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We consider robust nonparametric estimation of the Pickands dependence function under random right censoring. The estimator is obtained by applying the minimum density power divergence criterion to properly transformed bivariate observations. The asymptotic properties are investigated by making use of results for Kaplan-Meier integrals. We investigate the finite sample properties of the proposed estimator with a simulation experiment and illustrate its practical applicability on a dataset of insurance indemnity losses.

Introduction

Multivariate extreme value statistics deals with the estimation of the tail of a multivariate distribution function based on a random sample. When studying multivariate extremes, a natural question is how to quantify extreme dependence between two or more random variables. Usually, the copula function is used as a margin-free description of the dependence structure between several random variables. Indeed, according to Sklar's theorem [START_REF] Sklar | Fonctions de répartition à n dimensions et leurs marges[END_REF], the distribution function of a pair pY p1q , Y p2q q can be represented in terms of the two marginal distribution functions F Y p1q and F Y p2q of Y p1q and Y p2q respectively, and a copula function C as follows:

P ´Y p1q ď y 1 , Y p2q ď y 2 ¯" C pF Y p1q py 1 q, F Y p2q py 2 qq .

(

) 1 
This function C characterizes the dependence between Y p1q and Y p2q and is called an extreme value copula if and only if it admits a representation of the form Cpy 1 , y 2 q " exp ˆlogpy 1 y 2 qA Y ˆlogpy 2 q logpy 1 y 2 q ˙˙,

where A Y : r0, 1s Ñ r1{2, 1s is the Pickands dependence function, which is convex and satisfies maxtt, 1 ´tu ď A Y ptq ď 1, see [START_REF] Pickands | Multivariate extreme value distributions[END_REF]. Throughout the paper we assume that pY p1q , Y p2q q follows a joint distribution with an underlying extreme value copula.

Since a copula function allows to model efficiently the dependence between several random variables, it becomes more and more popular in financial or actuarial applications. To illustrate our methodology, we consider the insurance company loss and expense application by [START_REF] Frees | Understanding relationships using copulas[END_REF]. The dataset, included in the R package copula, comprises 1500 pairs containing information on general liability claims, the first component being the indemnity payment (loss) and the second one an allocated loss adjustment expense (ALAE). The latter is related to the settlement of individual claims, e.g., expenses for lawyers or claim investigation. A crucial question is the possible dependence between the two components, loss and ALAE, which has to be accounted for if we are interested in actuarial applications, such as, e.g., pricing an excessof-loss reinsurance treaty when the reinsurer shares the claims settlement costs. For instance [START_REF] Micocci | Loss-ALAE modelling through a copula dependence structure[END_REF] (see also [START_REF] Cebrián | Analysis of bivariate tail dependence using extreme value copulas: an application to the SOA medical large claims database[END_REF] motivate the use of copula functions in that context with the aim of building a reinsurance strategy in presence of policy limits and insurer's retentions. As outlined in these contributions, a substantial mispricing can result from the usual independence assumption where the joint distribution is assumed to be the product of the marginals, and thus using copulas is the correct way to model dependence and as such to avoid the undervaluation of the reinsurance premium. However, the estimation of the joint distribution for the losses and expenses is complicated due to the presence of censoring. More specifically, for each claim there is a policy limit, and hence the losses cannot exceed this limit.

In the loss-ALAE dataset, 34 observations have censored losses and these censored observations cannot be ignored since for instance the mean loss of censored claims is much higher than the corresponding mean for the uncensored claims (217 491 against 37 110, see Table 4 in [START_REF] Frees | Understanding relationships using copulas[END_REF]. The scatterplot of the data is given in Figure 1, where the uncensored observations are in grey and the censored ones in black. Overall the scatterplot indicates a reasonably strong relationship between the two variables, but the picture is somehow obscured by censoring in the largest observations and also by potential outliers.

We have thus two issues in the dataset under consideration: the presence of censoring and potential outliers.

