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SUBSTITUTION PROPERTY FOR THE RING OF CONTINUOUS

RATIONAL FUNCTIONS
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Abstract. We study the substitution property for the ring R0(V ) of continuous rational
functions on a real algebraic affine variety V . We show that R0(V ) satisfies a substitution
property along points; moreover, when V is non-singular, it satisfies also a substitution property
along Puiseux arcs, which characterizes R0(V ).

1. Introduction

Given a real algebraic variety V ⊂ R
n, any morphism φ : R[V ] → R can be seen as an

evaluation morphism at a certain point x0 ∈ V , where R[V ] denotes the coordinate ring of
V . For any extension ring B of R[V ] a natural question is to ask whether the evaluation
morphism does extend uniquely to B. This question is known as the substitution property,
when one considers, more generally, an evaluation morphism φ : R[V ] → R into a real closed
field extension R of R. Such a property gives a lot of information on the real algebra of the
ring B namely, one may derive Artin-Lang property, Positivstellensatz, etc.

A natural class of rings B to test are the different rings of functions considered in real
algebraic geometry. The larger class consists in the ring of continuous (with respect to the
Euclidean topology) semi-algebraic functions on V , where the continuity is intended with
respect to the Euclidean topology on V . In that situation, the substitution property is known
to be true by [12]. A more rigid class is given by the ring of Nash functions on V , namely real
analytic and semi-algebraic functions. Here also the substitution property holds true (see [2,
8.5.2]).

In the present paper, we study the case of the ring R0(V ) of continuous rational functions on
V . Continuous rational functions on a real algebraic variety V are those rational functions that
admit a continuous extension along their poles. They form an intermediate ring between regular
functions (rational functions without real poles) and continuous semi-algebraic functions. This
ring has been intensively studied in several recent works ( [4], [5], [6], [7], [8], [9], [10], [11]).

The main results of the paper are the following. We first show that R0(V ) satisfies the
substitution property (Theorem 2.13), generalizing a result in [4]. A natural question is then
whether this property characterizes the ring of continuous rational functions. However we prove
that this is not the case (Proposition 2.14). This motivates the introduction of the concept of
evaluation along Puiseux arcs in section 3. More precisely, we take evaluation morphisms of
the form φ : R[V ] → R[[t1/N]], where R[[t1/N]]alg is the ring of Puiseux power series over R that
are algebraic over real polynomials.
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Depending upon our variety V is singular or not, we obtain two opposite results. Firstly, if
V is non-singular, then R0(V ) satisfies the substitution property along arcs and moreover this
property characterizes R0(V ) (see theorem 3.5). Secondly, it exists a singular variety V such
that R0(V ) does not satisfy the substitution property along arcs (see theorem 4.7).

2. Substitution on points

2.1. Definition and first examples.

Definition 2.1. Let A be an R-algebra and B be an A-algebra. We say that B has the
substitution property over A if, for any real closed field R, any morphism A → R admits one
and only one lifting to B, namely such that the following diagram is commutative :

A → R
↓ ր
B

If the property if valid for the particular real closed field R = R we say that B satisfies the
weak substitution property.

Recall that an ideal I of A is called real if, for every sequence a1, . . . , ak of elements of A,
then a21 + · · · + a2k ∈ I implies ai ∈ I for i = 1, . . . , k. A field F is called real if (0) is a real
ideal in F .

Here is the first easy fact :

Proposition 2.2. Let us assume that A is a domain whose fraction field is real. If B satisfy
the substitution property over A, then the morphism A→ B is injective.

Proof. Let us assume that 0 6= a ∈ A is sent onto 0 in B. Since the fraction field of A is real,
the null ideal (0) in A is real and hence it is the intersection of all the real prime ideal of A.
Then, there is a real prime ideal p in A such that a /∈ p. Take then for R the real closure of the
residual field at p. Then, a is sent onto a non-zero element in R, which leads to a contradiction
since it should be 0 after lifting the evaluation morphism to B. �

In the following, we will mainly consider rings B which are subrings of the fraction field of
a domain A. If f = p/q where p and q lye in A, starting from a morphism φ : A → R, it

is easy to define φ(f) = φ(p)
φ(q)

as long as φ(q) 6= 0. This elementary observation gives us the

substitution property if B is a subring of the ring of regular functions of A. We recall that the
ring of regular functions of A is just the ring (1 +

∑
A2)−1A.

