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Separated representations at the heart of Proper Generalized Decomposition are con-
structed incrementally by minimizing the problem residual. However, the modes involved
in the resulting decomposition do not exhibit a clear multi-scale character. In order to
recover a multi-scale description of the solution within a separated representation frame-
work, we study the use of wavelets for approximating the functions involved in the sepa-
rated representation of the solution. We will prove that such an approach allows separating
the different scales as well as taking profit from its multi-resolution behavior for defining
adaptive strategies.

1. Introduction

Model Order Reduction – MOR – techniques allow nowadays solving, under real-time constraints, complex models. In-
tense research activities allowed reaching at present a certain maturity in the domain of model order reduction. Among the 
numerous references, the interested reader can refer to some review papers and books [1–4], covering three major MOR 
technologies: POD (Proper Orthogonal Decomposition), RB (Reduced Basis), and PGD (Proper Generalized Decomposition).

Proper Orthogonal Decomposition (POD) is a general technique for extracting the most significant characteristics of a sys-
tem’s behavior and representing them in a set of “POD basis vectors”. These basis vectors then provide an efficient (typically 
low-dimensional) representation of the key system behavior, which proves useful in a variety of ways. The most common 
use is to project the system-governing equations onto the reduced-order subspace defined by the POD basis vectors. This 
yields an explicit POD reduced model that can be solved in place of the original system. The POD basis can also provide 
a low-dimensional description in which to perform parametric interpolation, infill missing or “gappy” data, perform model 
adaptation, or define hyper-reduction procedures [5]. There is an extensive literature and POD has seen broad application 
across fields. Some review of POD and its applications can be found in [6,7].

Another family of model reduction techniques lies in the use of Reduced Basis constructed by combining a greedy 
algorithm and “a posteriori” error indicators. As for the POD, the Reduced Basis method requires some amount of offline 
work, but then the reduced basis model can be used online for solving different models with control of the solution 

* Corresponding author.
E-mail addresses: Angel .Leon -Collado @ec -nantes .fr (A. Leon), anais .barasinski @ec -nantes .fr (A. Barasinski), Emmanuelle .Abisset -chavanne @ec -nantes .fr

(E. Abisset-Chavanne), ecueto @unizar.es (E. Cueto), Francisco .CHINESTA @ensam .edu (F. Chinesta).

https://doi.org/10.1016/j.crme.2018.04.013
http://www.ScienceDirect.com/
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Angel.Leon-Collado@ec-nantes.fr
mailto:anais.barasinski@ec-nantes.fr
mailto:Emmanuelle.Abisset-chavanne@ec-nantes.fr
mailto:ecueto@unizar.es
mailto:Francisco.CHINESTA@ensam.edu
https://doi.org/10.1016/j.crme.2018.04.013
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crme.2018.04.013&domain=pdf


accuracy, because of the availability of error bounds. When the error is unacceptably high, the reduced basis can be enriched 
by invoking a greedy adaption strategy [8,9].

Separated representations, at the heart of the so-called Proper Generalized Decomposition methods, are considered when 
solving at-hand partial differential equations by employing procedures based on the separation of variables. Then they 
were considered in quantum chemistry for approximating multidimensional quantum wave-function. In the 1980s, Pierre 
Ladevèze proposed the use of space-time separated representations of transient solutions involved in strongly nonlinear 
models, defining a non-incremental integration procedure [10,11]. Later, separated representations were employed for solv-
ing multidimensional models suffering the so-called curse of dimensionality [12,13], as well as in the context of stochastic 
modeling [14]. Then, they were extended to the separation of space coordinates, making possible the solution to models 
defined in degenerated domains, e.g., plate and shells [15], as well as for addressing parametric models where model param-
eters were considered as model extra-coordinates, making possible the offline calculation of the parametric solution, which 
can be viewed as a metamodel or a computational vademecum to be used online for real-time simulation, optimization, 
inverse analysis, and simulation-based control [2,16].

1.1. Separated representations

Within the PGD framework, four kinds of separated representations have been widely considered.

(i) Space-time separated representations that allowed the construction of efficient incremental and non-incremental integra-
tors.
Within the standard finite element method, a space-time solution u(x, t), x ∈ � ⊂ R

