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CPG-based Controllers can Trigger the Emergence of Social Synchrony
in Human-Robot Interactions

Melanie Jouaiti1 and Patrick Henaff2

Abstract— Synchronization is an indissociable part of social
interactions between humans, especially in gestural commu-
nication. With the emergence of social robotics and assistance
robots, it becomes paramount for robots to be socially accepted
and for humans to be able to connect with them. As a
consequence, synchronization mechanisms should be inherent
to any robot controllers, allowing the adaption to the interacting
partner in any rhythmic way necessary. In this paper, plastic
Central Pattern Generators (CPG) have been implemented
in the joints of the robot Pepper that has to learn to wave
back at a human partner. Results show that the CPG-based
controller leads to adaptive waving synchronized with the
human partner, thus proving that the CPG-based controller
can achieve synchronization.

I. INTRODUCTION

With the increasing popularity of social robots and the
prospect of them being more and more pervasive, it becomes
essential for robots to be accepted. Social acceptance would
indeed allow robots to effectively perform their tasks at wel-
come desks, at home, in hospitals, schools, train stations...
It has become quite obvious that an appealing appearance
and smooth complex gestures would not be enough to
achieve this integration. Robots still lack a paramount ability.
Humans require their interaction partner to behave in an
appropriate way in order to connect, that is, a socially
acceptable response in accord with the social and human
context is expected. Consequently, robots need to be able to
synchronize and hence, their controllers have to incorporate
mechanisms capable of triggering the synchronization. One
way of achieving this consists in using Central Pattern
Generators (CPGs) endowed with plasticity mechanisms,
allowing them to alter their intrinsic properties in conjunction
with proprioceptive or exteroceptive information.

The waving gesture and its social implications, to this
day and to our knowledge, have never been studied. Though
not directly concerned with waving, [1] introduced a model
designed to imitate rhythmic arm movements with the NAO
robot. But this model is not able to learn to synchronize
with an external signal. Oscillators with close frequency are
merely chosen in a reservoir and while the frequency can be
slightly entrained during the interaction, the oscillators go
back to their original properties right afterwards. Neverthe-
less, waving is an important part of the gestural communi-
cation between humans and although it presents with great
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variety (one, two joints, hand-only waving), its rhythmic
nature can be linked to other studies on rhythmic gestures
and leads us to assume that it induces the same locking
mechanisms observed in other rhythmic social interactions
[2]. It is thus postulated that the waving gesture, though
trivial in appearance is actually a complex communication
act, triggering synchronization phenomena and that its study
would be an interesting step in understanding human gestural
communication.

In this paper, plastic CPGs, i.e. CPGs which incorporate
plastic and synaptic Hebbian plasticity, were implemented
in the joints of the Pepper robot in order to perform syn-
chronized waving with a human partner. Results show that
our controller triggers the emergence of motor coordination
between the robot and the human partner waving and hence
of social synchrony.

In section II, interpersonal synchrony and synchrony mea-
sures are introduced. Section III details the model of sensori-
motor loop employed. Then in section IV, the results of
the synchrony analysis are explained. Finally, section V
concludes this paper and mentions future prospects.

II. SYNCHRONY IN INTERPERSONAL RELATIONSHIPS

Though the terms synchrony, synchronization and coordi-
nation are often interchangeably employed, their meanings
actually differ. Synchrony denotes the state of two or more
events occurring at the same time. Coordination describes
events occurring with a constant phase difference (which can
differ from zero). Synchronization indicates that the events
are in phase (phase difference is zero) or in anti-phase (phase
difference is π), it can be restricted to in-phase in some
studies. Synchrony is ubiquitous in complex systems, such
as biological systems, ranging from traffic regulation [3] to
animal behavioral patterns [4].

