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Abstract. The Deep Brain Stimulation (DBS) is a surgical procedure
efficient to relieve symptoms of some neurodegenerative disease like the
Parkinson’s disease (PD). However, apply permanently the deep brain
stimulation due to the lack of possible control lead to several side effects.
Recent studies shown the detection of High-Voltage Spindles (HVS) in
local field potentials is an interesting way to predict the arrival of symp-
toms in PD people. The complexity of signals and the short time lag
between the apparition of HVS and the arrival of symptoms make it nec-
essary to have a fast and robust model to classify the presence of HVS
(Y = 1) or not (Y = −1) and to apply the DBS only when needed. In
this paper, we focus on a Gaussian process model. It consists to estimate
the latent variable f of the probit model: Pr(Y = 1|input) = Φ(f(input))
with Φ the distribution function of the standard normal distribution.

Keywords: Deep Learning, Gaussian Processes, Autoencoder, Classifica-
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1 Introduction

The Parkinson’s disease (PD) is a progressive neurodegenerative disease. The
depletion of the dopamine in the basal ganglia network leads to several symp-
toms like rigidity, posture instability, slow motion or pain for example. The
expectation of the number of PD victims in Asian countries is 6.17 millions in
2030 [2]. The deep brain stimulation (DBS) is a surgical procedure used to re-
lieve disabling neurological symptoms for diseases like PD [8]. A high-frequency
stimulation signal (around 130Hz) is continuously applied to a deep-brain re-
gion called the subthalamic nucleus (STN) to relieve the symptoms. The main
drawback of the DBS is the absence of any control on stimulation to minimize
side effects. In addition, contemporary DBS implant requires another surgery to

? This work was partly supported by the National Tsing Hua University (Hsinchu,
Taiwan) and Ministry of Science and Technology, R.O.C. (Taiwan).



2 GP for HVS detection

replace battery every 6 or 7 years.
Recent studies show we can predict the arrival of PD symptoms by the detec-
tion of high-voltages spindles (HVS) in recorded signals in local field potentials
(LFPs) [1]. The HVS signals as e.g. in Fig. 1 are synchronous spike-and-wave
patterns in LFPs oscillating in the 5-13 Hz frequency band. Suppressing HVS
signals is found useful for delaying the progress of PD and deleting symptoms.
Being able to detect HVS make possible the realization of a closed-loop system
to control the DBS. However the diffusion of signals in the brain is nonlinear
and there is only few milliseconds between the HVS wave and the apparition
of PD symptoms. Hence a fast and robust model is needed for real time HVS
detection and to apply the high frequency signal only when it is needed.

(a) Temporal representation. (b) Cosine wavelet transform using Morse
wavelet.

Fig. 1: Signals recorded in LFPs in two different representations. HVS are located
between 2.5 and 5 seconds. HVS are characterized by a fundamental frequency
between 5 and 13 Hz.

In this paper, the PD rat model is used. Data are collected from eight in-
tracortical channels from different cortical regions. In this paper, we investigate
performance of the Gaussian Process (GP) [3] for the detection of HVS. The GP
model is a Bayesian network with continuous variables. Bayesian network model
relations of causality between variables and in our study, data collected are the
result of a diffusion of signals between neurons in the brain. Moreover, relations
between variables model by a GP are nonlinear. Section 2 presents how data
are collected and the preprocessing of data. Details of the model are developed
in section 3. The two last sections give main results and discuss some future
improvement and other possible approaches.



GP for HVS detection 3

2 Data collection

2.1 Data Acquisition

The PD rat model has been used to develop and evaluate the results. The de-
scription of the procedure to extract data is given in [7, sect. 2]. The LFPs
were recorded from eight different brain regions listed in Tab.1. The frequency
sampling of signals was 1 kHz and the recording duration of one session was
60 seconds (60,000 samples). Several sessions have been recorded on PD rats.