3 and t ∈ I ⊂ R, of a transient 
problem is approximated from

u(x, t) ≈
M∑

i=1

u(xi, t)Ni(x) (1)

where M is the number of nodes employed for interpolating the unknown field, located at positions xi , and Ni(x) the 
so-called shape functions. Because of the interpolative property of the shape functions, the approximation coefficients 
correspond to the nodal value of the approximated field, u(xi, t). Thus, in general, when solving a nonlinear problem, 
at least a linear system of size M must be solved at each time step. When considering P time steps (P can reach several 
millions), the complexity grows very fast.
When considering POD-based model order reduction, the solution is projected into the reduced basis composed of 
functions {φ1(x), · · · , φR(x)} extracted from some collected snapshots of the problem solution, with in general R � M, 
and consequently the solution approximation reads

u(x, t) ≈
R∑

i=1

ξi(t)φi(x) (2)

which requires the resolution of linear systems of size R instead of the ones of size M characteristic of finite element 
solutions. The use of a reduced basis implies in many cases impressive computing-time savings.
Approximations (1) or (2) imply a finite sum of time-dependent coefficients and space functions. The last are assumed 
known; they consist of the usual finite element shape functions or the modes extracted by applying, for example, 
Proper Orthogonal Decomposition – POD. A step forward could consist in assuming space functions to be also unknown 
and in computing both time and space functions on the fly. In this case, the approximation reads

u(x, t) ≈
N∑

i=1

Ti(t)Xi(x) (3)

Because both functions involved in approximation (3) are unknown, it defines a nonlinear problem whose solution 
requires an appropriate linearization strategy. The interested reader can refer to [17] and the references therein for 
additional details on the separated representation constructor.
Expression (3) evidences that the solution procedure requires the resolution of about N problems, with N � M and N ∼ R
(in fact a bit more because of the nonlinearity induced by separated representations) involving the space coordinates 
(in general three-dimensional – 3D – and whose associated discrete systems are of size M) for computing the space 
functions Xi(x) and about N one-dimensional – 1D – problems for calculating the time functions Ti(t). Due to the 
fact that the computing cost related to the solution of 1D problems is negligible with respect to the solution of 3D 
problems, the resulting computational complexity reduces drastically, scaling with N instead of P.

(ii) Space separation allowed addressing multi-physics problems defined in degenerated geometries in which at least one of 
its dimensions remains much smaller that the other ones (e.g., beams, plates, shells, laminates...) or processes involving 
additive layers (e.g., automated tape placement, 3D printing, or additive manufacturing).



If domain � can be decomposed as � = �x × �y × �z , the solution u(x, y, z) could be approximated by using the 
separated representation

u(x, y, z) ≈
N∑

i=1

Xi(x)Yi(y)Zi(z) (4)

which allows calculating the 3D solution from a sequence of 1D problems.
For some geometries, as the ones associated with plates or shells, in-plane–out-of-plane separated representation be-
comes specially suitable,

u(x, y, z) ≈
N∑

i=1

Xi(x, y)Zi(z) (5)

where the 3D complexity is reduced to the one characteristic of 2D problems, the ones related to the calculation of 
in-plane functions Xi(x, y).

(iii) Space–time–parameter separated representations allowed constructing the so-called computational vademecums (also 
known as abacus, virtual charts, nomograms...) efficiently considered for multiple purposes: simulation, optimization, 
inverse analysis, uncertainty propagation and simulation-based control, all of them under the real-time constraint.
When the unknown field involves space, time, and a series of parameters μ1, . . . , μQ , its associated separated repre-
sentation reads

u(x, t,μ1, . . . ,μQ) ≈
N∑

i=1

Xi(x)Ti(t)
Q∏

j=1

�
j
i (μ j) (6)

(iv) Separated representations of intrinsically multidimensional models involving differential operators applying on time, space, 
and a series of conformation coordinates c1, . . . , cC . In this case, the solution is approximated according to

u(x, t, c1, . . . , cC) ≈
N∑

i=1

Xi(x)Ti(t)
C∏

j=1

C j
i (c j) (7)

1.2. Paper motivation

This work focuses on the separated representations previously discussed and contributes in two different ways. First, 
in general the calculation of functions involved in the finite sum representations is performed on a given approximation 
basis. Thus, the possible multi-scale character of the individual modes (functions involved in the finite sum) and/or the 
reconstructed solution (the finite sum itself) is not addressed.

Even if today it is accepted within the PGD community that both the number of terms in the finite sum, and the number 
of nodes used for discretizing each function involved in the former are of major relevance for ensuring accuracy, and even if 
different error estimators have been proposed in this context [18–20], the multi-scale nature of both, the terms in the sum 
and the sum itself, remain almost unexplored. An adaptive progressive PGD strategy was proposed in [21].

This work considers the use of a naturally multi-scale approach, a wavelet-based approximation technique, for approxi-
mating the different functions involved in the separated representation. Then, recombining the different scales involved in 
this approximation allows one to capture the multi-scale character of the solution. Even if, in our knowledge, this kind of 
approximations was employed in a Galerkin setting, as referred to later, its consideration within the PGD framework remains 
unexplored.

The next section revisits the PGD constructor and the wavelet-based multi-resolution analysis that will be applied in 
Section 3 within the PGD constructor described above. Then Section 4 will illustrate some potential applications of the 
proposed numerical technique.

2. Methods

2.1. PGD constructor at a glance

Consider the solution to the Poisson equation

�u(x, y) = f (x, y) (8)

in a two-dimensional rectangular domain � = �x × �y = (0, L) × (0, H). We specify homogeneous Dirichlet boundary con-
ditions for the unknown field u(x, y), i.e. u(x, y) vanishes at the domain boundary �. Furthermore, we assume that the 
source term f is constant over the domain �.