Interpersonal synchrony can be observed in many different
situations: head movements or posture in a conversation [5],
[6], crowd behavior [7], team sports. For humans, physical
and social interactions induce gestural and verbal/non-verbal
communication based on rhythmic mechanisms and rhythmic
movements. People, in rhythmic social interactions, experi-
ence two phenomena which can be observed in oscillators:
the magnet effect which entrains both systems until they are
coupled and synchronized; the maintenance effect which is
the struggle of each system to conserve its own intrinsic
frequency [8]. These mechanisms could play a fundamental
role in physical and social interpersonal interactions [9], [10]
and could be an emergent feature of these interactions where
humans adapt to each other and learn from each interaction,



generating synchronization phenomena and creating con-
scious or unconscious links between people [11]. Scientists
assume that emotional and social interactions involve a
coupling between individuals which is achieved thanks to
neural structures with similar properties as those implicated
in the neural control of movements. In the case of inter-limb
coordination within a single individual, neural synchrony has
been observed between cortical areas of the brain [12] and
also between two distinct brains in the case of coordination
of oscillatory motions between two individuals [13], [14].

A. Measures of synchrony

Interpersonal coordination can be captured by video analy-
sis, motion tracking or psychophysiological and neurophysi-
ological methods (See [15] for a review). Afterwards, several
measures can be employed to analyze the data and quantify
the degree of synchronization.

Firstly, different correlation or coherence indexes are avail-
able. They provide only one averaging value to evaluate the
whole interaction. These indexes cause a lot of information
loss. Indeed, with a single value for the whole interaction,
information such as synchronization length, beginning of
synchronization or loss of synchronization are not available.
Besides, generalized Partial Directed Coherence is suitable
for multivariate autoregressive models and has been used to
evaluate synchronization in neural signals [16] and breathing
rhythms [17]. The intersubject correlation analysis is mostly
used to analyze fMRI data [18]. Meanwhile, cross-recurrence
quantification analysis detects intricate recurrent structuring
between paired signals [19], [20], [21]. It is a nonlinear
method that allows quantification of dynamical systems and
their trajectories because corresponding signals are non-
stationary. Contrary to most methods, it does not perform
any averaging which usually leads to data loss. Furthermore,
several different methods first compute the instantaneous
phase with the Hilbert transform or with wavelet transform.
Next, the phases are compared by computing the mean vector
length of the angular dispersions of the phase difference in
a complex space [22] or by simply comparing the instanta-
neous phase of two signals [23], [18] or by multiplying the
wavelet transforms of both systems [24].

In this paper, two synchrony measures were selected for
the study of waving signals: the instantaneous Phase Locking
Value and the synchrosqueezing transform.

1) Phase Locking Value (PLV): The Phase Locking Value
(PLV) has been introduced by [25] to measure coordination
in brain signals. It relies on the assumption that both signals
are locked with a constant phase difference but the PLV
allows for deviations and evaluates this spread. It ranges
from 0 (no coordination) to 1 (perfect coordination). First, the
Hilbert transform is computed, providing the instantaneous
phase φ for each signal, then the instantaneous PLV can be
obtained:

PLV (t) =
1

N

∣∣∣∣∣
N∑
i=0

ej(φ1(i)−φ2(i))

∣∣∣∣∣ (1)

with N the sliding window size, j =
√
−1, φk the

instantaneous phase of signal k.
2) Synchrosqueezing: Synchrosqueezing introduced in the

context of analyzing auditory signals [26] aims to decom-
pose signals into constituent components with time-varying
oscillatory characteristics. It is assumed that signals have
following form:

f(t) =

K∑
k=1

fk(t) + e(t) (2)

with fk(t) = Ak(t)cos(2πφk(t)) a Fourier-like oscillatory
mode and e(t) noise.

