes that all physical theories are to be based on variational principles.

In recent times many authors discussed about the need of considering large defor-

mation measures in engineering applications. Many claimed that only linearized the-

ories have a “utility” in engineering applications and that finite deformations “are not

needed in the engineering practice”. This point of view leads to miss the physical

understanding of studied systems and is contradicted by the most modern techno-

logical demands. In the works by Piola all kinematical quantities are considered for

large displacements and large deformations as the are the only concepts having a true

physical meaning. Many scientists needed to recover this attitude in recent times. The

temporary success of linearized models has actually blocked engineering sciences

in the development of very interesting applications for many years.

The papers presented in this volume share the visionary point of view of Piola in

many aspects and they seem to be continuing his conceptual efforts.
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