For all suitable test functions u∗ , the weighted residual form of (8) reads∫
�x×�y

u∗
(

∂2u

∂x2
+ ∂2u

∂ y2
− f

)
dx dy = 0 (9)

Our goal is to obtain a PGD approximate solution to (8) in the separated form

u(x, y) =
N∑

i=1

Xi(x) · Yi(y) (10)

We shall do so by computing each term of the expansion one at a time, thus enriching the PGD approximation until a 
suitable convergence criterion is satisfied. Thus, at each enrichment step n (n ≥ 1), we have already computed the n − 1 first 
terms of the PGD approximation

un−1(x, y) =
n−1∑
i=1

Xi(x) · Yi(y) (11)

We now wish to compute the next term Xn(x) · Yn(y) to obtain the enriched PGD solution

un(x, y) = un−1(x, y) + Xn(x) · Yn(y) =
n−1∑
i=1

Xi(x) · Yi(y) + Xn(x) · Yn(y) (12)

Both functions Xn(x) and Yn(y) are unknown at the current enrichment step n, and they appear in the form of a product. 
The resulting problem is thus non-linear, and a suitable iterative scheme is required. We shall use the index p to denote a 
particular iteration. At enrichment step n, the PGD approximation un,p obtained at iteration p thus reads

un,p(x, y) = un−1(x, y) + X p
n (x) · Y p

n (y) (13)

and the algorithm proceeds by (i) calculating X p
n (x) from Y p−1

n (y), then (ii) updating Y p
n (y) from the just-computed X p

n (x);
and finally (iii) checking the convergence by evaluating ‖X p

n (x) · Y p
n (y) − X p−1

n (x) · Y p−1
n (y)‖.

In the first step, by introducing the approximate

un,p(x, y) = un−1(x, y) + X p
n (x) · Y p−1

n (y) (14)

as well as the weight function

u∗(x, y) = X∗
n(x) · Y p−1

n (y) (15)

into the problem integral form (9), after integrating over �y , one finds

∫
�x

X∗
n ·

(
αx d2 X p

n

dx2
+ βx X p

n

)
dx = −

∫
�x

X∗
n ·

n−1∑
i=1

(
γ x

i
d2 Xi

dx2
+ δx

i Xi

)
dx +

∫
�x

X∗
n · ξ x dx (16)

where the coefficients result from the integration over �y of functions depending on the y-coordinate. For more details, the 
interested reader can refer to [17]. The above one-dimensional problem is then discretized by using a standard mesh-based 
discretization technique, as for example the finite element method.

Having thus computed X p
n (x), we are now ready to proceed with the second step of iteration p, which updates Y p

n (y)

from the just-computed X p
n (x). The procedure exactly mirrors what we have done above. Indeed, we simply exchange the 

roles played by all relevant functions of x and y, starting from the solution approximate

un,p(x, y) =
n−1∑
i=1

Xi(x) · Yi(y) + X p
n (x) · Y p

n (y) (17)

which finally leads to the one-dimensional problem involving the unknown field Y p
n (y):∫

�y

Y ∗
n ·

(
α y d2Y p

n

dy2
+ β y Y p

n

)
dy = −

∫
�y

Y ∗
n ·

n−1∑
i=1

(
γ

y
i

d2Yi

dy2
+ δ

y
i Yi

)
dy +

∫
�y

Y ∗
n · ξ y dy (18)

It is important to realize that the original two-dimensional Poisson equation defined over � = �x × �y has been trans-
formed within the PGD framework into a series of decoupled one-dimensional problems formulated in �x and �y . The 
procedure can be generalized when considering D-dimensional problems.



Fig. 1. PGD error EM (uN
M ) as a function of the number of enrichment steps N for different numbers M of discretization points.

As previously indicated, the functions Xn(x) and Yn(y) are approximated using standard finite element approximations 
or orthogonal polynomials (spectral approximations). Thus, in first approximation one could expect that the accuracy of the 
computed solution should depend on the number of terms involved in the finite sum N and the number of nodes M (or the 
polynomial degree) considered for approximating the different functions involved in the finite sum, Xn(x) and Yn(y) in the 
previous case study.

