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Abstract

We consider robust nonparametric estimation of the Pickands dependence function under
random right censoring. The estimator is obtained by applying the minimum density power
divergence criterion to properly transformed bivariate observations. The asymptotic prop-
erties are investigated by making use of results for Kaplan-Meier integrals. We investigate
the finite sample properties of the proposed estimator with a simulation experiment and
illustrate its practical applicability on a dataset of insurance indemnity losses.
Keywords: Pickands dependence function, censoring, Kaplan-Meier integral.

1 Introduction

Multivariate extreme value statistics deals with the estimation of the tail of a multivariate
distribution function based on a random sample. When studying multivariate extremes, a
natural question is how to quantify extreme dependence between two or more random variables.
Usually, the copula function is used as a margin-free description of the dependence structure
between several random variables. Indeed, according to Sklar’s theorem (Sklar, 1959), the
distribution function of a pair pY p1q, Y p2qq can be represented in terms of the two marginal
distribution functions FY p1q and FY p2q of Y p1q and Y p2q respectively, and a copula function C as
follows:

P
´

Y p1q ď y1, Y
p2q ď y2

¯

“ C pFY p1qpy1q, FY p2qpy2qq . (1)

This function C characterizes the dependence between Y p1q and Y p2q and is called an extreme
value copula if and only if it admits a representation of the form

Cpy1, y2q “ exp

ˆ

logpy1y2qAY

ˆ

logpy2q

logpy1y2q

˙˙

, (2)

where AY : r0, 1s Ñ r1{2, 1s is the Pickands dependence function, which is convex and satis-
fies maxtt, 1 ´ tu ď AY ptq ď 1, see Pickands (1981). Throughout the paper we assume that
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pY p1q, Y p2qq follows a joint distribution with an underlying extreme value copula.

Since a copula function allows to model efficiently the dependence between several random vari-
ables, it becomes more and more popular in financial or actuarial applications. To illustrate
our methodology, we consider the insurance company loss and expense application by Frees and
Valdez (1998). The dataset, included in the R package copula, comprises 1500 pairs contain-
ing information on general liability claims, the first component being the indemnity payment
(loss) and the second one an allocated loss adjustment expense (ALAE). The latter is related to
the settlement of individual claims, e.g., expenses for lawyers or claim investigation. A crucial
question is the possible dependence between the two components, loss and ALAE, which has to
be accounted for if we are interested in actuarial applications, such as, e.g., pricing an excess-
of-loss reinsurance treaty when the reinsurer shares the claims settlement costs. For instance
Micocci and Masala (2009) (see also Cebrián et al., 2003) motivate the use of copula functions
in that context with the aim of building a reinsurance strategy in presence of policy limits and
insurer’s retentions. As outlined in these contributions, a substantial mispricing can result from
the usual independence assumption where the joint distribution is assumed to be the product
of the marginals, and thus using copulas is the correct way to model dependence and as such
to avoid the undervaluation of the reinsurance premium. However, the estimation of the joint
distribution for the losses and expenses is complicated due to the presence of censoring. More
specifically, for each claim there is a policy limit, and hence the losses cannot exceed this limit.
In the loss-ALAE dataset, 34 observations have censored losses and these censored observations
cannot be ignored since for instance the mean loss of censored claims is much higher than the
corresponding mean for the uncensored claims (217 491 against 37 110, see Table 4 in Frees and
Valdez, 1998). The scatterplot of the data is given in Figure 1, where the uncensored observa-
tions are in grey and the censored ones in black. Overall the scatterplot indicates a reasonably
strong relationship between the two variables, but the picture is somehow obscured by censoring
in the largest observations and also by potential outliers.

We have thus two issues in the dataset under consideration: the presence of censoring and po-
tential outliers.

Concerning the first issue, we will explore in the present paper nonparametric estimation of
the Pickands dependence function when there is random right censoring in the marginal dis-
tributions. More precisely, we consider the situation where pY p1q, Y p2qq is right censored by
pCp1q, Cp2qq, also following a bivariate distribution with an extreme value copula, but now with
Pickands dependence function AC . Thus, we observe pminpY p1q, Cp1qq,minpY p2q, Cp2qq, δp1q, δp2qq,
where δpjq :“ 1ltY pjqďCpjqu, j “ 1, 2, with 1lE the indicator function on the event E, and interest
is in estimating AY .

