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Engelbrecht and Berezovski (2015); Chatzigeorgiou et al (2017). In this context, it is
also worth mentioning continuum bodies, characterized at micro scale, by interacting
spins in a crystalline lattice (see e.g. Grimmett (2016); de Masi et al (2008, 2009) for
some relevant results using the Potts model). As some other generalized models it can
predict size-effect since it includes the characteristic length observed at the nanoscale
and can describe dispersion for waves propagation in microstructured solids. The
typical form of the strain energy density W under infinitesimal deformations can be
represented as follows

W = W (e,∇ee) (15.1)

or
W = W (e,∇∇u), (15.2)

where
ee =

1
2
(∇uu+(∇uuu)T )

is the strain tensor, uu is the vector of displacements, and ∇ is the three-dimensional
(3D) nabla-operator (Lebedev et al, 2010; Simmonds, 1994). In what follows for
brevity we use form (15.2). The model was presented in the original works by Toupin
(1962); Mindlin (1964); Mindlin and Eshel (1968) and in simplified form by Aifantis
(1992, 2003); Askes and Aifantis (2011); Askes and Gitman (2017).

The characteristic feature of (15.1) and (15.2) is that W depends on a set of all
second derivatives of u. Considering small deformations we can transform W into a
quadratic form

W =
1
2

ee : CC : ee+
1
2

∇∇u
... D

... ∇∇u, (15.3)

where CC and D are forth- and six-order tensors of elastic moduli, respectively. The
standard assumption is that CC and D are not singular. Moreover, C and DD are assumed
to be positive definite, see, e.g., Healey and Krömer (2009); Mareno and Healey
(2006), that is

ee : CC : ee ≥ cee : e, (15.4)

∇∇uu
... DD

... ∇∇uu ≥ d ∇∇uu
... ∇∇u (15.5)

with c > 0, d > 0. Here “:” and “
...” stand for scalar (inner) products in the spaces of

second- and third-order tensors, respectively.
So, all spatial directions are equivalent in the sense of dependence on all second

derivatives.
In the follows we consider another type of constitutive equations. We keep re-

quirement (15.4) and relax (15.5) assuming that DD can be degenerated, that is

ee : CC : ee ≥ ceee : ee, ∇∇uuu
... DD

...∇∇uu ≥ 0. (15.6)



We call such model the reduced or degenerated strain gradient elasticity. In what
follows we discuss few examples of such models.

15.2 Reduced Strain Gradient Elasticity. Examples

15.2.1 Structural Mechanics

First, let us recall that such inequality in spatial directions is well-known in the
structural mechanics. For example, the strain energy density of an extensible beam
under tension and in-plane bending is given by

W =
1
2
Ke(u′)2 +Kb(w′′)2, (15.7)

where Ke > 0 and Kb > 0 are the extensional and bending stiffness parameters,
u = u(x) and w = w(x) are longitudinal and transverse displacements, respectively,
x is the coordinate along the beam axis, and the prime stands for derivative with
respect to x.

The same situation can be observed in the Kirchhof-Love theory of plates and
shells (Timoshenko and Woinowsky-Krieger, 1985; Lebedev et al, 2010). For exam-
ple, the strain energy density of an elastic homogeneous plate of thickness h is given
by

W =
Eh

2(1+ν)

[
uα ,β uα ,β +

ν
1−ν

(
uα ,α

)2
]

+
Eh3

24(1+ν)

[
w,αβ w,αβ +

ν
1−ν

(w,αα)
2
]
, (15.8)

where E and ν are Young’s modulus and Poisson’s ratio, respectively, uα and w are
the in-plane and transverse displacements, xα is a Cartesian coordinates, α = 1,2.
Hereinafter indices after comma denote derivatives with respect to xα , so w,α is the
partial derivative of w with respect to xα ,

w,α =
∂w
∂xα

.

So, considering beams, plates and shells as 1D and 2D continua embedded into 3D
physical space we see a difference in order of used derivatives in different directions.
Obviously, for beams the preferable direction is tangent to the beam axis whereas for
plates and shells it is normal to the middle surface. Nevertheless, here the mentioned
difference concerns different components of displacements. For example, (15.8)
includes all derivatives of the deflection w. In what follows we demonstrate another
situation.







Here K(3)
e is the stiffness related to pivots undergoing tension/compression.

Comparing (15.12) with the general constitutive equation (15.3) we see that DD
is rather degenerated. Thus, the presented above models belong to the class of
constitutive relations of reduced strain gradient elasticity. The pantographic beam
structures are not unique example of such materials, other examples one can find in
the hydrostatics of liquid crystals.