Notation Region name

M1D Layer 5b of the primary motor cortex
M1U Layer 2/3 of the primary motor cortex
M2D Layer 5b of the secondary motor cortex
M2U Layer 2/3 of the secondary motor cortex
SD Layer 5b of the primary somatosensory cortex
SU Layer 2/3 of the primary somatosensory cortex

STRI Dorsal region of striatum
THAL Ventrolateral thalamus

Table 1: List of brain region where LFPs signals were recorded.

2.2 Data preparation

GP classifier is a model which requires a supervised learning. The data prepa-
ration step consists to construct feature signals from collected data to train the
model and feature signals for testing the model. One 60s session has been used
for the training step and the other session has been used for the testing step.
The preprocessing step is the same for the two data sets. HVS wave’s funda-
mental frequency is between 5 and 13 Hz and, according to observations in Fig.
1b, harmonics of HVSs are visible around 30 Hz. High frequencies noises and
continuous components of signals were deleted with a second order Butterworth
filter between 1 and 200 Hz while preserving much of the HVS frequency con-
tent. Each channel was normalized independently from each other (zero mean
and unit variance).
Then we define the prediction class vector Yn∀n for the training set and the
testing set. The presence of HVS is characterized by the apparition of spike-and-
wave patterns with a fundamental frequency between 5 and 13 Hz. We estimate
the Power Spectral Density (PSD) with a periodogram using the Hanning win-
dow with a 500 ms time window each 100 ms. Then by computing the PSD mean
between 5 and 13 Hz and performing an interpolation, we plot the PSD mean
between 5-13 Hz as a function of time (see Fig. 2). We then defined our ground
truth by thresholding our observations above at least one quarter of the signal
magnitude. Result are given in Fig. 2.
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(a) PSD mean as a function of time for channels M1D, M2D, M1U and M2U.
The red line represent the ground truth: if 3

4
of signal magnitude is above the

threshold, then we consider we detect the presence of the HVS.

(b) Result of the classification on the four same channels. Channels MD2 and
MU2 are zoomed to observe with more precision the switch of state HVS/no
HVS and reverse.

Fig. 2: data preparation step.
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3 Model

3.1 Gaussian process classifier

A closed-loop DBS system delivers the stimulation only when needed.
Mathematically this consists to build a two-class classifier C capable to identify
the presence or the absence of HVS. The available information for the classi-
fication are the values of the R channels and p previous signal values for each
channel. Let Xn ∈ RR×(p+1) denotes the concatenated feature vector recorded
between times n and n − p and Yn ∈ {−1, 1} be the associated output of the
supervised classifier. Suppose also the database is shared in a training set for
which Yn is known and a test set for which Yn is unknown. The aim of the model
is to estimate Yn from new observations Xn.
We note in the following D = {Xn, Yn}n∈[1,N ] the training set with X =
{Xn}n∈[1,N ] being independent randomly selected input observations and Y =
{Yn}n∈[1,N ] the associated output decision respectively. The GP classifier fo-
cus on modeling the posterior probabilities by defining the latent variables
fn = f(Xn).
The model used here is the probit model: Pr(Y = 1|X) = Φ(f(X)) where Φ
denotes the cumulative density function of the standard normal distribution.
The likelihood of the probit model with independent observations and given
f = {f(X(n))}n∈[1,N ] is:

p(Y |f) =

N∏
n=1

p(Yn|fn) =

N∏
n=1

Φ(Ynfn). (1)

In a GP, f is a stochastic process which associates a zero mean normal random
value for an input X(n). For the training set D we have p(f |X,Θ) ∼ N (0,CN )
where Θ is a set of hyper-parameters and CN is a covariance matrix modelized
with a squared exponential and a Gaussian noise [6]:

CN (Xi, Xj) = θ20 exp

−1

2

dim(Xi)∑
n=1

(X
(n)
i −X(n)

j )2

λ2n

+ θ21δ(Xi,Xj). (2)

X
(n)
i is the nth component of Xi and δ(·) is the Kronecker delta. The set of hyper-

parameters Θ is composed of
{
θ1, θ2, {λn}n∈[1,N ]