First, the continous Wavelet transform is computed:

Ws(a, b) =

∫
s(t)a−1/2ψ

(
− t− b

a

)
dt (3)

with ψ an appropriate mother wavelet. A candidate instan-
taneous frequency ωs(a, b) for the signal s can be derived:

ωs(a, b) = −i(Ws(a, b))
−1 δWs(a, b)

δb
(4)

The Wavelet Synchrosqueezing transform of f is defined
as:

Ts(ωl, b) = (∆ω)−1
∑

a:|ωs(a,b)−ωl|≤∆ω/2

Ws(a, b)a
−3/2∆a

(5)
with ωl the center frequency bin where frequencies are

closer to ωl than to any other frequency.
Cross Synchrosqueezing
Synchrosqueezing provides frequency information for one

single signal but synchronization concerns two signals, so let
us define Cross Synchrosqueezing as the product of Wavelet
Synchrosqueezing transform obtained for each signal. This
operation, similar to the cross wavelet transform [24] is
designed to highlight regions were the frequency is similar
for both signals and remove the other frequencies.

III. MODEL OF SENSORI-MOTOR LOOP

The optical flow of a hand waving in front of the Pepper
camera is the input of the first CPG. Since two joints waving
is realized, the output of the first CPG is used as the input for
the second CPG (see Figure 1). The output of the CPG is thus
considered an articular position here (the position control
mode to command the joints is employed). The output of
each CPG is mapped to the acceptable range of values for
the appropriate joint.

A. The CPG-based architecture

Several models of CPGs have been proposed over the years
in order to understand human and animal motor control,
mainly aiming at locomotion control in robotics [27], [28],
[29]. CPGs are neuronal structures located in the spinal cord
and able to generate rhythmic and discrete activities that can
be initiated, modulated and reset by different kinds of signals
(afferent or efferent). Different levels of CPG modeling exist



Figure 1. Experiment setup with the robot Pepper. The
optical flow detected is fed as an input to first CPG, while
the input of the second CPG is the output of the first.

from the microscopic level that takes into account many
details in the biophysical operation of the neurons like the
famous Hodgkin-Huxley model [30], to the macroscopic
level that tries to reproduce the functionality of a population
of neurons using non-linear oscillators like Van der Pol [31],
[32], Rayleigh [33] or Hopf [34], [29].

Using non-linear oscillator models (also called relaxation-
oscillators) for oscillating neurons in CPGs is particularly
interesting because they have the property of natural synchro-
nization with an external signal, provided the frequency of
this signal is not too different from the oscillator’s own intrin-
sic frequency [35]. Thus, non-linear oscillators are suitable
models to explain and reproduce the synchrony phenomena
that emerge in interpersonal coordination, especially if they
are implemented at the rhythmic level of a CPG. In this case,
by acting like a dynamic attractor, they facilitate the self-
synchronization of the CPG with the dynamic of the limb
controlled by the CPG.

An interesting bio-inspired model of half-center CPG for
mammal locomotion was proposed by McCrea and Rybak
[36]. The CPG is divided into two parts representing the
extensor and flexor muscles and has four layers: Rhythm
Generator, Pattern Formation, Sensory Neurons and Mo-
toneurons. It also takes sensory feedback into account.

For the rhythm generator neurons, Rowat-Selverston cells
are used. They are generalized versions of the Van der Pol
oscillator and can exhibit the four characteristic behaviors
of a biological rhythmic neuron, i.e. endogenous bursting,
plateau potential, post-inhibitory rebound and quiescence.

In this paper, we introduce many equations without much
explanation, consequently we recommend that the reader
read [37], where the CPG model is extensively detailed, for
a full understanding. Following equations are used for the
rhythmic cells:

V̇i{E,F} = yi{E,F} −W
yi{E,F}

1 + e
−4yi{F,E}

+ εi{E,F}Fi (6)

ẏi{E,F} =(
σf −

τm
τs
− 1− σf tanh2

(
σf
Afi

Vi{E,F}

))
yi{E,F}

τm

− 1 + σs
τsτm

Vi{E,F} +
Afi{E,F}

τsτm
tanh

(
σfVi{E,F}

Afi{E,F}

)
(7)

With i ∈ N, designating the joint id. Fi is the input of
the CPG, ε a synaptic weight designed to scale the input
and the term in W models the mutual inhibition between
the extensor and flexor rhythmic cells. V is the membrane
potential and τm and τs are time constants, Af influences the
output amplitude, while σf determines whether the neuron is
able to oscillate or not. σs is a gain. For more details, refer
to [31].