Random right censoring has been studied to some extent in the univariate extreme value litera-
ture, see, e.g., Beirlant et al. (2007), Einmahl et al. (2008), Gomes and Neves (2011), Worms and
Worms (2014), Beirlant et al. (2016), among others, where focus was mainly on estimating the
extreme value index and extreme quantiles. Recently, extreme value regression problems with
censoring were studied by Ndao et al. (2016), Stupfler (2016) and Goegebeur et al. (2018). In
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Figure 1: LOSS-ALAE data: scatterplot on the original scale (left) and on a logarithmic scale
(right).

multivariate extreme value statistics a central topic is the modelling and estimation of extreme
dependence between two or more random variables. Similarly to classical statistics, extreme
dependence can be summarised by properly chosen dependence coefficients, like the coefficient
of tail dependence, see, e.g., Ledford and Tawn (1997). Alternatively, one can use functions that
give a complete characterisation of the extreme dependence like the Pickands dependence func-
tion, the stable tail dependence function and the spectral distribution function. Estimation of
such dependence functions was considered in Capéraà et al. (1997), Fils-Villetard et al. (2008),
Fougères et al. (2015) and Escobar-Bach et al. (2017). To the best of our knowledge censoring
in the multivariate extreme value context is unexplored.

Concerning the second issue, robust methods must be proposed to prevent possible isolated
outliers from completely disturbing the estimate of the joint distribution. To reach this goal, we
will propose a robust estimator of the Pickands dependence function of pY p1q, Y p2qq based on the
density power divergence method introduced by Basu et al. (1998). In particular, the density
power divergence between two density functions f and h is defined as follows

∆αpf, hq :“

$

’

’

&

’

’

%

ż

R

„

h1`αpyq ´

ˆ

1`
1

α

˙

hαpyqfpyq `
1

α
f1`αpyq



dy, α ą 0,
ż

R
log

fpyq

hpyq
fpyqdy, α “ 0.

Here the density function h is assumed to depend on a parameter vector θ and if Y1, . . . , Yn is
a sample of independent and identically distributed (i.i.d.) random variables according to the
density function f , then the minimum density power divergence estimator (MDPDE) of θ is the

3



point pθ minimizing the estimated version (up to a constant independent of θ)

p∆αpθq :“

$

’

’

&

’

’

%

ż

R
h1`αpyqdy ´

ˆ

1`
1

α

˙
ż

R
hαpyqd pFY pyq, α ą 0,

´

ż

R
log hpyqd pFY pyq, α “ 0,

where pFY is a suitable estimator of the distribution of Y1. In the case of no censoring, pFY
is typically the empirical distribution function pFEY pyq :“ p1{nq

řn
i“1 1ltYiďyu, whereas in the

censoring framework where Yi is censored by an independent random variable Ci, the famous
Kaplan-Meier product-limit estimator (see Kaplan and Meier, 1958) defined as

pFKMY pyq :“ 1´
n
ź

i“1

„

1´
δri,ns

n´ i` 1

1ltZi,nďyu

, (3)

can be used. Here Zi :“ minpYi, Ciq, i “ 1, . . . , n, Zi,n denotes the i´th order statistic of
tZ1, . . . , Znu and δri,ns is the concomitant order statistic with respect to Zi,n, i.e., δri,ns “ δk
if Zi,n “ Zk, i “ 1, . . . , n. The MDPD criterion depends on a parameter α which allows to
make a trade-off between efficiency and robustness of the resulting estimator. Indeed, we can
observe that for α “ 0 one recovers the log-likelihood function, up to the sign, which leads to an
efficient but not robust estimator. By increasing α we increase the robustness of the estimator,
but decrease its efficiency.

The remainder of the paper is organised as follows. In the next section we introduce the nonpara-
metric MDPDE of the Pickands dependence function AY under random right censoring. The
asymptotic properties of this estimator, consistency and finite dimensional weak convergence,
are investigated in Section 3, where we use the asymptotic properties of Kaplan-Meier integrals.
We illustrate the finite sample performance of the estimator with a simulation experiment in
Section 4 and in Section 5 we apply the method to the dataset of insurance indemnity losses.
The proofs of our results are given in Section 6.

2 Construction of the estimator

Throughout the paper, for any random variable W , we denote by FW its distribution function.
For convenience we reformulate the model as stated in (1) and (2) into standard exponential
margins. Assume FY pjq , j “ 1, 2, are continuous. After applying the transformations rY pjq “
´ logFY pjqpY

pjqq, j “ 1, 2, we obtain the following bivariate survival function

GY py1, y2q :“ P
´

rY p1q ą y1, rY
p2q ą y2

¯

“ exp

ˆ

´py1 ` y2qAY

ˆ

y2
y1 ` y2

˙˙

,

for all y1, y2 ą 0. A similar assumption is made for the distribution GC of the random vector
p rCp1q, rCp2qq. Let t P r0, 1s. Considering the univariate random variable

rYt :“ min

˜

rY p1q

1´ t
,
rY p2q

t

¸

,

4



it is clear that

P
´

rYt ą z
¯

“ e´AY ptqz, @z ą 0.