}
. Baye’s posterior probability

rule of the latent variable f with Θ known can be written:

p(f |D, Θ) =
p(Y |f)p(f |X,Θ)

p(D|Θ)
=
N (f |0,CN )

p(D|Θ)

N∏
n=1

Φ(Ynfn). (3)

With the marginalization of Eq. (3) for a new observation XN+1 we obtain:

Pr(fN+1|D, Θ,XN+1) =

∫
Pr(fN+1|f,X,Θ,XN+1) Pr(f |D, Θ)df, (4)
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and the expectation of the Eq.4 gives:

Pr(YN+1|D, Θ,XN+1) =

∫
Pr(YN+1|fN+1) Pr(fN+1|D, Θ,XN+1)dfN+1 (5)

We model the posterior probability q(f |D, Θ) ∼ N (m,A) to compute Pr(YN+1 =
1|D, Θ,XN+1). And then, for a new observation N + 1, we can show that the
posterior probability of fN+1 is q(fN+1|D, Θ,XN+1) ∼ N (µ, σ) with:{

µ = kTC−1N m,

σ2 = κ− kT (C−1N −C−1N AC−1N )k.
(6)

where k = (CN (X1, XN+1), . . . ,CN (XN , XN+1))
T

is the covariance function
vector between each observation of the training set and the new observation
XN+1 and κ = CN (XN+1, XN+1) = θ20 + θ21 is the variance of XN+1.
With the approximation of Pr(f |D, Θ), Eq. (5) becomes:

Pr(YN+1 = 1|D,Θ,XN+1) = Φ

(
µ√

1 + σ2

)
(7)

Training a GP consist to find Θ, m and A. We can learn Θ by computing the
log-likelihood of the log posterior probability log q(Y |X,Θ) Eq.8 (see [6, Chapter
5]) and his gradient in function of Θ.

log q(Y |X,Θ) = −1

2
fTC−1N f + log p(Y |f)− 1

2
log det

(
I +W

1
2 CNW

1
2

)
(8)

With W = −∆f log p(Y |f) (Hessian) and f such the unormalized log likelihood
log p(f |D, Θ) is maximized:

log p(f |D, Θ) = log p(Y |f) + log p(f |X)

= log p(Y |f)− 1

2
fTC−1N f − 1

2
log det(CN )− N

2
log 2π.

(9)

For a given Θ, we can find m = arg maxf log p(f |D, Θ) by using the Newton’s
method. Eq.10 and Eq.11 give the gradient and the hessian of log p(f |D, Θ),
respectively.

∇f log p(f |D, Θ) = ∇f log p(Y |f)−C−1N f. (10)

∆f log p(f |D, Θ) = ∆f log p(Y |f)−C−1N . (11)

The maximization of log p(f |D, Θ) makes use of the first and second order partial
derivation of log p(Y |F ) in function of fi.

∂

∂fi
log p(Y |f) =

Yiφ(fi)

Φ(Yifi)
. (12)

∂2

∂f2i
log p(Y |f) = − φ(fi)

2

Φ(Yifi)2
− Yifiφ(fi)

Φ(Yifi)
. (13)
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Where φ(.) is the density function of the standard normal distribution. Learning
m allow to compute Eq.8 and their gradient in function of Θ. We implement a
gradient descent search of the optimum Θ∗ that leads to the following iterative
algorithm:

Θ(k+1) = Θ(k) − αk∇Θ log q(Y |X,Θ)). (14)

But Eq. (14) requires to inverse the N ×N matrix CN at each iteration which
can be time consuming for a large number of observations. Once m and Θ found,

we can compute A =
(
C−1N +W

)−1
.

Finally, the GP classifier is learned by identifying the covariance matrix between
observations CN as a function of the hyper-parameters Θ, the mean vector m is
learning for each iteration of Θ then and the covariance matrix A is deduced.
Once the learning is done, the prediction step consists to compute the covariance
vector k between the new observation XN+1 and the training set X and then esti-
mates the probability Pr(YN+1 = 1|D, Θ,XN+1). If Pr(YN+1 = 1|D, Θ,XN+1) >
0.5 then YN+1 = 1 and YN+1 = −1 else.