Concerning the first issue, we will explore in the present paper nonparametric estimation of the Pickands dependence function when there is random right censoring in the marginal distributions. More precisely, we consider the situation where pY p1q , Y p2q q is right censored by pC p1q , C p2q q, also following a bivariate distribution with an extreme value copula, but now with Pickands dependence function A C . Thus, we observe pminpY p1q , C p1q q, minpY p2q , C p2q q, δ p1q , δ p2q q, where δ pjq :" 1l tY pjq ďC pjq u , j " 1, 2, with 1l E the indicator function on the event E, and interest is in estimating A Y .
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multivariate extreme value statistics a central topic is the modelling and estimation of extreme dependence between two or more random variables. Similarly to classical statistics, extreme dependence can be summarised by properly chosen dependence coefficients, like the coefficient of tail dependence, see, e.g., [START_REF] Ledford | Modelling dependence within joint tail regions[END_REF] Concerning the second issue, robust methods must be proposed to prevent possible isolated outliers from completely disturbing the estimate of the joint distribution. To reach this goal, we will propose a robust estimator of the Pickands dependence function of pY p1q , Y p2q q based on the density power divergence method introduced by Basu et al. (1998). In particular, the density power divergence between two density functions f and h is defined as follows

∆ α pf, hq :" $ ' ' & ' ' % ż R " h 1`α pyq ´ˆ1 `1 α ˙hα pyqf pyq `1 α f 1`α pyq  dy, α ą 0, ż R log f pyq hpyq f pyqdy, α " 0.
Here the density function h is assumed to depend on a parameter vector θ and if Y 1 , . . . , Y n is a sample of independent and identically distributed (i.i.d.) random variables according to the density function f , then the minimum density power divergence estimator (MDPDE) of θ is the point p θ minimizing the estimated version (up to a constant independent of θ)

p ∆ α pθq :" $ ' ' & ' ' % ż R h 1`α pyqdy ´ˆ1 `1 α ˙żR h α pyqd p F Y pyq, α ą 0, ´żR log hpyqd p F Y pyq, α " 0,
where p F Y is a suitable estimator of the distribution of Y 1 . In the case of no censoring, p F Y is typically the empirical distribution function p F E Y pyq :" p1{nq ř n i"1 1l tY i ďyu , whereas in the censoring framework where Y i is censored by an independent random variable C i , the famous Kaplan-Meier product-limit estimator (see [START_REF] Kaplan | Nonparametric estimation from incomplete observations[END_REF] 

defined as p F KM Y pyq :" 1 ´n ź i"1 " 1 ´δri,ns n ´i `1  1l tZ i,n ďyu , (3) 
can be used. Here Z i :" minpY i , C i q, i " 1, . . . , n, Z i,n denotes the i´th order statistic of tZ 1 , . . . , Z n u and δ ri,ns is the concomitant order statistic with respect to Z i,n , i.e., δ ri,ns "

δ k if Z i,n " Z k , i " 1, . . . , n.
The MDPD criterion depends on a parameter α which allows to make a trade-off between efficiency and robustness of the resulting estimator. Indeed, we can observe that for α " 0 one recovers the log-likelihood function, up to the sign, which leads to an efficient but not robust estimator. By increasing α we increase the robustness of the estimator, but decrease its efficiency.

The remainder of the paper is organised as follows. In the next section we introduce the nonparametric MDPDE of the Pickands dependence function A Y under random right censoring. The asymptotic properties of this estimator, consistency and finite dimensional weak convergence, are investigated in Section 3, where we use the asymptotic properties of Kaplan-Meier integrals.

We illustrate the finite sample performance of the estimator with a simulation experiment in Section 4 and in Section 5 we apply the method to the dataset of insurance indemnity losses. The proofs of our results are given in Section 6.

Construction of the estimator

Throughout the paper, for any random variable W , we denote by F W its distribution function.

For convenience we reformulate the model as stated in (1) and (2) into standard exponential margins. Assume F Y pjq , j " 1, 2, are continuous. After applying the transformations r Y pjq " ´log F Y pjq pY pjq q, j " 1, 2, we obtain the following bivariate survival function

G Y py 1 , y 2 q :" P ´r Y p1q ą y 1 , r Y p2q ą y 2 ¯" exp ˆ´py 1 `y2 qA Y ˆy2 y 1 `y2 ˙˙,
for all y 1 , y 2 ą 0. A similar assumption is made for the distribution G C of the random vector p r C p1q , r C p2q q. Let t P r0, 1s. Considering the univariate random variable

r Y t :" min ˜r Y p1q 1 ´t , r Y p2q t ¸,
it is clear that P ´r Y t ą z ¯" e ´AY ptqz , @z ą 0.