Consequently, the distribution of rYt is an exponential distribution with parameter AY ptq. Sim-

ilarly, by defining rCt :“ min
´

rCp1q

1´t ,
rCp2q

t

¯

, the random variable rCt follows an exponential distri-

bution with parameter ACptq. Now, remarking that

rZt :“ minprYt, rCtq “ min

˜

minprY p1q, rCp1qq

1´ t
,
minprY p2q, rCp2qq

t

¸

,

rδt :“ 1l
trYtď rCtu

“ δ˚t
rδp1q ` p1´ δ˚t q

rδp2q,

where δ˚t :“ 1l
t
minp rY p1q, rCp1qq

1´t
ď

minp rY p2q, rCp2qq
t

u
and rδpjq :“ 1l

trY pjqď rCpjqu
, j “ 1, 2, the pair p rZt, rδtq can

actually be observed.

Let p rZt,i, rδt,iq, i “ 1, . . . , n, be independent copies of the random pair p rZt, rδtq. We are now in
the classical univariate censoring framework and we want to propose a nonparametric robust
estimator for AY ptq by means of the MDPD criterion, adjusted to the censoring, i.e., we minimize
for α ą 0 the function

p∆α,tpaq :“

ż 8

0

`

ae´az
˘1`α

dz ´

ˆ

1`
1

α

˙
ż 8

0

`

ae´az
˘α
d pFKM

rYt
pzq.

The MDPDE pAY,α,nptq for AY ptq satisfies the estimating equation

p∆
p1q
α,tp

pAY,α,nptqq “ 0 (4)

where p∆
pjq
α,tp.q denotes the derivative of order j of p∆α,tp.q. Our aim in this paper is to show the

joint convergence in distribution of

”?
n
´

pAY,α,nptjq ´AY ptjq
¯

, j “ 1, . . . ,m
ı

,

where tt1, . . . , tmu is a grid of values in r0, 1s. In order to achieve this goal, a crucial step is the
study of statistics of the type

Tnpt, ξq :“

ż 8

0
φt,ξpzqd pF

KM
rYt

pzq, (5)

with φt,ξpzq :“ zξe´αAY ptqz, t P r0, 1s and ξ P N, as p∆α,t and its derivatives are essentially linear
combinations of such statistics, see, e.g., Section 6.1.
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3 Asymptotic properties

In this section we derive the asymptotic properties of our estimator pAY,α,nptq under suitable
assumptions. As a first step we need to establish the limiting behavior of (5). Kaplan-Meier
integrals

ş

fd pFKM have been studied in generality by Stute (1995), where asymptotic normality,
after proper standardization, was established under suitable assumptions on the function f .

More precisely, denoting by

rH0
t pzq :“ P

´

rZt ď z, rδt “ 0
¯

,

rH1
t pzq :“ P

´

rZt ď z, rδt “ 1
¯

,

γ
p0q
t pxq :“ exp

#

ż x

0

d rH0
t pzq

1´ F
rZt
pzq

+

,

γ
p1q
t,ξ pxq :“

1

1´ F
rZt
pxq

ż 8

x
φt,ξpzqγ

p0q
t pzqd

rH1
t pzq,

γ
p2q
t,ξ pxq :“

ż x

0

1

r1´ F
rZt
pvqs2

ˆ
ż 8

v
φt,ξpzqγ

p0q
t pzqd

rH1
t pzq

˙

d rH0
t pvq,

according to Theorem 1.1 in Stute (1995), we can obtain an i.i.d. representation of the Kaplan-
Meier integral (5).

Theorem 3.1 Let t P r0, 1s. Assuming p1` 2αqAY ptq ´ACptq ą 0, we have

Tnpt, ξq “
1

n

n
ÿ

i“1

ηt,ξp rZt,iq `Rn,t,ξ

where

ηt,ξp rZt,iq :“ φt,ξp rZt,iqγ
p0q
t p

rZt,iqrδt,i ` γ
p1q
t,ξ p

rZt,iqp1´ rδt,iq ´ γ
p2q
t,ξ p

rZt,iq,

and Rn,t,ξ “ oPpn
´1{2q.

From this representation, we can deduce the convergence in distribution of our key statistic Tn.

Corollary 3.1 Under the assumption of Theorem 3.1

?
n

˜

Tnpt, ξq ´
Γpξ ` 1q

pα` 1qξ`1AξY ptq

¸

d
ÝÑ N p0, σ2pt, ξqq,

where

σ2pt, ξq :“ V arpηt,ξp rZtqq,

and Γ is the gamma function defined as Γprq :“
ş8

0 tr´1e´tdt,@r ą 0.
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We now derive the limiting distribution of a vector of statistics of the form (5), when properly
normalized. Let Tn and T be pmˆ 1q vectors defined as

Tn :“ pTnpt1, ξ1q, . . . , Tnptm, ξmqq
T ,

and

T :“

˜

Γpξj ` 1q

pα` 1qξj`1A
ξj
Y ptjq

, j “ 1, . . . ,m

¸T

,

for some positive integer m, where T stands for the transpose matrix. The aim of the next
theorem is to provide the finite dimensional convergence result which will allow us to establish
the convergence in distribution of our robust estimator of the Pickands dependence function AY .