Hence, in all the following, we will mainly consider rings B which are subrings of the field
of rational functions and which contain the ring of regular functions of A. And the problem
we will face is to define φ(f) when φ(q) = 0.

The first important consequence of definition 2.1, is that one gets a one-to-one correspon-
dence between the real spectrum of B and A. For background about the real spectrum of a
ring, we refer to [2]. In few words, let us say that a point α of the real spectrum of the ring
A is an equivalence class of morphisms π from A into a real closed field for the equivalence
relation generated by the following : π ∼ π′ where π : A→ R and π′ : A→ R′ with R and R′

are real closed field, if there exists a factorization of π′ through a morphism R → R′.
The real spectrum is endowed with two natural topologies : the real spectrum topology and

the constructible topology which are defined as follows. Any element a ∈ A can be evaluated
at any α ∈ Specr A simply by evaluating it at the morphism π : A → R given by α. Then,
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{α ∈ Specr A | a(α) > 0} gives a basis of open neighborhood for the real spectrum topology.
Then, the constructible open subsets are those obtained by boolean combination from the open
subsets with respect to the real spectrum topology.

To any semi-algebraic subset S of Rn is canonically associated a constructible subset S̃ of
Specr R[x1, . . . , xn]. This association is compatible with the boolean operations (intersection,
union, complementary) and is such that the semi-algebraic subset S = {x ∈ R

n | p(x) > 0}
where p ∈ R[x1, . . . , xn] is associated to S̃ = {α ∈ Specr R[x1, . . . , xn] | p(α) > 0}.

Now we state the announced correspondence.

Proposition 2.3. If B satisfy the substitution property over A, then the induced morphism on
the real spectrum SpecrB → SpecrA is bijective and continuous (with respect to both the real
spectrum topology and the constructible topology).

Proof. By definition, the induced morphism on the real spectrum SpecrB → SpecrA is contin-
uous with respect to the real spectrum topology and also for the constructible topology (see
[2, 7.17]).

Surjectivity comes immediately from the existence of the factorization in the substitution
property.

Injectivity comes immediately from the uniqueness of the factorization in the substitution
property. Indeed, let us consider two points β : B → R and β ′ : B → R′ where R,R′ are real
closed fields and assume that the compositions β ◦ φ and β ′ ◦ φ by φ : A→ B give rise to the
same point in SpecrA. Namely, there exists a real closed filed R′′ which extends both R and
R′, which implies that β = β ′. �

From now on, we will takes for A a ring of polynomials functions (or coordinate ring) R[V ],
or one of its localization, where V is an algebraic variety in R

n in the sense of [2].
There are two well-known classes of functions whose ring satisfies the substitution property

: Nash functions and continuous semi-algebraic functions.
More precisely, if A = R[X1, . . . , Xn], then one has the substitution property for the ring of

Nash functions on R
n ([2, 8.5.2]) and one may generalize it to any smooth algebraic variety V

in R
n.

The substitution property is also valid in the ring of semi-algebraic continuous functions on
V . This result can be seen as a consequence of the theory of real closed rings developed by N.
Schwartz in [12].

See also the work of J. Fernando on the subject [3].
In these two cases, since a morphism A → R corresponds to the evaluation at some point

(x1, . . . , xn) in V ⊂ R
n, the substitution property says that any evaluation morphism can be

uniquely lifted to the ring B.
Beware that a subring of a ring satisfying the substitution property does not necessarily

satisfies the substitution property as it is shown by the following example :

Example 2.4. Let A = R[x] and B = R[x,
√
1 + x2] ≃ R[x, y]/(y2 − (1 + x2)). Then, the

morphism A→ R which send x to 0 (the evaluation morphism at the origin) admits two liftings
to B : the morphism which send y to 1 and the morphism which send y to −1. Moreover, B
is a subring of the ring of semi-algebraic continuous functions on R.

2.2. Substitution for continuous rational functions. Let V ⊂ R
n be a real algebraic

variety. We will mainly be interested in the ring of continuous rational functions defined on
V . These functions are rational functions on V which can be seen as functions defined on the
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complementary of the zero set of their denominators, and which admits a continuous extension
to the whole V . In order to avoid pathological cases, we will mainly assume that the variety V
is central which means that the set of non-singular points of V is dense in V for the euclidean
topology. Of course, any non-singular variety is central.