Consequently, the distribution of r Y t is an exponential distribution with parameter A Y ptq. Similarly, by defining r

C t :" min ´r C p1q 1´t , r C p2q
t ¯, the random variable r C t follows an exponential distribution with parameter A C ptq. Now, remarking that

r Z t :" minp r Y t , r C t q " min ˜minp r Y p1q , r C p1q q 1 ´t , minp r Y p2q , r C p2q q t ¸, r δ t :" 1l t r Ytď r Ctu " δ t r δ p1q `p1 ´δt q r δ p2q ,
where δ t :" 1l

t minp r Y p1q , r C p1q q 1´t ď minp r Y p2q , r
C p2q q t u and r δ pjq :" 1l t r Y pjq ď r C pjq u , j " 1, 2, the pair p r Z t , r δ t q can actually be observed.

Let p r Z t,i , r δ t,i q, i " 1, . . . , n, be independent copies of the random pair p r Z t , r δ t q. We are now in the classical univariate censoring framework and we want to propose a nonparametric robust estimator for A Y ptq by means of the MDPD criterion, adjusted to the censoring, i.e., we minimize for α ą 0 the function p ∆ α,t paq :"

ż 8 0 `ae ´az ˘1`α dz ´ˆ1 `1 α ˙ż 8 0 `ae ´az ˘α d p F KM r Yt pzq.
The MDPDE p A Y,α,n ptq for A Y ptq satisfies the estimating equation

p ∆ p1q α,t p p A Y,α,n ptqq " 0 (4) 
where p ∆ pjq α,t p.q denotes the derivative of order j of p ∆ α,t p.q. Our aim in this paper is to show the joint convergence in distribution of

" ? n ´p A Y,α,n pt j q ´AY pt j q ¯, j " 1, . . . , m ı ,
where tt 1 , . . . , t m u is a grid of values in r0, 1s. In order to achieve this goal, a crucial step is the study of statistics of the type

T n pt, ξq :" ż 8 0 φ t,ξ pzqd p F KM r Yt pzq, (5) 
with φ t,ξ pzq :" z ξ e ´αA Y ptqz , t P r0, 1s and ξ P N, as p ∆ α,t and its derivatives are essentially linear combinations of such statistics, see, e.g., Section 6.1.

Asymptotic properties

In this section we derive the asymptotic properties of our estimator p A Y,α,n ptq under suitable assumptions. As a first step we need to establish the limiting behavior of (5). Kaplan 

T n pt, ξq " 1 n n ÿ i"1 η t,ξ p r Z t,i q `Rn,t,ξ where η t,ξ p r Z t,i q :" φ t,ξ p r Z t,i qγ p0q t p r Z t,i q r δ t,i `γp1q t,ξ p r Z t,i qp1 ´r δ t,i q ´γp2q t,ξ p r Z t,i q,
and R n,t,ξ " o P pn ´1{2 q.

From this representation, we can deduce the convergence in distribution of our key statistic T n .

Corollary 3.1 Under the assumption of Theorem 3.1

? n ˜Tn pt, ξq ´Γpξ `1q pα `1q ξ`1 A ξ Y ptq ¸d ÝÑ N p0, σ 2 pt, ξqq,
where

σ 2 pt, ξq :" V arpη t,ξ p r Z t qq,
and Γ is the gamma function defined as Γprq :" ş 8 0 t r´1 e ´tdt, @r ą 0.

We now derive the limiting distribution of a vector of statistics of the form (5), when properly normalized. Let T n and T be pm ˆ1q vectors defined as

T n :" pT n pt 1 , ξ 1 q, . . . , T n pt m , ξ m qq T , and 
T :" ˜Γpξ j `1q pα `1q ξ j `1A ξ j Y pt j q , j " 1, . . . , m ¸T ,
for some positive integer m, where T stands for the transpose matrix. The aim of the next theorem is to provide the finite dimensional convergence result which will allow us to establish the convergence in distribution of our robust estimator of the Pickands dependence function A Y .

Theorem 3.2 Under the assumptions of Theorem 3.1, we have

? n pT n ´T q d ÝÑ N m p0, Σq ,
where N m denotes a m´dimensional normal distribution and Σ the pm ˆmq covariance matrix with elements pσ j,k q 1ďj,kďm :" pCovpη t j ,ξ j p r Z t j q, η t k ,ξ k p r Z t k qqq 1ďj,kďm .

Note that for the result of Theorem 3.2 we need to assume p1 `2αqA Y pt j q ´AC pt j q ą 0 for j " 1, . . . , m, which imposes a constraint on the parameter α. As a worst case scenario we could consider A Y ptq " maxtt, 1 ´tu (corresponding to complete dependence) and A C ptq " 1 (corresponding to independence), and require p1 `2αqA Y ptq ´AC ptq ą 0 for all t P r0, 1s. By some standard calculations one can easily obtain that this will be satisfied if α ą 0.5.