Theorem 3.2 Under the assumptions of Theorem 3.1, we have

?
n pTn ´ T q

d
ÝÑ Nm p0,Σq ,

where Nm denotes a m´dimensional normal distribution and Σ the pmˆmq covariance matrix
with elements pσj,kq1ďj,kďm :“ pCovpηtj ,ξj p

rZtj q, ηtk,ξkp
rZtkqqq1ďj,kďm.

Note that for the result of Theorem 3.2 we need to assume p1 ` 2αqAY ptjq ´ ACptjq ą 0 for
j “ 1, . . . ,m, which imposes a constraint on the parameter α. As a worst case scenario we
could consider AY ptq “ maxtt, 1 ´ tu (corresponding to complete dependence) and ACptq “ 1
(corresponding to independence), and require p1 ` 2αqAY ptq ´ ACptq ą 0 for all t P r0, 1s. By
some standard calculations one can easily obtain that this will be satisfied if α ą 0.5.

By using the above results we can now prove the existence of a consistent sequence of solutions
to the estimating equation (4).

Theorem 3.3 Under the assumptions of Theorem 3.1, we have that with probability tending to

one there exists a sequence p pAY,α,nptqqně1 of solutions to (4), such that pAY,α,nptq
P
ÝÑ AY ptq as

nÑ8.

We have now all the needed ingredients for proving the finite dimensional weak convergence of
the MDPDE for AY on a grid tt1, . . . , tmu of positions in r0, 1s. Let A denote a pmˆ2mq matrix
with elements

Ai,j :“

$

&

%

p1` αqrAY ptiqs
α´1, if j “ 2i´ 1,

´p1` αqrAY ptiqs
α, if j “ 2i,

0, otherwise,

B is an pmˆmq diagonal matrix with entries

Bi,i :“
p1` αq2

rAY ptiqsα´2p1` α2q
,

7



and the matrix C is a p2mˆ 2mq matrix with elements

C2i´1,2j´1 :“ Covpηti,0p
rZtiq, ηtj ,0p

rZtj qq,

C2i´1,2j :“ Covpηti,0p
rZtiq, ηtj ,1p

rZtj qq,

C2i,2j´1 :“ Covpηti,1p
rZtiq, ηtj ,0p

rZtj qq,

C2i,2j :“ Covpηti,1p
rZtiq, ηtj ,1p

rZtj qq.

Theorem 3.4 Under the assumptions of Theorem 3.1, we have

?
n

»

—

–

pAY,α,npt1q ´AY pt1q
...

pAY,α,nptmq ´AY ptmq

fi

ffi

fl

d
ÝÑ N

`

0,BACATBT
˘

. (6)

In particular, for t P r0, 1s, we have, as nÑ8,

?
n
´

pAY,α,nptq ´AY ptq
¯

d
ÝÑ N

`

0, qσ2
˘

,

where qσ2 :“ N{D, and

N :“ p1` αq2A3
Y ptq

“

p1` 4α` 9α2 ` 14α3 ` 13α4 ` 8α5 ` 4α6qA2
Y ptq

´2p1` 3α` 5α2 ` 6α3 ` 4α4 ` 2α5qAY ptqACptq ` p1` 2α` 3α2 ` 2α3 ` α4qA2
Cptq

‰

,

D :“ p1` α2q2rp1` 2αqAY ptq ´ACptqs
3.

4 Simulation experiment

In this section we illustrate the finite sample performance of the proposed estimator with a small
simulation study. In first instance we consider distributions for pY p1q, Y p2qq and pCp1q, Cp2qq, with
an extreme value copula and unit exponential margins. The contamination is introduced by the
following mixture model

Fεpy1, y2q “ p1´ εqF`py1, y2q ` εFcpy1, y2q, (7)

where ε P r0, 1s represents the fraction of contamination in the dataset, F` is the distribution
function of pT p1q, T p2qq :“ pminpY p1q, Cp1qq,minpY p2q, Cp2qqq and Fc is the contamination dis-
tribution function. For the main distributions of pY p1q, Y p2qq and pCp1q, Cp2qq we consider the
asymmetric logistic distribution, with survival function

G‚py1, y2q “ exp
´

´p1´ ψ1‚qy1 ´ p1´ ψ2‚qy2 ´ ppψ1‚y1q
1{r‚ ` pψ2‚y2q

1{r‚qr‚
¯

, y1, y2 ą 0,

where ‚ denotes either Y or C, r‚ P p0, 1s and ψ1‚, ψ2‚ P r0, 1s. In this model independence is
obtained for either r‚ “ 1, or ψ1‚ “ 0 or ψ2‚ “ 0, while complete dependence is obtained for
ψ1‚ “ ψ2‚ “ 1 and r‚ Ó 0. The logistic model is a special case of the asymmetric logistic model,
and corresponds to ψ1‚ “ ψ2‚ “ 1. We consider the following settings

8



• Setting 1: prY , ψ1Y , ψ2Y q “ p0.25, 1, 1q and prC , ψ1C , ψ2Cq “ p0.75, 1, 1q,

• Setting 2: prY , ψ1Y , ψ2Y q “ p0.75, 1, 1q and prC , ψ1C , ψ2Cq “ p0.25, 1, 1q,

• Setting 3: prY , ψ1Y , ψ2Y q “ p0.1, 0.4, 0.6q and prC , ψ1C , ψ2Cq “ p0.05, 0.6, 0.4q.

