[START_REF] Engelbrecht | Reflections on mathematical models of deformation waves in elastic microstructured solids[END_REF]; [START_REF] Chatzigeorgiou | Generalized interfacial energy and size effects in composites[END_REF]. In this context, it is also worth mentioning continuum bodies, characterized at micro scale, by interacting spins in a crystalline lattice (see e.g. [START_REF] Grimmett | Correlation inequalities for the Potts model[END_REF]; [START_REF] De Masi | Potts models in the continuum. uniqueness and exponential decay in the restricted ensembles[END_REF][START_REF] De Masi | Coexistence of ordered and disordered phases in Potts models in the continuum[END_REF] for some relevant results using the Potts model). As some other generalized models it can predict size-effect since it includes the characteristic length observed at the nanoscale and can describe dispersion for waves propagation in microstructured solids. The typical form of the strain energy density W under infinitesimal deformations can be represented as follows W = W (e, ∇e e) (15.1) or W = W (e, ∇∇u), (15.2)

where e e = 1 2 (∇u u + (∇u u u) T )

is the strain tensor, u u is the vector of displacements, and ∇ is the three-dimensional (3D) nabla-operator [START_REF] Lebedev | Tensor Analysis with Applications in Mechanics[END_REF][START_REF] Simmonds | Non-local dynamic behavior of linear fiber reinforced materials[END_REF]. In what follows for brevity we use form (15.2). The model was presented in the original works by [START_REF] Toupin | Elastic materials with couple-stresses[END_REF]; [START_REF] Mindlin | Micro-structure in linear elasticity[END_REF]; [START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF] and in simplified form by Aifantis (1992[START_REF] Aifantis | Update on a class of gradient theories[END_REF]; [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF]; [START_REF] Askes | Reducible and irreducible forms of stabilised gradient elasticity in dynamics[END_REF].

The characteristic feature of (15.1) and (15.2) is that W depends on a set of all second derivatives of u. Considering small deformations we can transform W into a quadratic form

W = 1 2 e e : C C : e e + 1 2 ∇∇u . . . D . . . ∇∇u, (15.3) 
where C C and D are forth-and six-order tensors of elastic moduli, respectively. The standard assumption is that C C and D are not singular. Moreover, C and D D are assumed to be positive definite, see, e.g., [START_REF] Healey | Injective weak solutions in second-gradient nonlinear elasticity[END_REF]; [START_REF] Mareno | Global continuation in second-gradient nonlinear elasticity[END_REF] 

Structural Mechanics

First, let us recall that such inequality in spatial directions is well-known in the structural mechanics. For example, the strain energy density of an extensible beam under tension and in-plane bending is given by

W = 1 2 K e (u ) 2 + K b (w ) 2 , (15.7)
where K e > 0 and K b > 0 are the extensional and bending stiffness parameters, u = u(x) and w = w(x) are longitudinal and transverse displacements, respectively, x is the coordinate along the beam axis, and the prime stands for derivative with respect to x.

The same situation can be observed in the Kirchhof-Love theory of plates and shells [START_REF] Timoshenko | Theory of Plates and Shells[END_REF][START_REF] Lebedev | Tensor Analysis with Applications in Mechanics[END_REF]. For example, the strain energy density of an elastic homogeneous plate of thickness h is given by (15.8) where E and ν are Young's modulus and Poisson's ratio, respectively, u α and w are the in-plane and transverse displacements, x α is a Cartesian coordinates, α = 1, 2. Hereinafter indices after comma denote derivatives with respect to x α , so w ,α is the partial derivative of w with respect to x α ,

W = Eh 2(1 + ν) u α ,β u α ,β + ν 1 -ν u α ,α 2 + Eh 3 24(1 + ν) w ,αβ w ,αβ + ν 1 -ν (w ,αα ) 2 ,
w ,α = ∂ w ∂ x α .
So, considering beams, plates and shells as 1D and 2D continua embedded into 3D physical space we see a difference in order of used derivatives in different directions. Obviously, for beams the preferable direction is tangent to the beam axis whereas for plates and shells it is normal to the middle surface. Nevertheless, here the mentioned difference concerns different components of displacements. For example, (15.8) includes all derivatives of the deflection w. In what follows we demonstrate another situation.

Here K

(3) e is the stiffness related to pivots undergoing tension/compression. Comparing (15.12) with the general constitutive equation ( 15.3) we see that D D is rather degenerated. Thus, the presented above models belong to the class of constitutive relations of reduced strain gradient elasticity. The pantographic beam structures are not unique example of such materials, other examples one can find in the hydrostatics of liquid crystals.

Smectics and Columnar Liquid Crystals

Smectics are the particular class of liquid crystals with layered structure, see [START_REF] Chandrasekhar | Liquid Crystals[END_REF]; de Gennes and Prost (1993); [START_REF] Oswald | Smectic and Columnar Liquid Crystals: Concepts and Physical Properties Illustrated by Experiments. The Liquid Crystals Book Series[END_REF]. Each layer is a two-dimensional liquid. Nevertheless smectics demonstrate existence of non-hydrostatic stresses and resistance to bending. The schematic structure of smectic A is given in Fig. 15.3 (a) where ordered arrangements of molecules in each layer is shown. For small distortion of the initially plane layers of a smectic the main kinematical descriptor is the displacement field u u u = u(x, y, z)i i 3 . So, the kinematics of smectics is determined by one scalar function u.