By using the above results we can now prove the existence of a consistent sequence of solutions to the estimating equation (4).

Theorem 3.3 Under the assumptions of Theorem 3.1, we have that with probability tending to one there exists a sequence p p A Y,α,n ptqq ně1 of solutions to (4), such that p A Y,α,n ptq P ÝÑ A Y ptq as n Ñ 8.

We have now all the needed ingredients for proving the finite dimensional weak convergence of the MDPDE for A Y on a grid tt 1 , . . . , t m u of positions in r0, 1s. Let A denote a pm ˆ2mq matrix with elements

A i,j :" $ & % p1 `αqrA Y pt i qs α´1 , if j " 2i ´1, ´p1 `αqrA Y pt i qs α , if j " 2i, 0, otherwise,
B is an pm ˆmq diagonal matrix with entries B i,i :" p1 `αq 2 rA Y pt i qs α´2 p1 `α2 q , and the matrix C is a p2m ˆ2mq matrix with elements C 2i´1,2j´1 :" Covpη t i ,0 p r Z t i q, η t j ,0 p r Z t j qq,

C 2i´1,2j :" Covpη t i ,0 p r Z t i q, η t j ,1 p r Z t j qq, C 2i,2j´1 :" Covpη t i ,1 p r Z t i q, η t j ,0 p r Z t j qq, C 2i,2j :" Covpη t i ,1 p r Z t i q, η t j ,1 p r Z t j qq.
Theorem 3.4 Under the assumptions of Theorem 3.1, we have

? n » - - p A Y,α,n pt 1 q ´AY pt 1 q . . . p A Y,α,n pt m q ´AY pt m q fi ffi fl d ÝÑ N `0, BACA T B T ˘. (6) 
In particular, for t P r0, 1s, we have, as n Ñ 8,

? n ´p A Y,α,n ptq ´AY ptq ¯d ÝÑ N `0, q σ 2 ˘,
where q σ 2 :" N {D, and

N :" p1 `αq 2 A 3 Y ptq " p1 `4α `9α 2 `14α 3 `13α 4 `8α 5 `4α 6 qA 2 Y ptq ´2p1 `3α `5α 2 `6α 3 `4α 4 `2α 5 qA Y ptqA C ptq `p1 `2α `3α 2 `2α 3 `α4 qA 2 C ptq ‰ , D :" p1 `α2 q 2 rp1 `2αqA Y ptq ´AC ptqs 3 .

Simulation experiment

In this section we illustrate the finite sample performance of the proposed estimator with a small simulation study. In first instance we consider distributions for pY p1q , Y p2q q and pC p1q , C p2q q, with an extreme value copula and unit exponential margins. The contamination is introduced by the following mixture model F ε py 1 , y 2 q " p1 ´εqF py 1 , y 2 q `εF c py 1 , y 2 q,

where ε P r0, 1s represents the fraction of contamination in the dataset, F is the distribution function of pT p1q , T p2q q :" pminpY p1q , C p1q q, minpY p2q , C p2q qq and F c is the contamination distribution function. For the main distributions of pY p1q , Y p2q q and pC p1q , C p2q q we consider the asymmetric logistic distribution, with survival function G ' py 1 , y 2 q " exp ´´p1 ´ψ1' qy 1 ´p1 ´ψ2' qy 2 ´ppψ 1' y 1 q 1{r' `pψ 2' y 2 q 1{r' q r' ¯, y 1 , y 2 ą 0,

where ' denotes either Y or C, r ' P p0, 1s and ψ 1' , ψ 2' P r0, 1s. In this model independence is obtained for either r ' " 1, or ψ 1' " 0 or ψ 2' " 0, while complete dependence is obtained for ψ 1' " ψ 2' " 1 and r ' Ó 0. The logistic model is a special case of the asymmetric logistic model, and corresponds to ψ 1' " ψ 2' " 1. We consider the following settings

• Setting 1: pr Y , ψ 1Y , ψ 2Y q " p0.25, 1, 1q and pr C , ψ 1C , ψ 2C q " p0.75, 1, 1q,

• Setting 2: pr Y , ψ 1Y , ψ 2Y q " p0.75, 1, 1q and pr C , ψ 1C , ψ 2C q " p0.25, 1, 1q,

• Setting 3: pr Y , ψ 1Y , ψ 2Y q " p0.1, 0.4, 0.6q and pr C , ψ 1C , ψ 2C q " p0.05, 0.6, 0.4q.