Since we require for our rings to be contained in the field of fraction R(V ) of V , one should
consider the natural assumption for the variety V to be moreover irreducible. So let us give
now the formal definition of continuous rational functions.

Definition 2.5. Let V ⊂ R
n be an irreducible central real algebraic variety. A continuous

function f : V → R is said to be continuous rational if there exists a non-empty Zariski open
subset W ⊂ V such that the restriction f|W of f to W is a regular function on W . We denote
by R0(V ) the ring of continuous rational functions on V .

Remark 2.6. An alternative ring of functions to work with would be the ring of hereditarily
continuous rational or regulous functions on a central variety V defined in [5] as those con-
tinuous rational functions which remains rational in restriction to any subvariety. When the
variety V is smooth, we recover continuous rational functions, but in general it leads to a
proper subring. We will consider this ring solely in Theorem 2.13.

Let A = R[X1, . . . , Xn]. Let us start with an elementary observation about rings of functions
satisfying the substitution property. If f is a real function defined on a subset of Rn, we denote
by Z(f) the zero set of f .

Proposition 2.7. Let A = R[x1, . . . , xn] and B be a sub A-algebra of R(x1, . . . , xn) satisfying
the substitution property over A.

Let f = p/q ∈ B with p and q coprimes. Then,

(i) Z(q) ⊂ Z(p),
(ii) Z(q) has codimension at least 2 in R

n.

Proof. To show (i), let us just write q = fp and use the substitution property for B over A.
To show (ii), assume there exists an irreducible factor q1 of q corresponding to a codimension

one variety in R
n. Then, the condition Z(q1) ⊂ Z(p) implies that q1 divides p since (q1) is a

real prime ideal (cf the so-called change of signs criterion [2, 4.5.1]), in contradiction with the
coprimality of p and q. �

Remark 2.8. Note that in the one-dimensional case, condition (i) says already that B is a
subring of the ring of regular functions.

Note that the previous proposition generalizes to non-singular varieties :

Proposition 2.9. Let A = R[V ] where V is a non-singular irreducible algebraic variety in R
n.

Let B be a sub A-algebra of R(V ) satisfying the substitution property over A.
Let f = p/q ∈ B with p and q coprimes i.e (p) + (q) = 1. Then,

(i) Z(q) ⊂ Z(p),
(ii) Z(q) has codimension at least 2 in V .

Proof. The coordinates ring R[V ]mx
of the variety V localized at any point x ∈ V is regular

and hence an UFD, so that the proof can be carried out similarly. �

This result can be used when B = R0(V ) where V ⊂ R
n is non-singular (see theorem 2.12).

On the contrary, the proposition cannot be extended to the case V is singular as illustrated by
the example of the Cartan umbrella.
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Example 2.10. Let V ⊂ R
3 with equation x3 = z(x2+y2), and consider the rational function

on V given by f = x3/(x2 + y2) extended by z on the stick of the umbrella. Then, the zero set
of its denominator q is the whole stick of the umbrella, therefore of codimension one in V .

We come now to the central result of this section, which gives the substitution property for
the ring of continuous rational functions on a non-singular real algebraic variety. We recall
that the argument given in [4, 5.4] relies on Łojaciewicz inequality together with the fact that a
continuous rational function on R

n admits a constructible stratification such that it is regular
in restriction to its strata.

This last property extend to any non-singular variety:

Theorem 2.11. Let V ⊂ R
n be a non-singular irreducible real algebraic variety and f be a

continuous rational function on V . Then, there exists a stratification of V into Zariski locally
closed subsets S1, . . . , Sm such that the restriction f |Sk

of f to Sk is a regular function.

Proof. The proof is heavily based on the fact that, since V is non-singular, f is hereditarily
rational (regulous) and hence one may use [10, Théorème 4.1]. �

Let us show now the desired substitution property for continuous rational functions:

Theorem 2.12. Let V ⊂ R
n be a non-singular irreducible real algebraic variety. Then, R0(V )

satisfies the substitution property over R[V ].
Moreover, the induced morphism SpecrR0(V ) → Specr R[V ] is an homeomorphism with

respect to the constructible topology.

Proof. We focus on the unicity of the factorization, since the existence comes from the usual
evaluation. First, let us see what happens if R = R. Then, one may assume, for simplicity,
that the origin o is in V and that φ(x1) = . . . = φ(xn) = 0. Let f ∈ R0(V ). Up to considering
f − f(o), one may assume that f(o) = 0.