These settings for the main distributions are then combined with the following types of contam-
ination:

• First type of contamination: the distribution function Fc is given by

Fcpy1, y2q “
1

2

 

1´ e´y1 ` 1´ e´y2
(

1lty1ě0,y2ě0u.

This means that the contamination is on the axes according to the unit exponential dis-
tribution.

• Second type of contamination: the distribution function Fc has completely dependent
unit exponential margins.

We simulate N “ 100 datasets of size n “ 1000, and consider ε “ 0, 0.025 and 0.05. We estimate
AY ptq on the grid t0.05, 0.10, . . . , 0.95u for t. In Figures 2 till 7 we show the boxplots of the
estimates pAY,α,nptq for t P t0.05, 0.10, . . . , 0.95u, together with AY ptq (blue solid line) and ACptq
(green dashed line). In each of the figures the rows correspond to the levels of contamination,
while the columns correspond to α “ 0.1, 0.5 and 1, respectively. From these simulations we
can draw the following conclusions

• In case of no contamination, we can see that increasing α improves the estimation. The
robustness of the MDPD method is thus partly used to correct for the censoring of the
data.

• If we increase the contamination then estimation becomes more difficult, whatever α. Note
that we can handle 5% contamination still reasonably well.

• For a given percentage of contamination we observe that increasing α from 0.1 to 0.5
clearly improves estimation but increasing α further to 1 does not lead to clear further
improvements.

• The contamination affects the estimators in the expected direction: axes contamination
pulls the estimator up and diagonal contamination down.

• For the three settings considered, contamination on the axes seems to be more difficult
than contamination on the diagonal.

• In Setting 3 with asymmetric Pickands dependence functions, we recover AY quite well,
despite the fact that AY and AC are rather close.
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Figure 2: Setting 1, contamination on the axes. First row: no contamination, second row: 2.5%
contamination, third row: 5% contamination. First column: α “ 0.1, second column: α “ 0.5,
third column: α “ 1.
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Figure 3: Setting 1, contamination on the diagonal. First row: no contamination, second row:
2.5% contamination, third row: 5% contamination. First column: α “ 0.1, second column:
α “ 0.5, third column: α “ 1.
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Figure 4: Setting 2, contamination on the axes. First row: no contamination, second row: 2.5%
contamination, third row: 5% contamination. First column: α “ 0.1, second column: α “ 0.5,
third column: α “ 1.
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Figure 5: Setting 2, contamination on the diagonal. First row: no contamination, second row:
2.5% contamination, third row: 5% contamination. First column: α “ 0.1, second column:
α “ 0.5, third column: α “ 1.
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Figure 6: Setting 3, contamination on the axes. First row: no contamination, second row: 2.5%
contamination, third row: 5% contamination. First column: α “ 0.1, second column: α “ 0.5,
third column: α “ 1.
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Figure 7: Setting 3, contamination on the diagonal. First row: no contamination, second row:
2.5% contamination, third row: 5% contamination. First column: α “ 0.1, second column:
α “ 0.5, third column: α “ 1.
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Next, we illustrate the situation where the marginal distributions are not unit exponential. We
consider the case of a logistic Pickands dependence function for pY p1q, Y p2qq and pCp1q, Cp2qq
with rY “ 0.25 and rC “ 0.75, respectively. The marginal distributions of Y p1q and Y p2q are
Exp(2), and those of Cp1q and Cp2q are Fréchet(2) shifted by 0.75, i.e. FCpjqpcq “ expp´pc ´
0.75q´1{2q, c ą 0.75, j “ 1, 2. This gives about 5% censoring. As before, we combine this
setting with the two types of contamination, whereafter the observations are transformed to
approximate unit exponential by ´ log pFKM

Y pjq
, j “ 1, 2. The results are shown in Figures 8 and

9, which have a layout that is the same as before. In case of no contamination, we have that
overall we can capture the shape of the Pickands dependence function but the estimate is biased
downwards. Using α “ 0.5 gives slightly better results than α “ 0.1, especially in the centre of
the range for t, and increasing α to one does not lead to further improvements. When adding
contamination the estimates behave again as expected, in particular they become pulled up
under axes contamination and pulled down under diagonal contamination. Using α “ 0.5 gives
some protection against contamination, in the sense that the results are close to those obtained
under the uncontaminated case, and gives slightly less biased results than α “ 1.

5 Data example

In this section we illustrate the nonparametric MDPDE for AY on the dataset of insurance
company indemnity claims introduced in Section 1.