15.2.3 Smectics and Columnar Liquid Crystals

Smectics are the particular class of liquid crystals with layered structure, see Chan-
drasekhar (1977); de Gennes and Prost (1993); Oswald and Pieranski (2006). Each
layer is a two-dimensional liquid. Nevertheless smectics demonstrate existence of
non-hydrostatic stresses and resistance to bending. The schematic structure of smec-
tic A is given in Fig. 15.3 (a) where ordered arrangements of molecules in each
layer is shown. For small distortion of the initially plane layers of a smectic the main
kinematical descriptor is the displacement field uuu = u(x,y,z)ii3. So, the kinematics of
smectics is determined by one scalar function u.

The strain energy density of smectics A is given

W =
1
2
B(u,z)2 +

1
2
K(u,xx +u,yy)

2 , (15.13)

where B and K are elastic moduli describing the longitudinal stiffness along z-
direction and the bending stiffness of the smectic layers, respectively.

Another type of liquid crystals are so-called columnar phases which structure is
shown in Fig. 15.3 (b). From the physical point of view these liquid crystals look as
set of flexible deformable tubes which can easily slide along each other. For small
deformations of this class of liquid crystals we introduce the vector of displacements

z
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Fig. 15.3: Structures of liquid crystals. a) smectic A, b) a columnar.



uu = u1iii1 + u2iii2 + u3iii3, uk = uk(x,y,z). The strain energy density is now given by
de Gennes and Prost (1993) as follows

W =
1
2
B(u1,x +u2,y)

2 +
1
2
K1

[
(u1,x −u2,y)

2 +(u1,y +u2,x)
2]

+
1
2
K2

[
u2

1,zz +u2
2,zz

]
, (15.14)

where B, K1 and K2 are elastic moduli.
The similarity between strain energies (15.13) and (15.14) of these liquid crystals

and the form of strain energy densities of pantographic beam lattices (15.12) is
obvious. Indeed, all these forms contains incomplete set of second spatial derivatives,
so they belong to the class of materials described using the reduced strain gradient
elasticity.

15.2.4 Other Spatially Non-Symmetric Models

Almost all models known in structural and continuum mechanics are symmetric in
spatial directions in mentioned above sense. Nevertheless, non-symmetric models
are also known. Let us mention few equations of such kind.

The Kadomtsev-Petwiashvili equation is a two-dimensional analog of the famous
Korteweg-de-Vries equation, see Kadomtsev and Petviashvili (1970). It takes the
form

(u,t +6uu,x +u,xxx),x +3λu,yy = 0, (15.15)

where u = u(x,y, t), x and y are Cartesian coordinates and λ =±1. Eq. (15.15) cames
originally from acoustics and found further applications in the nonlinear theory of
dispersive waves, theory of solitons, theory of ferromagnetics, string theory, see,
e.g., Ablowitz and Segur (1981); Ablowitz and Clarkson (1991); Maugin (1999).
The Kadomtsev-Petviashvili equation describes also the evolution of the localized
structures over a large-time scale of a quasi-continuum model deduced from a non-
linear lattice model, see Pouget (2005).

The next example is the PDE arose in the analysis of gas centrifuges, nowadays
known as Onsager’s pancake equation (Wood and Morton, 1980; Eastham and
Peterson, 2004). It is given by[

ex (exu,xx),xx

]
,xx

+bu,yy = f (x,y), (15.16)

where u = u(x,y), b and f are given.
Both equations (15.15) and (15.16) were derived using some approximation

techniques in which the preferable spatial direction was chosen a priori.



15.3 Conclusions

We briefly discussed a new class of strain gradient elasticity models called the reduced
or degenerated strain gradient elasticity. Among such continua there are continual
models of pantographic beam lattices and smectic and columnar liquid crystals. The
common peculiarity for both media is a layered structure and sensitivity to bending
only in certain directions. From the mathematical point of view the corresponding
systems of partial differential equations and natural boundary conditions requires
special analysis, such as given in Eremeyev et al (2017) within the framework of
anisotropic Sobolev spaces. Let us note that the considered model is obviously
anisotropic with a special type of anisotropy. Usually, the anisotropic behavior of
solids is determines by symmetries of the tensors of elastic moduli. Here, in addition
to this symmetries we meet strong dependence of the material properties on the spatial
directions since the strain energy density may be independent on some components
of strain gradient tensor. In particular, for pantographic beam lattice as for smectic
and columnar liquid crystals there is a preferable direction normal to the inner layers.
Here we are restricted ourselves by infinitesimal deformations, but the models can be
easily extended for finite deformations. So, we can easily consider the reduced strain
gradient elasticity for large deformations. Another common peculiarity observed
for pantographic beam lattices and liquid crystals is the existence of non-trivial
solutions with zero energy. The further analysis of such constitutive equations can
be performed using the material symmetry group defined in (Bertram, 2016) as was
performed for shells in (Eremeyev and Pietraszkiewicz, 2006) and for micropolar
media in (Eremeyev and Pietraszkiewicz, 2012, 2016).
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