Pattern Formation neuron PF, Sensory neuron SN and
Motoneuron MN are defined as follows [38]:

PF (Vi{E,F}) = PFi{E,F} =
1

1 + e
−Vi{E,F}

2

SNs(vmesi) = SNi,s =
1

1 + eαsposimes

MN(PFi{E,F} , SNi,s) =
1

1 + e
αm

(
PFi{E,F}−SNi,s

)
(8)

with αs = −0.061342 and αm = 3. posmesi is the angular
position measured for the given joint.

B. The plasticity mechanisms

Several plasticity mechanisms inspired by [39] are inte-
grated to the CPG, allowing it to alter its intrinsic properties
to adapt to the input. How the plasticity rules were derived
won’t be detailed here, since it is not the subject of this paper
but details can be found in [37]. There are merely provided
to the reader for exhaustiveness.

Frequency learning is defined as:

σ̇si{E,F}
=

2εFi
√
τmτs(1 + σsi{E,F}

− σf )
yi{E,F}√

V 2
i{E,F}

+ y2
i{E,F}

(9)

The learning rule for the amplitude Af is the following:

Ȧfi{E,F}
= −µ

(νσfVi{E,F}

Afi{E,F}

)2

− Fi2
 (10)

The adaptation of the synaptic weight ε is realized with:

ε̇i{E,F} = λtanh(ξ|F |)
(
1− (εi{E,F}Fi)

2
)

(11)

µ and λ are learning steps. ν and ξ are scaling factors.



IV. RESULTS OF THE EXPERIMENTS

A. Protocol

Ten waving interactions were performed by the same
human with the Pepper robot (Softbanks Robotics). Each
interaction lasts 50 s. Between t = 0 and t = 20 s, the human
waves slowly at approximately 0.5 Hz, then between t = 20 s
and t = 40 s, the waving frequency increases at 1 Hz. Finally,
between t = 40 s and t = 50 s, no waving occurs. The Pepper
camera provides pictures at 20 fps. The optical flow of the
hand waving was obtained with a background subtraction
algorithm, followed by simple image processing steps, all of
which implemented in OpenCV version 3.4. Furthermore, the
signal was passed through a low-pass filter with a 5 Hz cut-
off frequency in order to remove some detection aberrations.
Waving was performed with two joints: the shoulder roll
joint and the elbow yaw joint. The input of the shoulder
CPG is the optical flow detected. The shoulder CPG output
is the input of the elbow CPG. The controller is implemented
in Python 2.7 and runs with ROS. Coordination across the
waving series was evaluated with the previously introduced
PLV and synchrosqueezing.

B. Emergence of Synchrony

On Figure 2, the optical flow detected and angular posi-
tions of the shoulder and elbow joints for a single interaction
are represented as an interaction example. The emergence of
coordination can be observed after a transitory phase, every
time the input varies: at the beginning of the interaction and
at t = 20 s when the waving frequency increases. It can
also be noted that while the shoulder joint is in phase with
the optical flow the whole interaction, the elbow joint is in
anti-phase during the slow waving phase and in-phase during
the fast waving phase. Note that while 1 Hz can hardly be
considered as fast, it was imposed by the camera frame-rate
and robot bandwidth.
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Figure 2. Top, in red, optical flow and in blue, angular
position of the shoulder joint; Bottom, in red, optical flow
and in blue, angular position of elbow joint. The vertical
lines represent the beginning of the interaction, the frequency
change and the end of waving.

The PLV is used as an error measurement metric and was
implemented using a moving window size N = 50 (see
equation 1).