The strain energy density of smectics A is given (15.13) where B and K are elastic moduli describing the longitudinal stiffness along zdirection and the bending stiffness of the smectic layers, respectively. Another type of liquid crystals are so-called columnar phases which structure is shown in Fig. 15.3 (b). From the physical point of view these liquid crystals look as set of flexible deformable tubes which can easily slide along each other. For small deformations of this class of liquid crystals we introduce the vector of displacements (x, y, z). The strain energy density is now given by de [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF] as follows (15.14) where B, K 1 and K 2 are elastic moduli.

W = 1 2 B(u ,z ) 2 + 1 2 K (u ,xx + u ,yy ) 2 ,
u u = u 1 i i i 1 + u 2 i i i 2 + u 3 i i i 3 , u k = u k
W = 1 2 B(u 1,x + u 2,y ) 2 + 1 2 K 1 (u 1,x -u 2,y ) 2 + (u 1,y + u 2,x ) 2 + 1 2 K 2 u 2 1,zz + u 2 2,zz ,
The similarity between strain energies (15.13) and (15.14) of these liquid crystals and the form of strain energy densities of pantographic beam lattices (15.12) is obvious. Indeed, all these forms contains incomplete set of second spatial derivatives, so they belong to the class of materials described using the reduced strain gradient elasticity.

Other Spatially Non-Symmetric Models

Almost all models known in structural and continuum mechanics are symmetric in spatial directions in mentioned above sense. Nevertheless, non-symmetric models are also known. Let us mention few equations of such kind.

The Kadomtsev-Petwiashvili equation is a two-dimensional analog of the famous Korteweg-de-Vries equation, see [START_REF] Kadomtsev | On the stability of solitary waves in weakly dispersing media[END_REF]. It takes the form

(u ,t + 6uu ,x + u ,xxx ) ,x + 3λ u ,yy = 0, (15.15) 
where u = u(x, y,t), x and y are Cartesian coordinates and λ = ±1. Eq. (15.15) cames originally from acoustics and found further applications in the nonlinear theory of dispersive waves, theory of solitons, theory of ferromagnetics, string theory, see, e.g., [START_REF] Ablowitz | Solitons and the inverse scattering transform. SIAM, Philadelphia Aifantis EC[END_REF]; [START_REF] Ablowitz | Solitons, Nonlinear Evolution Equations and Inverse Scattering[END_REF]; [START_REF] Maugin | Nonlinear Waves in Elastic Crystals[END_REF]. The Kadomtsev-Petviashvili equation describes also the evolution of the localized structures over a large-time scale of a quasi-continuum model deduced from a nonlinear lattice model, see [START_REF] Pouget | Non-linear lattice models: complex dynamics, pattern formation and aspects of chaos[END_REF].

The next example is the PDE arose in the analysis of gas centrifuges, nowadays known as Onsager's pancake equation [START_REF] Wood | Onsager's pancake approximation for the fluid dynamics of a gas centrifuge[END_REF][START_REF] Eastham | The finite element method in anisotropic Sobolev spaces[END_REF]. It is given by (15.16) where u = u(x, y), b and f are given. Both equations (15.15) and (15.16) were derived using some approximation techniques in which the preferable spatial direction was chosen a priori.

e x (e x u ,xx ) ,xx ,xx + bu ,yy = f (x, y),

Conclusions

We briefly discussed a new class of strain gradient elasticity models called the reduced or degenerated strain gradient elasticity. Among such continua there are continual models of pantographic beam lattices and smectic and columnar liquid crystals. The common peculiarity for both media is a layered structure and sensitivity to bending only in certain directions. From the mathematical point of view the corresponding systems of partial differential equations and natural boundary conditions requires special analysis, such as given in [START_REF] Eremeyev | Linear pantographic sheets: existence and uniqueness of weak solutions[END_REF] within the framework of anisotropic Sobolev spaces. Let us note that the considered model is obviously anisotropic with a special type of anisotropy. Usually, the anisotropic behavior of solids is determines by symmetries of the tensors of elastic moduli. Here, in addition to this symmetries we meet strong dependence of the material properties on the spatial directions since the strain energy density may be independent on some components of strain gradient tensor. In particular, for pantographic beam lattice as for smectic and columnar liquid crystals there is a preferable direction normal to the inner layers.

Here we are restricted ourselves by infinitesimal deformations, but the models can be easily extended for finite deformations. So, we can easily consider the reduced strain gradient elasticity for large deformations. Another common peculiarity observed for pantographic beam lattices and liquid crystals is the existence of non-trivial solutions with zero energy. The further analysis of such constitutive equations can be performed using the material symmetry group defined in [START_REF] Bertram | Compendium on Gradient Materials[END_REF] as was performed for shells in [START_REF] Eremeyev | Local symmetry group in the general theory of elastic shells[END_REF] and for micropolar media in (Eremeyev andPietraszkiewicz, 2012, 2016).

Fig

  Fig. 15.3: Structures of liquid crystals. a) smectic A, b) a columnar.