In Frees and Valdez (1998) these data were analysed by fitting parametric copula models to the
data using the maximum likelihood method. Based on their findings, the Gumbel-Hougaard
copula (corresponding to the logistic model considered here) provided the best fit to the data,
which gives an indication that the distribution underlying the data has an extreme value copula.
Also in Cebrián et al. (2003), a similar loss-ALAE dataset was modelled with extreme value
copulas.

The nonparametric MDPDE of AY is shown in Figure 10 for α “ 0.1 (solid line), α “ 0.5
(dotted line) and α “ 1 (dashed-dotted line), along with the parametric maximum likelihood
estimate obtained by Frees and Valdez (1998) (dashed line). Our nonparametric MDPDE with
α “ 0.1 is close to the parametric estimate from Frees and Valdez (1998), and this can be seen
as a further confirmation of the fit of the parametric Gumbel-Hougaard copula proposed in the
latter. Note that both these estimates are not robust with respect to outliers. To overcome
this we also applied the MDPD method with α “ 0.5 and α “ 1, and the obtained estimates
differ slightly from the MDPDE with α “ 0.1 and the Frees and Valdez (1998) estimate. This
might indicate the presence of a few outliers in the loss-ALAE data, as was also suggested by
the scatterplots given in Figure 1, though these do not seem to have a disturbing effect on the
estimation, which is reasonable given a total sample size of n “ 1500.
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Figure 8: Setting 1, contamination on the axes, margins transformed to unit exponential using
´ log pFKMY . First row: no contamination, second row: 2.5% contamination, third row: 5%
contamination. First column: α “ 0.1, second column: α “ 0.5, third column: α “ 1.
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Figure 9: Setting 1, contamination on the diagonal, margins transformed to unit exponential
using ´ log pFKMY . First row: no contamination, second row: 2.5% contamination, third row: 5%
contamination. First column: α “ 0.1, second column: α “ 0.5, third column: α “ 1.

18



0.2 0.4 0.6 0.8

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

t

A
yt

Figure 10: LOSS-ALAE data: nonparametric estimate pAY,α,n for α “ 0.1 (solid line), α “ 0.5
(dotted line) and α “ 1 (dashed-dotted line). The parametric Gumbel-Hougaard estimate of
Frees and Valdez (1998) is given by the dashed line.
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6 Appendix: Proofs of the results

6.1 Derivatives of the MDPD objective function

The arguments used to establish the consistency and asymptotic normality of the MDPDE
depend on the MDPD objective function and its derivates. For convenience, in this section we

give p∆
pjq
α,tpaq, for j “ 1, 2 and 3. Straightforward computations for α ą 0, give

p∆
p1q
α,tpaq “

α

1` α
aα´1 ´ p1` αqaα´1

ż 8

0
e´aαzp1´ azqd pFKM

rYt
pzq,

p∆
p2q
α,tpaq “

αpα´ 1q

1` α
aα´2 ´ p1` αqaα´2

ż 8

0
e´aαz

`

α´ 1´ 2αaz ` αa2z2
˘

d pFKM
rYt

pzq,

p∆
p3q
α,tpaq “

αpα´ 1qpα´ 2q

1` α
aα´3

´p1` αqaα´3
ż 8

0
e´aαz

“

pα´ 1qpα´ 2q ` 3αp1´ αqaz ` 3α2a2z2 ´ α2a3z3
‰

d pFKM
rYt

pzq.

6.2 Proof of Theorem 3.1

Direct computations yield, for z ą 0,

rH0
t pzq “

ACptq

ACptq `AY ptq

!

1´ e´rACptq`AY ptqsz
)

,

rH1
t pzq “

AY ptq

ACptq `AY ptq

!

1´ e´rACptq`AY ptqsz
)

,

γ
p0q
t pzq “ exptACptqzu,

γ
p1q
t,ξ pzq “ AY ptqe

rACptq`AY ptqsz

ż 8

z
ωξ e´p1`αqAY ptqω dω,

γ
p2q
t,ξ pzq “

AY ptqACptq

AY ptq `ACptq

ż 8

0
ωξ e´p1`αqAY ptqω

!

erACptq`AY ptqsminpz,ωq ´ 1
)

dω.

Then, essentially we need to verify the conditions (1.5) and (1.6) in Stute (1995). In our context,
as soon as p1` 2αqAY ptq ´ACptq ą 0, we have

ż 8

0
rφt,ξpzqγ

p0q
t pzqs

2d rH1
t pzq ă 8,

and

ż 8

0
|φt,ξpzq|

a

CpzqdF
rYt
pzq ă 8,

where

Cpzq :“

ż z

0

dF
rCt
pyq

r1´ F
rZt
pyqsr1´ F

rCt
pyqs

.

Using the fact that
ż 8

0
φt,ξpωqdFrYt

pωq “
Γpξ ` 1q

pα` 1qξ`1AξY ptq
,
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a direct application of Theorem 1.1 in Stute (1995) achieves the proof of Theorem 3.1.