In [17], the authors considered the Poisson equation (8) on a two-dimensional rectangular domain � = �x × �y =
(0, 2) × (0, 1) with f = 1, which has as exact solution

uex(x, y) =
∑

m,n odd

64

π4
(
4n2 + m2

) sin
(mπx

2

)
sin (nπy) (19)

Functions Xi(x) and Yi(y) were sought on a uniform one-dimensional grid with M points. The solution convergence (with 
respect to the exact one) was evaluated by using the error

EM(uNM) =
1∫

0

2∫
0

(
uex(x, y) − uNM(x, y)

)2 dx dy (20)

where integrals were performed numerically and uNM refers to the solution obtained using a finite sum composed of N terms 
and the involved one-dimensional functions were approximated by using M nodes. Fig. 1 depicts the PGD error EM(uNM) as a 
function of the number of enrichment steps N for different numbers M of discretization points. This figure proves that both 
M and N are relevant to ensure convergence, and that both must be considered together, because, for a given mesh, and 
independently of the number of terms considered in the finite sum, the error reaches a plateau. In the other sense, even a 
very fine mesh is unable to capture the solution if the number of terms in the finite sum is insufficient.

2.2. Wavelet-based multi-resolution analysis and adaptive approximations

Multi-resolution analysis is based on the construction of a series of embedded subspaces V j ⊂ V j+1, ∀ j ∈ Z, i.e.

{∅} · · · ⊂ V j−1 ⊂ V j ⊂ V j+1 · · · ⊂ L2(R) (21)

where each subspace is spanned by the integer translation of a single function, the scaling function φ(x) [22].
If φ(x) ∈ V 0, the functions φ0,k = φ(x − k) constitute a basis of V 0, and the functions φ j,k(x) = 2 j/2φ(2 j x − k) define a 

basis of subspace V j . Thus, the projection of the function f (x) in V j reads

P j f (x) =
k=+∞∑
k=−∞

c j,kφ j,k(x) (22)

The fact that V 0 ⊂ V 1 allows writing

φ(x) =
k=+∞∑
k=−∞

akφ(2x − k) (23)

and because V j ⊂ V j+1 we can define the orthogonal complement W j , such that



V j+1 = V j ⊕ W j (24)

with V j ⊥ W j . An important consequence is that⊕
j∈Z

W j = L2(R) (25)

or

V 0 ⊕
⊕
j∈N

W j = L2(R) (26)

Spaces W j are also spanned by the integer translation of a single function, the wavelet function ψ(x), defining the bases 
at each scale: ψ j,k = 2 j/2ψ(2 j x − k). Because W0 ⊂ V 1, we can write

ψ(x) =
k=+∞∑
k=−∞

bkφ(2x − k) (27)

In what follows we are considering Daubechies wavelets [23] for approximating the different functions involved in the 
separated representation of the problem solution. This choice is motivated by their compact support and regularity (approx-
imation consistency). In opposition to usual approximation techniques, its use allows space and frequency localization, the 
latter because of its multiscale character and the former due to its compact support (in opposition to approximations based 
on Fourier polynomials). The approximation is fully defined by the coefficients ak in Eq. (23). The coefficients bk depend on 
ak from bk = (−1)ka1−k .

The coefficients ak result from the following conditions:

(i) the normalization condition,

∞∫
−∞

φ(x) dx = 1 (28)

which, taking into account Eq. (23), leads to

k=∞∑
k=−∞

ak = 2 (29)

(ii) the orthogonality condition between φ(x) and its integer translates into

∞∫
−∞

φ(x)φ(x − l) dx = δ0l (30)

with δ the Kroenecker delta function. Taking into account Eq. (23), the previous equation results in

k=∞∑
k=−∞

akak+2l = 2δ0l, ∀l ∈ Z (31)

(iii) if we consider a choice with N coefficients, the previous conditions only provide N /2 + 1 equations. Thus, other 
N /2 − 1 conditions should be added in order to compute the N coefficients. One common route consists in enforcing 
that the scaling function exactly represents polynomials of order M = N /2, i.e.

f (x) = a0 + a1x + · · · + aM−1xM−1 (32)

from which, by using

f (x) =
k=∞∑

k=−∞
ckφ(x − k) (33)

and the fact that the wavelet function ψ(x) is orthogonal to the scaling translates φ(x − k), it results

〈 f (x),ψ(x)〉 =
k=∞∑

ck〈φ(x − k),ψ(x)〉 = 0 (34)

k=−∞



with

〈g(x),h(x)〉 =
∞∫

−∞
g(x) h(x) dx (35)

By replacing f (x) by its expression (32) into Eq. (34) leads to

a0〈ψ(x),1〉 + a1〈ψ(x), x〉 + aM−1

〈
ψ(x), xM−1

〉
= 0 (36)

which applies for any value of coefficients a0, · · · , aM−1. Thus, by choosing al = 1 and am = 0, ∀m �= l, it results〈
ψ(x), xl

〉
= 0, l = 0,1, · · · ,M− 1 (37)

implying that the M first moments of the wavelet function vanish. This condition can be proved to be equivalent to

k=∞∑
k=−∞

(−1)kakkl = 0, l = 0,1, · · · ,M− 1 (38)

Now, all the conditions above allow determining the N coefficients that determine completely the approximation.
In order to discretize the weak form of a given problem, one must have access to the scaling and wavelet function and 

their derivatives at any point (in particular at the integration points considered for evaluating the integrals involved in the 
problem weak form). For that purpose, we start by considering

φ(x) = a0φ(2x) + a1φ(2x − 1) + · · · + aN−1φ(2x −N + 1) (39)

or, taking into account that the support of the scaling function is [0, N], it results⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ(0) = a0φ(0)

φ(1) = a0φ(2) + a1φ(1) + a2φ(0)

φ(2) = a0φ(4) + a1φ(3) + a2φ(2) + a3φ(1) + a4φ(0)

...