These settings for the main distributions are then combined with the following types of contamination:

• First type of contamination: the distribution function F c is given by

F c py 1 , y 2 q " 1 2 1 ´e´y 1 `1 ´e´y 2 ( 1l ty 1 ě0,y 2 ě0u .
This means that the contamination is on the axes according to the unit exponential distribution.

• Second type of contamination: the distribution function F c has completely dependent unit exponential margins.

We simulate N " 100 datasets of size n " 1000, and consider ε " 0, 0.025 and 0.05. We estimate A Y ptq on the grid t0.05, 0.10, . . . , 0.95u for t. In Figures 2 till 7 we show the boxplots of the estimates p A Y,α,n ptq for t P t0.05, 0.10, . . . , 0.95u, together with A Y ptq (blue solid line) and A C ptq (green dashed line). In each of the figures the rows correspond to the levels of contamination, while the columns correspond to α " 0.1, 0.5 and 1, respectively. From these simulations we can draw the following conclusions • In case of no contamination, we can see that increasing α improves the estimation. The robustness of the MDPD method is thus partly used to correct for the censoring of the data.

• If we increase the contamination then estimation becomes more difficult, whatever α. Note that we can handle 5% contamination still reasonably well.

• For a given percentage of contamination we observe that increasing α from 0.1 to 0.5 clearly improves estimation but increasing α further to 1 does not lead to clear further improvements.

• The contamination affects the estimators in the expected direction: axes contamination pulls the estimator up and diagonal contamination down.

• For the three settings considered, contamination on the axes seems to be more difficult than contamination on the diagonal.

• In Setting 3 with asymmetric Pickands dependence functions, we recover A Y quite well, despite the fact that A Y and A C are rather close. q q q q q q q q q q q q q q 0.05 0. 1.0 t Ayt q q q q q q q 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 0.5 0.6 0.7 0.8 0.9
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1.0 t Ayt Figure 6: Setting 3, contamination on the axes. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.
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1.0 t Ayt q q q q q q q q q q q q q q q q q q q q q q q 0.05 0. Next, we illustrate the situation where the marginal distributions are not unit exponential. We consider the case of a logistic Pickands dependence function for pY p1q , Y p2q q and pC p1q , C p2q q with r Y " 0.25 and r C " 0.75, respectively. The marginal distributions of Y p1q and Y p2q are Exp [START_REF] Beirlant | Bias reduced tail estimation for censored Pareto type distributions[END_REF], and those of C p1q and C p2q are Fréchet(2) shifted by 0.75, i.e. F C pjq pcq " expp´pc 0.75q ´1{2 q, c ą 0.75, j " 1, 2. This gives about 5% censoring. As before, we combine this setting with the two types of contamination, whereafter the observations are transformed to approximate unit exponential by ´log p F KM Y pjq , j " 1, 2. The results are shown in Figures 8 and9, which have a layout that is the same as before. In case of no contamination, we have that overall we can capture the shape of the Pickands dependence function but the estimate is biased downwards. Using α " 0.5 gives slightly better results than α " 0.1, especially in the centre of the range for t, and increasing α to one does not lead to further improvements. When adding contamination the estimates behave again as expected, in particular they become pulled up under axes contamination and pulled down under diagonal contamination. Using α " 0.5 gives some protection against contamination, in the sense that the results are close to those obtained under the uncontaminated case, and gives slightly less biased results than α " 1.

Data example

In this section we illustrate the nonparametric MDPDE for A Y on the dataset of insurance company indemnity claims introduced in Section 1.

In [START_REF] Frees | Understanding relationships using copulas[END_REF] these data were analysed by fitting parametric copula models to the data using the maximum likelihood method. Based on their findings, the Gumbel-Hougaard copula (corresponding to the logistic model considered here) provided the best fit to the data, which gives an indication that the distribution underlying the data has an extreme value copula. Also in [START_REF] Cebrián | Analysis of bivariate tail dependence using extreme value copulas: an application to the SOA medical large claims database[END_REF], a similar loss-ALAE dataset was modelled with extreme value copulas.