3.2 Input autoencoding

Learning the model consist in two step: learning the hyper-parameters Θ and
learning the parameters of q(fN+1|D, Θ,XN+1). HVS have a fundamental fre-
quency between 5 and 13 Hz. with a the maximal period of 200 ms. Choosing
p = 199 to have at least one period of the signal leads to a model with high
dimensions: the input size of Xn is then (p+ 1)×R = 1600 and Θ has 1602 pa-
rameters. To reduce the the dimensionality of the input vector Xn (which makes
it difficult to use for real time applications) we use an autoencoder (see Fig. 3).
This autoencoder consists in a 3 layers neural network that compresses input
data onto the hidden layer. We present to the input and the output layers the
same input vector Xn. The activation function of the hidden layer is sigmöıdal
function s(·) that permits nonlinear combination of the inputs:

s(xj) =
1

1 + exp(−bj −
∑
i wijxi)

(15)

where (x1, . . . , xp)
T is the input vector. Learning this autoencoder consists to

find biases bj and weights wij of the input neurons. The output layer has to
be the closest possible to the input layer. The training algorithm is the scaled
conjugate gradient [4] using the mean square error with L2 sparsity regularized
loss function [5].

Fig.3 gives an example of result for a number of observations N = 500 and
the size of the autoencoder H = 10. The sensitivity and the specificity (see
section 4) are, respectively, 82.92% and 99.31%.

4 Experimental results

Detection of HVS has been applied on different rats with various set of param-
eters for the learning stage such as the number of observations N or the size of
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the hidden layer of the autoencoder H.
The small the parameters, the lower the number of parameters: learning the
model and use it become very fast by reducing the dimensionality. Choosing N
small means taking the risk to not have enough observations or have observations
not sufficiently representative.

(a) Autoencoder architecture. (b) Example of result after training the
model autoencoder + Gaussian Process.

Fig. 3: In (3a) autoencoder neural network: (p + 1) × R corresponds to the di-
mension of the input and the output layers and HAE is the size of the hidden
layer (parameters). In (3b), the plot to the top Pr(YN+1 = 1|D, Θ,XN+1) in
function of the time. The two other figures are two among five channels of the
testing set. Green line is the ground-truth defined in the preprocessing step. The
red line is the decision made by the GP classifier. The second channel is zoomed
on a HVS.

For each rat, one signal session record has been used for the learning step and
an other session has been used for the testing step. The criteria of performance
for models are the sensitivity Se = TP/(TP + FN) and the specificity Sp =
TN/(TN + FP ), with TP is the number of true positive, TN is the number
of true negative, FN is the number of false negative and FP is the number of
false positive. The sensitivity gives the true positive rate: the number of correct
detection under the number of correct detection and miss. The specificity give
the true negative rate: the number of correct non detection under the number of
correct non detection and false detection. We reproduce 5 times for each set of
parameters the learning and the testing stages and compute the mean and the
variance of Se and Sc to verify the performance and the robustness, regarding
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random sampling.
Results are summarized in Tab.2. Data collection for each rat is different: the
rat 2 provides data from channels M1U, M1D, SU and SD; rat 3 provides data
from channels M1U, M1D, STRI and SD; rat 1 provides data from all channels1.
Results are discuss in next section.

N H
Rat number 1 Rat number 2 Rat number 3

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity
mean var mean var mean var mean var mean var mean var