(40)

which defines an eigenvalue problem giving access to the value of the scaling function at the integers. Now, in order to 
obtain its value at the so-called dyadic points, we make use of

φ(x/2) =
k=∞∑

k=−∞
aK φ(x − k) (41)

and from those we can compute φ(x/4) and so on.
Now, for the derivatives, we proceed in a similar manner, by taking the derivative of Eq. (39), which allows us, by 

following the same rationale and solving the associated eigenproblem, to calculate the derivative at the integer points, and 
from this the one at the dyadic points, and so on.

Approximations based on wavelets have been successfully considered for discretizing partial differential equations, most 
of the time by using Galerkin formulations [22,24–27].

If, for a while, we consider the one-dimensional problem involving the unknown field u(x)

d

dx

(
K (x)

du

dx

)
= 0 (42)

with x ∈ [0, 1], u(x = 0) = 0, u(x = 1) = 1 and the model parameter K (x) defined from

K (x) =
{

Kmax if x ∈ [0.15,0.85]
Kmin elsewhere

(43)

it is expected that the continuous field u(x) exhibits a discontinuity in its derivative at points x = 0.15 and x = 0.85, because 
of the continuity of the fluxes, i.e.

K (0.15 − ε)
du

dx

∣∣∣∣
x=0.15−ε

= K (0.15 + ε)
du

dx

∣∣∣∣
x=0.15+ε

(44)

and similarly for x = 0.85, with ε a small enough constant.



Fig. 2. Adaptive approximation strategy.

When using wavelet-based approximations, the unknown field can be expressed at the lowest level by using the scaling 
functions

u0(x) =
∑

k

c0,kφ(x − k) (45)

The problem solution (described later) consists of the set of coefficients c0,k . The solution at the next level is written by 
combining both the scaling and wavelet function at the lowest level, i.e.

u1(x) =
∑

k

c0,kφ(x − k) +
∑

k

d0,kψ(x − k) (46)

whose solution consists now of the coefficients c0,k and d0,k .
Because of the multi-resolution property of the employed approximation, one expects that the coefficients d0,k become 

higher at locations k where the lowest-level approximation u0(x) based on the use of the lowest level scaling functions is 
not able to represent the solution with sufficient accuracy. Thus, we could define a threshold value κ , allowing us to identify 
two sets S−

1 and S+
1 , composed respectively by integers k such that d0,k ≤ κ and d0,k > κ .

Now, the next approximation level u2(x) is defined by adding to the previous one u1(x) only the wavelet functions 
related to points in S+

1 and the ones having a natural neighbor in S+
1 . The resulting extended set is denoted by S̃+

1 , and
now the approximation u2(x) reads

u2(x) = u1(x) +
∑

k∈S̃+
1

d1,kψ1,k(x) (47)

After calculating coefficients d1,k , they are classified in sets S−
2 and S+

2 , and the adaptive approximation continues.
Fig. 2 depicts the evolution of the approximation basis on the left (with the red line being the computed solution), where 

the points at the lowest level (blue ones) are related to the uniform lowest-level approximation (based on the use of the 
scaling functions). Then, the second level, red points, are the ones in S̃+

1 , and so on. On the right (Fig. 2), the different
contributions to the solution are depicted: u1(x) (blue curve) as well as the adaptive contributions (for example, the red 
curve represents u2(x) − u1(x), whose support is defined by S̃+

1 ).
In the next section, the wavelet approximations will be considered for discretizing PDEs within the separated represen-

tation format characteristic of PGD methods.

3. Multi-scale Proper Generalized Decomposition

For the sake of simplicity, we consider the heat equation

∇ (K (x, y)∇u(x, y)) = f (x,y) (48)

where K (x, y) represents the material conductivity, assumed isotropic.
Problem (48) is defined in � = �x ×�y = (0, L)× (0,H) and where without loss of generality the homogeneous Dirichlet 

boundary condition is enforced on the domain boundary � ≡ ∂�.
The weak form related to Eq. (48) reads∫

�x×�y

∇u∗ · (K∇u(x, y) + f (x,y))dx dy = 0 (49)

whose solution, as described in Section 1, is searched under the separated form

un(x,y) =
n∑

Xi(x) · Yi(y) (50)

i=1



which implies the alternative resolution of two one-dimensional problems, the first one for calculating Xi(x), and the second 
one for calculating Yi(y), similarly to Eqs. (16) and (18).