The nonparametric MDPDE of A Y is shown in Figure 10 for α " 0.1 (solid line), α " 0.5 (dotted line) and α " 1 (dashed-dotted line), along with the parametric maximum likelihood estimate obtained by Frees and Valdez (1998) (dashed line). Our nonparametric MDPDE with α " 0.1 is close to the parametric estimate from [START_REF] Frees | Understanding relationships using copulas[END_REF], and this can be seen as a further confirmation of the fit of the parametric Gumbel-Hougaard copula proposed in the latter. Note that both these estimates are not robust with respect to outliers. To overcome this we also applied the MDPD method with α " 0.5 and α " 1, and the obtained estimates differ slightly from the MDPDE with α " 0.1 and the [START_REF] Frees | Understanding relationships using copulas[END_REF] estimate. This might indicate the presence of a few outliers in the loss-ALAE data, as was also suggested by the scatterplots given in Figure 1, though these do not seem to have a disturbing effect on the estimation, which is reasonable given a total sample size of n " 1500. q q q q q q q q q q q q q q q q q q q q q q q q q 0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95 0.5 0.6 0.7 0.8 0.9
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Derivatives of the MDPD objective function

The arguments used to establish the consistency and asymptotic normality of the MDPDE depend on the MDPD objective function and its derivates. For convenience, in this section we give p ∆ pjq α,t paq, for j " 1, 2 and 3. Straightforward computations for α ą 0, give 3 with probability tending to one, where b :" d{3. Combining the above we find that with probability tending to 1, S 1 `S2 `S3 ą cr 2 ´p1 `bqr 3 , for a " A Y ptq ˘r. Clearly, since the right-hand side of the above inequality is positive if r ă c{p1 `bq, (9) follows.

A C ptq A C ptq `AY ptq ! 1 ´e´rA C ptq`A Y ptqsz ) , r H 1 t pzq " A Y ptq A C ptq `AY ptq ! 1 ´e´rA C ptq`A Y ptqsz ) , γ p0q 
To complete the proof of the existence and consistency we adjust the line of argumentation of Theorem 3.7 in Chapter 6 of [START_REF] Lehmann | Theory of point estimation[END_REF]. For r ą 0, small enough such that A Y ptq ˘r P r1{2 ´δ, 1 `δs we let S n prq :" t p ∆ α,t pA Y ptqq ă p ∆ α,t paq for a " A Y ptq ˘ru.

From the above we have that P A Y ptq pS n prqq Ñ 1 for any such r, and hence there exists a sequence r n Ó 0 such that P A Y ptq pS n pr n qq Ñ 1 as n Ñ 8. By the differentiability of p ∆ α,t we have that v P S n pr n q implies that there exists a value p 

  . Alternatively, one can use functions that give a complete characterisation of the extreme dependence like the Pickands dependence function, the stable tail dependence function and the spectral distribution function. Estimation of such dependence functions was considered in Capéraà et al. (1997), Fils-Villetard et al. (2008), Fougères et al. (2015) and Escobar-Bach et al. (2017). To the best of our knowledge censoring in the multivariate extreme value context is unexplored.
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 2 Figure2: Setting 1, contamination on the axes. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.
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 3 Figure3: Setting 1, contamination on the diagonal. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.
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 4 Figure4: Setting 2, contamination on the axes. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.
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 5 Figure5: Setting 2, contamination on the diagonal. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.
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 7 Figure 7: Setting 3, contamination on the diagonal. First row: no contamination, second row: 2.5% contamination, third row: 5% contamination. First column: α " 0.1, second column: α " 0.5, third column: α " 1.

Figure 8 :

 8 Figure 8: Setting 1, contamination on the axes, margins transformed to unit exponential using ´log p F KM Y

Figure Setting 1 ,

 1 Figure Setting 1, contamination on the diagonal, margins transformed to unit exponential using ´log p F KM Y

Figure 10 :

 10 Figure 10: LOSS-ALAE data: nonparametric estimate pA Y,α,n for α " 0.1 (solid line), α " 0.5 (dotted line) and α " 1 (dashed-dotted line). The parametric Gumbel-Hougaard estimate of[START_REF] Frees | Understanding relationships using copulas[END_REF] is given by the dashed line.

  , Beirlant et al. (2007), Einmahl et al. (2008), Gomes and Neves (2011), Worms and Worms (2014), Beirlant et al. (2016), among others, where focus was mainly on estimating the extreme value index and extreme quantiles. Recently, extreme value regression problems with censoring were studied by Ndao et al. (2016), Stupfler (2016) and Goegebeur et al. (2018).