6.3 Proof of Corollary 3.1

Similarly as Corollary 1.2 in Stute (1995), Corollary 3.1 is a direct consequence of the result in
our Theorem 3.1, combined with the classical central limit theorem and Slutsky’s theorem.

6.4 Proof of Theorem 3.2

To prove this theorem, we will make use of the Cramér-Wold device (see, e.g., Severini, 2005, p.
337), according to which it is sufficient to show that

βT
?
n pTn ´ T q

d
ÝÑ N p0, βTΣβq, (8)

for all β P Rm. A straightforward rearrangement of the terms leads to

βT
?
n pTn ´ T q “

?
n

1

n

n
ÿ

i“1

m
ÿ

j“1

βj

˜

ηtj ,ξj p
rZtj ,iq ´

Γpξj ` 1q

pα` 1qξj`1A
ξj
Y ptjq

¸

`
?
n

m
ÿ

j“1

βjRn,tj ,ξj

“: T1,n ` T2,n.

According to Theorem 3.1, T2,n “ oPp1q as n Ñ 8. Now, concerning T1,n, we have T1,n “
řn
i“1 Vi{

?
n, where V1, . . . , Vn are independent and identically distributed centered random vari-

ables with variance given by

V arpViq “
m
ÿ

j“1

m
ÿ

k“1

βjβkCov
´

ηtj ,ξj p
rZtj ,iq, ηtk,ξkp

rZtk,iq
¯

, for 1 ď i ď n.

This implies that V arpT1,nq “ βTΣβ where Σ “ pCovpηtj ,ξj p
rZtj q, ηtk,ξkp

rZtkqqq1ďj,kďm. By invok-

ing the central limit theorem, T1,n
d
ÝÑ N p0, βTΣβq. Now, by Slutsky’s theorem we also have

(8), and Theorem 3.2 follows.

6.5 Proof of Theorem 3.3

To prove the existence and consistency of pAY,α,nptq we adapt the proof of Theorem 5.1 in Chapter
6 of Lehmann and Casella (1998), where existence and consistency of solutions of the likelihood
equations is established, to the MDPDE framework. First we show that for any r sufficiently
small

PAY ptqp
p∆α,tpAY ptqq ă p∆α,tpaq for a “ AY ptq ˘ rq Ñ 1. (9)

Note that r should be such that AY ptq ˘ r belongs to the parameter space, here r1{2´ δ, 1` δs,
where δ ą 0.
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By Taylor’s theorem

p∆α,tpaq ´ p∆α,tpAY ptqq “ p∆
p1q
α,tpAY ptqqpa´AY ptqq `

1

2
p∆
p2q
α,tpAY ptqqpa´AY ptqq

2

`
1

6
p∆
p3q
α,tp

qAY ptqqpa´AY ptqq
3

“: S1 ` S2 ` S3,

where qAY ptq is a value between a and AY ptq.

Using Section 6.1 and the result of Corollary 3.1, we have p∆
p1q
α,tpAY ptqq

P
ÝÑ 0, as n Ñ 8, and

hence |S1| ă r3 with probability tending to 1. As for S2, we have

p∆
p2q
α,tpAY ptqq

P
ÝÑ

1` α2

p1` αq2
rAY ptqs

α´2,

and thus there exists a c ą 0 such that S2 ą cr2 with probability tending to one. For S3 we use
the fact that

sup
aPr1{2´δ,1`δs

|p∆
p3q
α,tpaq| ďM,

where M
P
ÝÑ d ă 8. Thus |S3| ă br3 with probability tending to one, where b :“ d{3.

Combining the above we find that with probability tending to 1,

S1 ` S2 ` S3 ą cr2 ´ p1` bqr3,

for a “ AY ptq ˘ r. Clearly, since the right-hand side of the above inequality is positive if
r ă c{p1` bq, (9) follows.

To complete the proof of the existence and consistency we adjust the line of argumentation of
Theorem 3.7 in Chapter 6 of Lehmann and Casella (1998). For r ą 0, small enough such that
AY ptq ˘ r P r1{2´ δ, 1` δs we let

Snprq :“ tp∆α,tpAY ptqq ă p∆α,tpaq for a “ AY ptq ˘ ru.