When considering wavelet-based approximations, the functions Xi(x) and Yi(y) at the enrichment iteration n and the 
nonlinear iteration p, involved in the one-dimensional problems of the PGD separated representation constructor, are ap-
proximated according to:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

X p
n (x) = 2 j0/2

∑
k

X p,n
j0,kφ

(
2 j0 x − k

)
+

J∑
j= j0

2 j/2
∑

k

X p,n
j,k ψ

(
2 jx − k

)

Y p
n (y) = 2 j0/2

∑
k

Y p,n
j0,kφ

(
2 j0 y − k

)
+

J∑
j= j0

2 j/2
∑

k

Y p,n
j,k ψ

(
2 j y − k

)

X∗
n(x) = 2 j0/2

∑
k

X∗,n
j0,kφ

(
2 j0 x − k

)
+

J∑
j= j0

2 j/2
∑

k

X∗,n
j,k ψ

(
2 j x − k

)

Y ∗
n (y) = 2 j0/2

∑
k

Y ∗,n
j0,kφ

(
2 j0 y − k

)
+

J∑
j= j0

2 j/2
∑

k

Y ∗,n
j,k ψ

(
2 j y − k

)

Xi(x) = 2 j0/2
∑

k

Xi
j0,kφ

(
2 j0 x − k

)
+

J∑
j= j0

2 j/2
∑

k

Xi
j,kψ

(
2 j x − k

)

Yi(y) = 2 j0/2
∑

k

Y i
j0,kφ

(
2 j0 y − k

)
+

J∑
j= j0

2 j/2
∑

k

Y i
j,kψ

(
2 j y − k

)

(51)

where j0 refers to the lowest level and where the coefficients affecting the different scaling and wavelet functions are the 
unknowns.

It is important to note that, even if the approximates (51), as written, involve all the translations k at each level j, the 
multi-resolution analysis allows considering, as previously discussed, only the wavelet functions located in the regions in 
which they contribute to the solution improvement. Moreover, even if the largest scale is assumed to be the same for all 
the functions involved in the separated representation, J for all them, in general each function at each level could involve a 
different number of scales.

As previously described, all these functions, as well as their derivatives, can be computed at dyadic points, until 
approaching sufficiently the considered point. Thus, by injecting the previous approximates into the weak form of the 
one-dimensional problems resulting from the PGD discretization of Eq. (49) and using an integration quadrature, the ap-
proximation coefficients can be obtained.

It is important to mention that Eq. (49) also involves the conductivity K (x, y), which should be separated. For this 
purpose, we proceed as described in our former works (e.g., [17]) by constructing its separated representation

K (x, y) ≈
K∑

i=1

Kx
i (x)Ky

i (y) (52)

The separation could be performed by using a standard SVD – Singular Value Decomposition. Another possibility consists 
in using the PGD (see Chapter 3 in [17]), which consists in solving the problem

K̃ (x, y) − K (x, y) = 0 (53)

with

K̃ (x, y) =
K∑

i=1

Kx
i (x)Ky

i (y) (54)

whose integral form reads∫
�x×�y

K̃ ∗(x, y)

(
K̃ (x, t) −

K∑
i=1

Kx
i (x)Ky

i (y)

)
dx dy = 0 (55)

Again, this equation is solved by using the PGD constructor and now, because no regularity is needed in the represen-
tation of the conductivity, the Haar’s wavelet is chosen, i.e. used for approximating functions involved in the conductivity 
separated representation Kx(x) and Ky

(y).
i i



The main issue when considering the Daubechies and Haar representations of the temperature field u(x, y) and the 
conductivity K (x, y) is that the integrals in Eq. (49) involve the product of two or three scaling and wavelet functions, 
of different nature (Daubechies and Haar) at different scales. This difficulty has been circumvented by considering the 
technique proposed in [28] and summarized in Appendix A.

After solving the problem, that is, after computing the coefficients affecting the different scaling and wavelet functions 
appearing in the approximation of functions involved in the solution separated representation, one realizes that each mode 
n ≤ N, Xn(x) · Yn(y), involves different levels. The Galerkin PGD constructor does not allow associating modes with levels; 
each mode contains many levels of description, and each level of description is present in most of the PGD modes.

However, in order to extract the multi-scale features of the solution, after having solved the problem, one could proceed 
with re-ordering the modes by enforcing the first mode to contain the lowest-level contribution (zero level), the second 
mode the first level contribution, and so on.