  Y ptq is a value between a and A Y ptq. ÝÑ 0, as n Ñ 8, and hence |S 1 | ă r 3 with probability tending to 1. As for S 2 , we have rA Y ptqs α´2 , and thus there exists a c ą 0 such that S 2 ą cr 2 with probability tending to one. For S 3 we use the fact that

	By Taylor's theorem			
	p ∆ α,t paq ´p ∆ α,t pA Y ptqq " p ∆	p1q α,t pA Y ptqqpa ´AY ptqq	`1 2	p ∆	p2q α,t pA Y ptqqpa ´AY ptqq 2
						`1 6	p ∆	p3q α,t p q A Y ptqqpa ´AY ptqq 3
					": S 1 `S2 `S3 ,
	where q A Using Section 6.1 and the result of Corollary 3.1, we have p ∆	p1q α,t pA Y ptqq
			p ∆	p2q α,t pA Y ptqq p1 `αq 2 sup P 1 `α2 ÝÑ | p ∆ p3q α,t paq| ď M,
						aPr1{2´δ,1`δs
	where M			
						ż 8	ω ξ e ´p1`αqA Y ptqω dω,
						z
	γ	p2q t,ξ pzq "	A Y ptqA C ptq A Y ptq `AC ptq	0 ż 8	ω ξ e ´p1`αqA Y ptqω
	Then, essentially we need to verify the conditions (1.5) and (1.6) in Stute (1995). In our context,
	as soon as p1 `2αqA Y ptq ´AC ptq ą 0, we have
						ż 8	rφ t,ξ pzqγ	p0q t pzqs 2 d r H 1 t pzq ă 8,
						0
			and	ż 8 0	|φ t,ξ pzq|	a	CpzqdF Yt pzq ă 8, r
	where				
			Cpzq :"	ż z 0	dF Ct pyq r Zt pyqsr1 ´F r r1 ´F r Ct pyqs	.
	Using the fact that			
			ż 8 0	φ t,ξ pωqdF	r Yt pωq "	Γpξ `1q Y ptq pα `1q ξ`1 A ξ	,

t pzq " exptA C ptqzu, γ p1q t,ξ pzq " A Y ptqe rA C ptq`A Y ptqsz ! e rA C ptq`A Y ptqs minpz,ωq ´1) dω. P P ÝÑ d ă 8. Thus |S 3 | ă br

  A Y,n P rA Y ptq ´rn , A Y ptq `rn s for which p ∆ α,t attains a local minimum, and thus p ∆ p1q α,t p p A Y,n q " 0. Now let p A Y,n :" p A Y,n for v P S n pr n q and arbitrary otherwise. ClearlyP A Y ptq p p ∆ α,t p p A Y,n q " 0q ě P A Y ptq pS n pr n qq Ñ 1,as n Ñ 8. Thus with probability tending to 1 there exists a sequence of solutions to the estimating equation (4). Then, for any fixed r ą 0 and n sufficiently largeP A Y ptq p| p A Y,n ´AY ptq|q ă rq ě P A Y ptq p| p A Y,n ´AY ptq|q ă r n q ě P A Y ptq pS n pr n qq Ñ 1,which establishes the consistency of the sequence p p A Y,n q ně1 .6.6 Proof of Theorem 3.4First we prove the result for a specific, single t P r0, 1s, since this is more explicit. Our starting point is the estimating equation (4). By applying a Taylor series expansion around the true value A Y ptq, we get 0 " p ∆ p1q α,t pA Y ptqq `´p A Y,α,n ptq ´AY ptq ¯p ∆ Y ptq is a random value between A Y ptq and p A Y,α,n ptq. A straightforward rearrangement of the above display gives ? n ´p A Y,α,n ptq ´AY ptqRemark that, according to Section 6.1, the numerator of the right-hand side of (10) can be rewritten asAfter some tedious computations we obtainV arpη t,0 p r Z t qq " α 2 A Y ptq p1 `αq 2 rp1 `2αqA Y ptq ´AC ptqs , V arpη t,1 p r Z t qq " p1 `2α `2α 4 qA 2 Y ptq ´2p1 `α ´α2 qA Y ptqA C ptq `A2 C ptq p1 `αq 4 A Y ptqrp1 `2αqA Y ptq ´AC ptqs 3 , Covpη t,0 p r Z t q, η t,1 p r Z t qq " ´αp1 `α ´α2 qA Y ptq ´αA C ptq p1 `αq 3 rp1 `2αqA Y ptq ´AC ptqs 2 . rA Y ptqs 2α´1 p1 `αq 2 rp1 `2αqA Y ptq ´AC ptqs 3 p1 `4α `9α 2 `14α 3 `13α 4 `8α 5 `4α 6 qrA Y ptqs 2 ´2p1 `3α `5α 2 `6α 3 `4α 4 `2α 5 qA Y ptqA C ptq `p1 `2α `3α 2 `2α 3 `α4 qrA C ptqs 2 ( . rA Y ptqs α´2 . A Y ptqq ´p A Y,α,n ptq ´AY ptq ¯P ÝÑ 1 `α2 p1 `αq 2 rA Y ptqs α´2 .Again by Slutsky's theorem, we have that Theorem 3.4 follows for a single t P r0, 1s. Now we focus on the general finite dimensional convergence. Let , 1q ´1 p1`αq 2 A Y pt 1 q ..