Figure 3 represents the superimposed PLV for the ten
interactions. It can be plainly observed that though the
shoulder joint quickly coordinates with the optical flow (t
= 7 s), the elbow joint experiences a longer transition phase
before achieving coordination (t = 9.7 s). Similarly, at t =
20 s, when the waving frequency changes, the transition is
more distinct for the elbow joint than for the shoulder joint.
Waving in the higher frequency appears less stable and with
more variability than for the lower frequency, especially for
the elbow joint.
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Figure 3. Top, PLV for the shoulder joint and the optical
flow; Bottom, PLV for the elbow joint and the optical flow.
The PLV for ten interactions are superimposed.

For the synchrosqueezing analysis, the Matlab toolbox
implementation by [40], [41] was employed.

Figure 4 represents the ten cross synchrosqueezing trans-
forms superimposed. The color represents the power of the
frequency specter: the darker the blue, the stronger the
specter. It can be observed that in the transition periods
(beginning, frequency change, end), the specter is larger
and fainter than during the phases where the signals are
coordinated.

It should also be noticed that the strength of cross syn-
chrosqueezing for the elbow joint appears strong only around
t = 8.5 s, after the shoulder joint (t = 6.0 s). The same
phenomenon can also be observed at the frequency change.
This confirms what has already been observed for the PLV:
the elbow joint achieves coordination after the shoulder joint.

C. Repeatability of synchrony

Despite sub-optimal initial conditions and human variabil-
ity evidenced by the lack of overlap in the synchrosqueezing
curves (Figure 4), our controller is able to achieve coordi-
nation every time, as proven by the PLV curves displaying
a great overlap (Figure 3). Thus, the coordination observed
previously is not merely due to chance but the controller



Figure 4. Left for the shoulder joint, right for the elbow joint. Top, optical flow synchrosqueezing; Middle, joint
synchrosqueezing; Bottom, cross synchrosqueezing. The synchrosqueezing for ten interactions are superimposed.

indeed triggers the emergence of coordination (the PLV tends
to reach 1.0) after a transitory phase where the system adapts
to the new input information.

V. CONCLUSION

In this paper, we showed that CPG-based controllers
endowed with plasticity mechanisms are able to synchronize
with an external visual signal. This synchronization property
enables motor synchronization which in turn, triggers the
emergence of social synchronization between the robot and
the human. This was achieved by analyzing the synchro-
nization between the optical flow and articular command
values across ten different interactions, thanks to the PLV and
synchrosqueezing transform. Despite the human variability
obviously present in different interactions, results show an in-
teresting coherence with signals often overlapping. Besides,
one advantage of using biological inspiration, consists in not
having to compute nor use a dynamical model of the robot.

It has been constantly observed that the elbow joint syn-
chronizes after the shoulder joint. This is perfectly coherent
since the input of elbow joint is the output of the shoulder
joint, as such, it cannot possibly synchronize before the
shoulder joint does. The elbow joint undergoes some sort
of exploratory phase before achieving synchronization. It
may be interesting to investigate the influence and relevance
of other inputs for the second CPG. Ongoing experiments
with another robot already allow us to study the influence of
torque feedback.

Moreover, it was observed that the robot’s response could
switch from anti-phase to in-phase for the elbow joint when
the waving frequency increased. The CPG naturally gener-
ates a signal which is in anti-phase with the input signal, this
can be clearly observed for slow waving. However, for fast
waving, we are confronted to bandwidth limitations and the
joints do not answer as they should. While the command is

still in anti-phase, the robot answer undergoes a phase shift.
While this phenomenon [42], [43], [44] is widely observed in
human rhythmic movements and modeled by the HKB model
[45], in our case it is merely due to the robot’s inability
to perform such rapid movements. It was indeed observed
that the elbow joint response was most unsatisfactory for
frequencies above 0.5 Hz. If we wish robots to be able to act
in a human-like way and synchronize with a human partner, a
hardware improvement for actuators (compliance and higher
bandwidth) would be required, so that such low frequency
limitations do not arise.

In future works, we will study synchronization in the
waving gesture further by equipping the human partner with
motion sensors.
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