To better describe the re-ordering procedure, we consider the solution approximation

uN(x, y) =
N∑

i=1

Xi(x)Yi(y) (56)

with ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xi(x) = 2 j0/2
∑

k

Xi
j0,kφ

(
2 j0 x − k

)
+

J∑
j= j0

2 j/2
∑

k

Xi
j,kψ

(
2 j x − k

)

Yi(y) = 2 j0/2
∑

k

Y i
j0,kφ

(
2 j0 y − k

)
+

J∑
j= j0

2 j/2
∑

k

Y i
j,kψ

(
2 j y − k

) (57)

Solution (56) can be rewritten in the form

uN(x, y) =
J∑

i=0

Zi(x, y) (58)

with

Z0(x, y) =
N∑

i=1

{
2 j0/2

∑
k

Xi
j0,kφ

(
2 j0 x − k

)
· 2 j0/2

∑
k

Y i
j0,kφ

(
2 j0 x − k

)}
(59)

Z1(x, y) =
N∑

i=1

{
2 j0/2

∑
k

Xi
j0,kφ

(
2 j0 x − k

)
· 2 j0/2

∑
k

Y i
j0,kψ

(
2 j0 y − k

)

+ 2 j0/2
∑

k

Xi
j0,kψ

(
2 j0 x − k

)
· 2 j0/2

∑
k

Y i
j0,kφ

(
2 j0 y − k

)}
(60)

and so on. Here, each term Zi(x, y) contains a level of description, from the coarsest one to the finest one.
It is important to note that each term Zi(x, y) has a separated representation, a finite sum of functional products, with 

one of the involved functions depending on the x-coordinate, and the other one on the y-coordinate.

4. Numerical examples

4.1. The Poisson problem: convergence analysis

In order to check the proposed strategy, we consider the problem discussed in Section 1, Eq. (8), with f = 1 and homo-
geneous boundary conditions whose exact solution, as previously discussed, is available.

Fig. 3 depicts the reconstructed solution and the associated modes in each direction. It was noticed that the approxi-
mation of functions involved in higher modes (e.g., XN(x) and YN(y)) required higher levels. The difference between the 
reconstructed and the exact solution is depicted in Fig. 4.

The convergence analysis considered increasing the number of models involved in the separated representation for dif-
ferent levels in the mode approximation and the inverse, increasing the number of levels for a fixed number of modes. 
The error is calculated using the L2-norm. As expected, a strategy increasing either the number of modes or the number of 
levels rapidly reaches a plateau, as Fig. 5 attests to. Only by increasing simultaneously both of them, the convergence rate 
can be maintained.

Fig. 6 compares the first three PGD models Xi(x) · Yi(y) and the re-ordered multi-scale modes, referred to as WPGD 
modes, Zi(x, y), according to the strategy described in the previous section.

Finally, Fig. 7 illustrates the contribution of different levels to each PGD mode. It can be noticed that the first PGD modes 
involve mainly lower levels, whereas higher levels contribute mainly to the last PGD modes.



Fig. 3. Reconstructed solution and involved modes in each direction.

Fig. 4. Difference between the reconstructed solution and the exact one for different number of models considered in the solution separated representation.

Fig. 5. Convergence analysis with respect to the number of modes and levels.



Fig. 6. PGD modes Xi(x) · Yi(y) versus WPGD modes Zi(x, y).

Fig. 7. Contribution of the different levels to each PGD mode.

4.2. Multi-scale analysis

In this case study, we consider a thermal problem (heat transfer equation) in the domain depicted in Fig. 8, consisting of 
two phases with different thermal conductivities (both of them assumed isotropic). As discussed before, Daubechies wavelets 
with N = 6 are considered for approximating the functions composing the different solution modes, i.e. the functions Xi (x)
and Yi(y), while the separated representation of the conductivity uses a Haar wavelet representation.

First, the conductivity is approximated at a fine enough level by using a Haar wavelet representation. Then, the solution 
is approximated at different levels using Daubechies wavelets. When considering fine scales, as fine as the microstructure 
representation, the solution becomes locally representative of the exact solution, whereas when considering coarser repre-
sentations with respect to the microstructure length scale, the latter is considered in an averaged sense in the low-scale 
solution approximations. Fig. 9 represents the solution when considering different representation levels of the solution.

Finally, Figs. 10 and 11 depict respectively the PGD modes Xi(x) · Yi(y) and their associated multi-scale re-ordered 
modes Zi(x, y) described in the previous section, where the multi-scale character is pointed out, with higher frequencies 
appreciated at higher modes.

4.3. Parametric solutions

Until now, separated representations were associated with the space coordinates x and y. However, as discussed in Sec-
tion 1, one appealing feature of separated representations concerns the solution to parametric models. In [2], the solution to 
parametric models within the PGD framework was widely described. Thus, if one is interested in calculating the temperature 
in the domain � for any value of the material conductivity K ∈ I ⊂R

+ , the solution separated representation reads



Fig. 8. Domain exhibiting two phases with different thermal conductivities.

Fig. 9. Reconstructed solution for different approximation levels.

Fig. 10. PGD modes: Xi(x) · Yi(y).

u(x, K ) ≈
N∑

i=1

Xi(x) Ci(K ) (61)

which, injected in the problem integral form, allows calculating the functions Xi(x) and Ci(K ). However, such a procedure is 
too intrusive to be considered for calculating a parametric solution when using an external simulation code able to provide 
the temperature field for a given value of the conductivity, that is, u(x; K ).