Then, by Łojasiewicz property [2, Proposition 2.6.4] applied to x21+. . .+x
2
n and f , there exists

an integer N and a continuous rational function g in R0(V ) such that fN = (x21 + . . .+ x2n)g.
This algebraic identity implies that φ(f) = 0 which concludes the proof for the case R = R.

Let us now consider a general real closed field R and denote by α the point of the real
spectrum of R[V ] given by the morphism φ. According to theorem 2.11, we know that, for
any f ∈ R0(V ), there is a Zariski locally closed stratification V = S0 ∪ . . .∪ Sm such that f is

regular on each Si. Let us assume that α ∈ S̃0 ; if we set

S0 = {x ∈ V | r(x) = 0, s(x) 6= 0}
where r, s are polynomials, then α ∈ S̃0 just means that φ(r) = 0 and φ(s) 6= 0.

Then, the zero set of r is contained in the zero set of s · (qf − p) where p, q are polynomials
such that f = p/q is regular on S0. Again, by Łojasiewicz property one gets the existence of
an integer N and a continuous rational function g such that (s(qf − p))N = rg. Applying φ,
and since φ(s) 6= 0 and φ(q) 6= 0 (since p/q is regular on S0), one gets φ(f) = φ(p)/φ(q) which
concludes the first part of the proof.

By proposition 2.3, the map ϕ : SpecrR0(V ) → Specr R[V ] is continuous and bijective. Let
us consider a constructible set T in SpecrR0(V ) which is a boolean combination of sets of the
form S = {f = 0, g > 0} where f, g ∈ R0(V ). Again by theorem 2.11, one knows that there is
a Zariski locally closed stratification V = S0 ∪ . . . ∪ Sm such that f and g are regular on each
Sk. Namely, one may write on Sk, f = pk/qk and g = rk/sk where pk, qk, rr, sk are polynomials
such that qk and sk do not vanish on Sk.
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Hence, the image of S by ϕ is then the union of all S̃k ∩ ϕ(S) which can be written as the

subset S̃k ∩ {pk = 0, rksk > 0} in Specr R[V ]. Finally, one gets that ϕ(T ) is a constructible
subset in Specr R[V ]. �

The previous proposition says that if a R-algebra homomorphism from R0(V ) is the evalu-
ation at a given point in restriction to the polynomials, then it is still the evaluation at this
point on any continuous rational functions on V .

So far it does not seem very clear how to get the substitution property for the ring of contin-
uous rational functions on a singular variety since one no longer dispose of the decomposition
of rational functions as regular functions on strata.

Although, one may obtain formally, by taking some quotients in a commutative diagram,
that the ring of regulous functions on a singular variety V satisfies the substitution property
over R[V ]. By definition, the ring of regulous functions on real algebraic variety V ⊂ R

n,
given by an ideal I ⊂ R[X1, . . . , Xn], is just the quotient ring R0(V ) = R0(R

n)/ IR0(R
n)(V )

where IR0(R
n)(V ) = {f ∈ R0(R

n)| V ⊂ Z(f)}. Hence, one may easily derive the substitution
property for the ring of regulous functions on V . Namely:

Theorem 2.13. Let V ⊂ R
n be a central irreducible real algebraic variety whose coordinate

ring is R[V ] = R[X1, . . . , Xn]/I. Then R0(V ) satisfies the substitution property over R[V ].

Proof. Let A = R[X1, . . . , Xn], B = R0(Rn) and I = IR0(R
n)(V ).

The following commutative diagram is a consequence of the universal property for quotient
rings :

A → A/I → R
↓ ↓ ր
B → B/ I
↓

R(V )

Namely, given an evaluation morphism A/I → R it gives rise to a unique morphism A→ R
which sends I onto 0. Hence, by the substitution property for B, one has an unique lifting
morphism B → R which send I onto 0. Hence, by the universal property for quotient rings,
one has a unique factorization B/ I → R. �

2.3. The substitution property does not characterize continuous rational functions.

We show that the ring of continuous rational functions is not the biggest subring of rational
functions that satisfies the substitution property and hence, the substitution property is not
a characterization for the ring of continuous rational functions. This result will lead to the
notion of substitution along arcs in the next section for which such a characterization will be
available.

But for the classical substitution property, already in the case of the plane one has:

Proposition 2.14. The ring R0(R
2) is not maximal in R(x, y) to satisfy the substitution

property.