From the above we have that PAY ptqpSnprqq Ñ 1 for any such r, and hence there exists a sequence

rn Ó 0 such that PAY ptqpSnprnqq Ñ 1 as n Ñ 8. By the differentiability of p∆α,t we have that

v P Snprnq implies that there exists a value pAY,n P rAY ptq´rn, AY ptq`rns for which p∆α,t attains

a local minimum, and thus p∆
p1q
α,tp

pAY,nq “ 0. Now let pA˚Y,n :“ pAY,n for v P Snprnq and arbitrary
otherwise. Clearly

PAY ptqp
p∆α,tp pA

˚
Y,nq “ 0q ě PAY ptqpSnprnqq Ñ 1,

as n Ñ 8. Thus with probability tending to 1 there exists a sequence of solutions to the
estimating equation (4). Then, for any fixed r ą 0 and n sufficiently large

PAY ptqp|
pA˚Y,n ´AY ptq|q ă rq ě PAY ptqp|

pA˚Y,n ´AY ptq|q ă rnq ě PAY ptqpSnprnqq Ñ 1,

which establishes the consistency of the sequence p pA˚Y,nqně1.
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6.6 Proof of Theorem 3.4

First we prove the result for a specific, single t P r0, 1s, since this is more explicit. Our starting
point is the estimating equation (4). By applying a Taylor series expansion around the true
value AY ptq, we get

0 “ p∆
p1q
α,tpAY ptqq `

´

pAY,α,nptq ´AY ptq
¯

p∆
p2q
α,tpAY ptqq `

1

2

´

pAY,α,nptq ´AY ptq
¯2

p∆
p3q
α,tp

rAY ptqq

where rAY ptq is a random value between AY ptq and pAY,α,nptq. A straightforward rearrangement
of the above display gives

?
n
´

pAY,α,nptq ´AY ptq
¯

“
´
?
n p∆

p1q
α,tpAY ptqq

p∆
p2q
α,tpAY ptqq `

1
2
p∆
p3q
α,tp

rAY ptqq
´

pAY,α,nptq ´AY ptq
¯ . (10)

Remark that, according to Section 6.1, the numerator of the right-hand side of (10) can be
rewritten as

´
?
np∆

p1q
α,tpAY ptqq “ p1` αqrAY ptqs

α´1

"

?
n

ˆ

Tnpt, 0q ´
1

1` α

˙

´AY ptq
?
n

ˆ

Tnpt, 1q ´
1

p1` αq2AY ptq

˙*

.

After some tedious computations we obtain

V arpηt,0p rZtqq “
α2AY ptq

p1` αq2rp1` 2αqAY ptq ´ACptqs
,

V arpηt,1p rZtqq “
p1` 2α` 2α4qA2

Y ptq ´ 2p1` α´ α2qAY ptqACptq `A
2
Cptq

p1` αq4AY ptqrp1` 2αqAY ptq ´ACptqs3
,

Covpηt,0p rZtq, ηt,1p rZtqq “ ´
αp1` α´ α2qAY ptq ´ αACptq

p1` αq3rp1` 2αqAY ptq ´ACptqs2
.

Then, by Theorem 3.2

´
?
np∆p1q

α pAY ptqq
d
ÝÑN p0, σ̄2q,

where

σ̄2 :“
rAY ptqs

2α´1

p1` αq2rp1` 2αqAY ptq ´ACptqs3
 

p1` 4α` 9α2 ` 14α3 ` 13α4 ` 8α5 ` 4α6qrAY ptqs
2

´2p1` 3α` 5α2 ` 6α3 ` 4α4 ` 2α5qAY ptqACptq ` p1` 2α` 3α2 ` 2α3 ` α4qrACptqs
2
(

.

Now, concerning the denominator of the right-hand side of (10), according to Section 6.1 and

Corollary 3.1, p∆
p3q
α,tpaq is bounded in probability and

p∆
p2q
α,tpAY ptqq

P
ÝÑ

1` α2

p1` αq2
rAY ptqs

α´2.
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This implies that

p∆
p2q
α,tpAY ptqq `

1

2
p∆
p3q
α,tp

rAY ptqq
´

pAY,α,nptq ´AY ptq
¯

P
ÝÑ

1` α2

p1` αq2
rAY ptqs

α´2.

Again by Slutsky’s theorem, we have that Theorem 3.4 follows for a single t P r0, 1s.

Now we focus on the general finite dimensional convergence. Let

Xn :“

»

—

—

—

—

—

—

—

—

—

–

?
n
´

Tnpt1, 0q ´
1

1`α

¯

?
n
´

Tnpt1, 1q ´
1

p1`αq2AY pt1q

¯

...
?
n
´

Tnptm, 0q ´
1

1`α

¯

?
n
´

Tnptm, 1q ´
1

p1`αq2AY ptmq

¯

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Then

Dn :“ ´

»

—

—

–

?
np∆

p1q
α,t1
pAY pt1qq
...

?
np∆

p1q
α,tmpAY ptmqq

fi

ffi

ffi

fl

“ AXn,

and we have Dn
d
ÝÑNmp0,ACAT q. Now let Bn be a pmˆmq diagonal matrix with entries

Bn,i,i :“
1

p∆
p2q
α,ti
pAY ptiqq `

1
2
p∆
p3q
α,ti
p rAY ptiqq

´

pAY,α,nptiq ´AY ptiq
¯ .

Then

?
n

»

—

–

pAY,α,npt1q ´AY pt1q
...

pAY,α,nptmq ´AY ptmq

fi

ffi

fl

“ BnDn,

and the result follows.
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