Fig. 11. Multi-scale modes Zi(x, y) constructed from the wavelet-based PGD separated representation.

The last approach is based on an appropriate sampling of the parametric domain by choosing particular values of the 
conductivity grouped in the set K = {K1, K2, · · · , KK} and solving the problem for all these values in order to obtain u(x; Ki), 
∀i ∈ K. Then, all these solutions can be adequately interpolated for defining the solution for any conductivity value K ∈
[K1, KK]. This is the key idea behind surrogate models, response surfaces, etc.

If we imagine for a while that we solved the problem at hand for the minimum and maximum values of the conductiv-
ities, leading to u(x, Kmin) and u(x, Kmax), the conductivity for any other value of the conductivity K ∈ [Kmin, Kmax] can be 
linearly approximated according to

u(x, K ) = u(x, Kmin)N1(K ) + u(x, Kmax)N2(K ) (62)

where the approximation functions in the parametric space N1(K ) and N2(K ) read

N1(K ) = K − Kmin

Kmax − Kmin
(63)

and

N2(K ) = Kmax − K

Kmax − Kmin
(64)

Finer approximations require finer samplings and the subsequent interpolation. The main difficulty is how choosing these 
points to keep the accuracy under control. In [29], the authors proposed a non-intrusive sparse subspace learning approach 
using hierarchical approximation bases.

Another possibility consists in taking advantage of the multi-resolution property of wavelet-based approximations for 
controlling the sampling richness, that is, the number of elements in the set K. Thus, one can control the convergence by 
analyzing the value of the associated coefficients related to the wavelet functions. This appealing property is absent in usual 
polynomial approximations.

Using a wavelet representation of the parametric evolution employing spline-wavelets,

φ (x) = 1

2
φ (2x) + φ (2x − 1) + 1

2
φ (2x − 2) (65)

has the advantage of recovering coefficients that correspond to the value of the approximated function at its location.
Then, as soon as the solution is computed at two consecutive levels by approximating the parametric functions by using 

the scaling functions φ j,k and φ j+1,k , respectively, their difference represents the wavelet contribution that can be expressed 
in the wavelet basis ψ j,k , and whose higher coefficients indicate the locations at which sampling must be refined.

This procedure allowed us to reduce significantly the number of sampling points, of some orders of magnitude in some 
of our numerical experiments.

5. Conclusions

In this work, we proved that separated representations involved in PGD solution procedures can be combined with
wavelet-based functional approximations for extracting the multi-scale behavior present in the solutions.



Moreover, we proved that the multi-resolution property inherent to wavelet representations allows defining simple adap-
tive procedures with multiple applications: model refinement or efficient sampling for calculating parametric solutions.

The connection between multi-scale solutions in complex microstructures and homogenization constitutes a work in 
progress.

Appendix A. Calculating integrals involving three functions at the same and at different levels

We consider the integral

�
d1,d2,d3
l,m ≡

∞∫
−∞

φd1 (x)φd2 (x − l)φd3 (x − m)dx (66)

where d1, d2 and d3 refers to the derivative order. Integral (66) can be expressed as

�
d1,d2,d3
l,m = 2d1 2d2 2d3

∞∫
−∞

∑
k

akφ
d1 (2x − k)

∑
r

arφ
d2 (2x − 2l − r)

∑
p

apφd3 (2x − 2m − p)dx (67)

By considering the change of variable y = 2x − k, the preceding expression reads

�
d1,d2,d3
l,m = 2d1 2d2 2d3

2

∑
k

ak

∑
r

ar

∑
p

ap

∞∫
−∞

φd1 (y)φd2 (y + k − 2l − r)φd3 (y + k − 2m − p) dy (68)

which can be rewritten as

�
d1,d2,d3
l,m = 2d1 2d2 2d3

2

∑
k

ak

∑
r

ar

∑
p

ap�
d1,d2,d3
2l+r−k,2m+p−k (69)

which defines a rank-deficient eigenproblem. The rank deficiency is circumvented by adding the required number of extra 
equations [28].

Now we consider that the integral involves functions at different scales,

�
d1,d2,d3
im,l ≡

∞∫
−∞

φd1 (y)φd2 (y − m)φd3 (2y − l) dy (70)

which can be rewritten as

�
d1,d2,d3
m,l =

∞∫
−∞

∑
k

ak2d1φd1 (2y − k)
∑

r

ar2d2φd2 (2y − 2m − r)φd3 (2y − l) (71)

or

�
d1,d2,d3
m,l = 2d1 2d2

∑
k

ak

∑
r

ar

∞∫
−∞

φd1 (z)φd2 (z + k − 2m − r)φd3 (z + k − l)

= 2d1 2d2
∑

k

ak

∑
r

ar�2m+r−k,l−k (72)

which results again in an eigenproblem.
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