Before entering into the details of the proof, we will state as an intermediary step that there
exist bigger rings that satisfy only the existence condition of the lifting in the substitution
property. Namely,
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Proposition 2.15. The ring R0(R
2) is not maximal in R(x, y) among rings satisfying the

existence condition of the lifting in the substitution property. Moreover, there does not exist a
unique maximal ring satisfying the existence condition of the lifting in the substitution property.

Proof. For the first point, let us show that the ring R0(R
2)[ x

x2+y2
] satisfies also the existence

condition of the lifting in the substitution property.
It suffices to show that the evaluation morphism at the origin φ : R0(R

2) → R can be lifted

to R0(R
2)[ x

x2+y2
]. The first step in the proof is to show that one may set φ

(
x

x2+y2

)
= 0.

Consider the morphism R0(R
2)[T ]

ψ−→ R(x, y) defined by T 7→ x
x2+y2

. One has

R0(R
2)[

x

x2 + y2
] ≃ R0(R

2)[T ]/Kerψ.

Let P ∈ Kerψ, and write P = a0+. . .+anT
n where the ai’s are continuous rational functions

on R
2. In R(x, y)[T ], one may factorize P by T − p/q where p = x, q = x2 + y2. Hence

(qT − p)(b0 + . . .+ bn−1T
n−1)

d
= a0 + . . .+ anT

n

where the bi’s and d are polynomials in R[x, y].
Then,

(∗)





−b0p = a0d
qb0 − b1p = a1d
. . .
qbn−2 − bn−1p = an−1d
qbn−1 = and

Let r be the valuation of d with respect to the prime p = x, namely vp(d) = r. Since p
and q are coprime, one gets from the last identity in (∗) that vp(bn−1) ≥ r since (p) is a real
prime ideal. Likewise, vp(bn−2) ≥ r and more generally vp(bi) ≥ r for i = 0, . . . , n − 1. The
first identity in (∗) implies that we may write a0 = h/k with h, k ∈ R[x, y], vp(a0) ≥ 1 and
vp(k) = 0. It follows that a0 vanishes on a non-empty Zariski open subset of Z(x) and thus on
whole Z(x). Hence a0(0) = 0.

Hence, the setting φ
(

x
x2+y2

)
= 0 is compatible with any algebraic relation verified by f =

p
q
= x

x2+y2
over R0(R

2). It defines then a lifting of φ to R0(R
2)[ x

x2+y2
].

Note that, if one set φα

(
x

x2+y2

)
= α ∈ R, one may replace f with g = f −α, namely replace

x with p = x−α(x2 + y2) which remains real prime. One can then repeat the previous process
to get that a0(0) = 0 for any algebraic relation a0+ . . .+ang

n = 0 where the ai’s are continuous
rational functions. Since φα(g) = 0, again one has a lifting of φα to R0(R

2)[ x
x2+y2

]. Hence, one

has infinitely many liftings of φ to R0(R
2)[ x

x2+y2
].

Let us show now the second point. Set f = x
x2+y2

and g = y
x2+y2

. Let B1 be a ring that

contains R0(R
2)[f ] and that satisfies the existence in the substitution property. Then g cannot

belong to B1. Indeed, from the identity xf + yg = 1 we get, using that φ is the evaluation at
the origin, that

1 = φ(xf + yg) = φ(x)φ(f) + φ(y)φ(g) = 0.
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Likewise, let B2 be a ring that contains R0(R
2)[g] and that satisfies the existence in the

substitution property. As previously, one has f /∈ B2.
Then, there does not exist a unique maximal ring satisfying the existence condition of the

lifting in the substitution property. �

The proof of Proposition 2.14 is obtained by slightly modifying the above proof.

Proof of Proposition 2.14. Let us consider the ring

B = R0(R
2)[

x

(x2 + y2)n
, n ∈ N

∗].