50 10 .58 .0192 .88 .0161 .63 .0370 .47 .0596 .23 .0159 .83 .0082
50 30 .63 .0095 .96 .0031 .69 .0099 .57 .0212 .04 .0039 .97 .0019
50 50 .62 .0058 .97 .0008 .68 .0672 .52 .1624 .12 .0053 .91 .0056
50 100 .62 .0050 .96 .0013 .46 .0384 .78 .0531 .10 .0168 .93 .0047
200 10 .82 .0021 .95 .0016 .61 .0082 .56 .0044 .24 .0195 .86 .0061
200 30 .81 .0016 .90 .0032 .70 .0088 .71 .0087 .25 .0274 .82 .0128
200 50 .81 .0006 .91 .0097 .71 .0016 .73 .0057 .13 .0257 .90 .0173
200 100 .60 .0126 .96 .0097 .61 .0367 .82 .0104 .01 .0001 .99 .0000
500 10 .85 .0010 .98 .0001 .67 .0003 .65 .0036 .14 .0242 .94 .0043
500 30 .82 .0019 .95 .0006 .70 .0044 .67 .0043 .25 .0083 .86 .0028
500 50 .83 .0012 .89 .0005 .70 .0026 .68 .0017 .21 .0220 .85 .0141
500 100 .74 .0226 .94 .0054 .76 .0029 .70 .0005 .85 .0032 .85 .0027

Table 2: Result of the experience. N is the number of observations used from
the training set. H is the size of the hidden layer of the encoder. Variance equal
to .0000 in the table mean the value is less than 10−4. Bold numbers highlight
most relevant results.

5 Conclusion

Tab.2 highlights some tendencies in the parameters. First, the number of obser-
vations is critical for fine sensitivity and specificity. Taking too little oservation
can alter the overall knowledge of the system : in this case the variance is often
more important for N = 50 than for bigger N . But too much data leads to big
with covariance matrices too long to calculate. Increasing H (hidden layer num-
ber of neurons) increases the sensitivity but decreases the specificity: the model
tends to detect HVS all the time. On the opposite for small H we compress a
lot of data by taking the risk to loose information. A large hidden layer better
preserves the information but (i) the problem becomes hard to optimize (too
much parameters) (ii) learning the model become time-consuming.
Results for rat 2 and 3 are not as fine as the first rat. By looking closely step
by step signals of the two rats it appear that the intensity of the noise is much
more important than in signals of the first rat. Means over channels of signal-to-
ratio of the three rats are respectively, 35 decibels, 14 decibels and 10 decibels.

1 see Tab.1 as a reminder.
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Moreover, in rat 2 and 3, appearance of signals differs according to the various
channels: some HVS do not appear in all channel which make the preprocessing
step not relevant for those two rats. This is why results of rat 2 and 3 are not
reliable to conclude with a high confidence level about the robustness of the
model.
In a future work, we will develop an approach based on unsupervised learning
model because by defining ourselves the groundtruth we may have missed some
complex features in the signal which could have helped for predicting HVS. Re-
stricted Boltzmann Machines is a promising stochastic model which, by exploring
latent variables could find such hidden features.

References

1. Cyril Dejean, Christian E Gross, Bernard Bioulac, and Thomas Boraud. Dynamic
changes in the cortex-basal ganglia network after dopamine depletion in the rat.
Journal of neurophysiology, 100(1):385–396, 2008.

2. ERl Dorsey, R Constantinescu, JP Thompson, KM Biglan, RG Holloway,
K Kieburtz, FJ Marshall, BM Ravina, G Schifitto, A Siderowf, et al. Projected
number of people with parkinson disease in the most populous nations, 2005 through
2030. Neurology, 68(5):384–386, 2007.

3. Malte Kuss and Carl Edward Rasmussen. Assessing approximate inference for
binary gaussian process classification. Journal of machine learning research,
6(Oct):1679–1704, 2005.

4. Martin Fodslette Møller. A scaled conjugate gradient algorithm for fast supervised
learning. Neural networks, 6(4):525–533, 1993.

5. Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis
set: A strategy employed by v1? Vision research, 37(23):3311–3325, 1997.

6. Carl Edward Rasmussen. Gaussian processes in machine learning. In Advanced
lectures on machine learning, pages 63–71. Springer, 2004.

7. Vincent Vigneron, Tahir Qasim Syed, and Hsin Chen. Automatic detection of high-
voltage spindles for parkinson’s disease. In BIOSIGNALS, pages 372–378, 2015.

8. Jerrold L Vitek. Mechanisms of deep brain stimulation: excitation or inhibition.
Movement disorders, 17(S3), 2002.