	p2q α,t pA Y ptqq ´?n p `1 2 ´p A Y,α,n ptq ´AY ptq ¯2 p ∆ ∆ p1q α,t pA Y ptqq α,t pA Y ptqq `1 2 ∆ p p2q p ∆ p3q α,t p r A Y ptqq ´p A Y,α,n ptq ´AY ptq p3q α,t p r A Y ptqq ¯. α,t pA Y ptqq " p1 `αqrA Y ptqs α´1 A ¯" where r ´?n p ∆ p1q " ? n ˆTn pt, 0q ´1 1 `α ȦY (10) ptq ? n ˆTn pt, 1q ´1 p1 `αq 2 A Y ptq ˙* . Then, by Theorem 3.2 ´?n p ∆ p1q α pA Y ptqq d ÝÑN p0, σ2 q, where σ2 :" Now, concerning the denominator of the right-hand side of (10), according to Section 6.1 and Corollary 3.1, p ∆ p3q α,t paq is bounded in probability and p ∆ p2q α,t pA Y ptqq P ÝÑ 1 `α2 p ∆ p2q α,t pA Y ptqq `1 2 p ∆ p3q α,t p r X n :" » ----------? n ´Tn pt 1 , 0q ´1 1`α ?n ´Tn pt 1 . ? n ´Tn pt m , 0q ´1 1`α ?n ´Tn pt m , 1q ´1 p1`αq 2 A Y ptmq ¯fi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl . Then D n :" ´» ---? n p ∆ ? n p ∆ Then p1 `αq 2 This implies that » p A Y,α,n pt 1 q ´AY pt 1 q ? n --. . .

p1q α,t 1 pA Y pt 1 qq . . . p1q α,tm pA Y pt m qq fi ffi ffi fl " AX n , and we have D n d

ÝÑN m p0, ACA T q. Now let B n be a pm ˆmq diagonal matrix with entries B n,i,i :"

1 p ∆ p2q α,t i pA Y pt i qq `1 2 p ∆ p3q α,t i p r A Y pt i qq ´p A Y,α,n pt i q ´AY pt i q ¯. p A Y,α,n pt m q ´AY pt m q fi ffi fl " B n D n ,

and the result follows.

a direct application of Theorem 1.1 in [START_REF] Stute | The central limit theorem under random censorship[END_REF] achieves the proof of Theorem 3.1.

Proof of Corollary 3.1

Similarly as Corollary 1.2 in [START_REF] Stute | The central limit theorem under random censorship[END_REF], Corollary 3.1 is a direct consequence of the result in our Theorem 3.1, combined with the classical central limit theorem and Slutsky's theorem.

Proof of Theorem 3.2

To prove this theorem, we will make use of the Cramér-Wold device (see, e.g., Severini, 2005, p. 337), according to which it is sufficient to show that

for all β P R m . A straightforward rearrangement of the terms leads to

According to Theorem 3.1, T 2,n " o P p1q as n Ñ 8. Now, concerning T 1,n , we have T 1,n "

n, where V 1 , . . . , V n are independent and identically distributed centered random variables with variance given by

This implies that V arpT 1,n q " β T Σβ where Σ " pCovpη t j ,ξ j p r Z t j q, η t k ,ξ k p r Z t k qqq 1ďj,kďm . By invoking the central limit theorem, T 1,n d ÝÑ N p0, β T Σβq. Now, by Slutsky's theorem we also have [START_REF] Fils-Villetard | Projection estimators of Pickands dependence functions[END_REF], and Theorem 3.2 follows.

Proof of Theorem 3.3

To prove the existence and consistency of p A Y,α,n ptq we adapt the proof of Theorem 5.1 in Chapter 6 of [START_REF] Lehmann | Theory of point estimation[END_REF], where existence and consistency of solutions of the likelihood equations is established, to the MDPDE framework. First we show that for any r sufficiently small

Note that r should be such that A Y ptq ˘r belongs to the parameter space, here r1{2 ´δ, 1 `δs, where δ ą 0.