Setting fn = x
(x2+y2)n

, one has fn = fn+1(x
2 + y2). Let us note that it suffices to consider the

evaluation morphism at the origin A = R[x, y]
φ→ R, and show that it admits one and only one

lifting to B.
If such a lifting (again denoted by φ) of the evaluation at the origin exists, it satisfies

necessarily φ(fn) = φ(fn+1)φ((x
2 + y2)). Since φ(x2 + y2) = 0, it follows that φ(fn) = 0 for

any n. This shows the unicity of the lifting.
To show the existence, let us consider an algebraic relation of the form P (f1, . . . , fn) = 0

where P = a0 +
∑

α>0 aαx
α1 . . . xαn is a polynomial whose coefficients are continuous rational

functions on R
2. The relation P (f1, . . . , fn) = 0 can be rewritten as

a0 +
∑

α>0

aα
xα1+...+αn

(x2 + y2)α1+2α2+...+nαn

= 0,

which implies

a0(x
2 + y2)N = −

∑

α>0

aα(x
2 + y2)N(α)xα1+...+αn

where N and N(α) are integers.
From the previous identity, it follows that a0 vanishes on Z(x) and one gets φ(a0) = 0.

Hence φ(P (f1, . . . , fn)) = 0 as desired. �

In summary, the substitution property as defined in 2.1 is not strong enough to characterize
continuous rational functions. More precisely, the lifting property is not sufficient to implies
continuity, even if the evaluation morphism can be taken over a Puiseux series field. For
instance, we may consider a rational function f = p/q on the plane such that p(0) = q(0) =
f(0) = 0, and an algebraic plane curve at the origin parametrized by two Puiseux series
γ = (α(t), β(t)) which can also be seen as an element of the real spectrum of R[x, y]. If γ goes
to the origin by assumption, it seems not obvious to deduce that f(γ) also goes to the origin.

These considerations lead us to consider a new substitution property along (convergent) arcs
in the remaining of the paper.

3. Substitution along arcs

The ring of all formal power series over R in the indeterminate t will be denoted by R[[t]].
The ring of all formal power series over R in the indeterminate t which are algebraic over R[t]
will be denoted by R[[t]]alg.

We consider moreover several power series rings which are all subrings of the field of Puiseux
power series. The field of all Puiseux power series over R in the indeterminate t will be denoted
by R((t1/N)), and its valuation ring by R[[t1/N]]. The subfield of Puiseux series which are
algebraic over R[t] will de denoted by R((t1/N))alg, and its valuation ring by R[[t1/N]]alg. From
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a geometric point of view, an element in the field R((t1/N))alg is identified with a continuous
semi-algebraic functions germ (0,+∞) → R on the right at the origin, the ring R[[t1/N]]alg
consisting of those germs which can be extended continuously at the origin [2][Section 8.1].

We will use frequently in the sequel the following identification between arcs traced on a
variety V , and R-algebra morphisms R[V ] → R[[t]]alg. More precisely, if V ⊂ R

n is an algebraic
variety defined by the polynomial equations f1 = . . . = fr = 0, an algebraic formal arc γ(t) =
(γ1(t), . . . , γn(t)) ∈ (R[[t]]alg)

n traced on the variety V satisfies f1(γ(t)) = . . . = fr(γ(t)) = 0. In
other words, an algebraic formal arc on V is given by an R-algebra morphism R[V ] → R[[t]]alg.

3.1. Definition and first properties. We state a substitution property along algebraic for-
mal arcs and algebraic Puiseux arcs.

Definition 3.1. Let A be an R-algebra and B be an A-algebra. We say that B has the
substitution property over A along algebraic formal arcs (respectively algebraic Puiseux arcs)
if any morphism A→ R[[t]]alg (resp. R[[t1/N]]alg) admits one and only one lifting to B.

Again, we mainly consider the case where A is a ring of polynomials functions. One has the
substitution property along algebraic Puiseux arcs for the ring of Nash functions and the ring
of continuous semi-algebraic functions.

Proposition 3.2. Let A = R[V ] be the coordinate ring of an non-singular real algebraic variety
V ⊂ R

n. Let B be either the ring of semi-algebraic functions on V or the ring of Nash functions
on V . Then B satisfies the substitution property along Puiseux arcs.

Proof. First of all, note that since all the possible rings B being subrings of the ring of semi-
algebraic continuous functions on V , the evaluation along an arc given by A→ R[[t1/N]]alg can
always be lifted to B by considering the usual composition of semi-algebraic arcs.

To prove the uniqueness, recall that R[[t1/N]]alg is included into the field of algebraic Puiseux
series R((t1/N)) which is a real closed field. Then, let us use the fact that the ring B satisfies the
substitution property on points (as it has been recalled in subsection 2.1). Since the composite
morphism A → R[[t1/N]]alg → R((t1/N))alg admits a unique lifting to B, so it is the case for a
given morphism A→ R[[t1/N]]alg. �

In the sequel, we will mainly consider rings B which are subrings of the field of rational
functions of an irreducible variety, and also rings containing the ring of regular functions (since
those later obviously satisfies the substitution property over arcs).

Proposition 3.3. If B satisfies the substitution property along algebraic formal or Puiseux
arcs over A, then B satisfies also the weak substitution property on points over A.

Proof. It suffices to compose with the evaluation morphism R[[t]]alg → R (respectively with
R[[t1/N]]alg → R) of an arc at its origin, by sending t onto 0. �

Let us also mention an example where the weak substitution on points does not imply the
substitution along arcs.

Example 3.4. Let A = (R[x])(x) and B = (R[x, y]/(x2 − y2))(x,y). Then, B has the weak
substitution property along points over A but does not satisfy the substitution property over
A along arcs. Indeed, the arc x = t written on A can be lifted to two different arcs γ1 = (t, t)
and γ2 = (t,−t) on B. Moreover, there is only one morphism A → R : the one which sends
x to 0. This morphism admits one and only one lifting to B, namely the morphism given by
x 7→ 0 and y 7→ 0.
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3.2. Substitution along arcs for continuous rational functions. We show that the ring
of continuous rational functions on a non-singular algebraic variety satisfies the substitution
property along arcs. Moreover, we show that it is the biggest ring contained in the field of
rational functions that one can expect to satisfy this property.

In other words, the substitution property along arcs characterizes, on non-singular varieties,
continuous rational functions. It enlightens the importance of substitution along arcs for
hereditarily rational functions, as it has already be pointed out in the work of [9] for instance.

Theorem 3.5. Let A = R[V ] be the coordinate ring of a non-singular irreducible real algebraic
variety V ⊂ R

n. Then the ring R0(V ) of continuous rational functions on V satisfies the
substitution property along arcs. Moreover, if B is a subring of the field R(V ) of rational
functions on V which satisfies the substitution property along arcs, then B ⊂ R0(V ).

Proof. First of all, the natural lifting given by the evaluation of a continuous semi-algebraic
function along a semi-algebraic arc gives the existence property. For the unicity, remark that
R0(R

n) satisfies the substitution property on points (theorem 2.13). Then, any morphism
γ : A→ R, where R = R[[t1/N]]alg or R[[t]]alg, gives rise to a morphism A→ R((t1/N))alg which
can uniquely be lifted to R0(R

n). This shows the unicity for our desired substitution property,
namely there cannot exist another lifting than the natural one.

Let us consider now a ring B satisfying the substitution property along arcs and let us show
the inclusion B ⊂ R0(V ).

Let us first consider the case R = R[[t1/N]]alg. One may use the classical fact (see for instance
[13, Chap 6, Lemma 4.2]) that a semi-algebraic function f is continuous on S if and only if
f ◦ γ is continuous for all algebraic Puiseux arc γ supported in S.

In fact, it is possible to adapt a little bit this result for our purpose :

Lemma 3.6. Let f : S → R be a semi-algebraic function where S is a semi-algebraic subset
which has dimension n at the point x0 ∈ S. Assume that x0 ∈ T where T is a semi-algebraic
subset of dimension < n. Then, f is continuous at x0 if and only if f ◦ γ is continuous at 0
for any algebraic Puiseux arc γ supported in S \ T ∪ {x0} and passing through x0.

Proof. If f is not continuous at x0, then there is ǫ > 0 such that the set

{‖x− x0‖ | x ∈ S, |f(x)− f(x0)| ≥ ǫ}
contains arbitrarily positive elements. Up to re-sizing this ǫ, using the density of S \ T in T ,
one gets that

{‖x− x0‖ | x ∈ S \ T ∪ {x0}, |f(x)− f(x0)| ≥ ǫ}
contains also arbitrarily positive elements. Since this set is semi-algebraic, it contains an
interval I with endpoints 0. Now, by the curve selection lemma, there is an algebraic Puiseux
arc γ : I → S \ T ∪ {x0} such that ‖γ(t)− x0‖ < ǫ and |f(γ(t))− f(x0)| ≥ ǫ. This concludes
the proof. �

Let f = p/q in B and let γ be an algebraic Puiseux arc well-defined at the origin, which is
not contained into the polar locus of f , namely such that q ◦ γ 6= 0. Then, f ◦ γ = p ◦ γ/q ◦ γ
is well defined in R((t1/N))alg, and necessarily p ◦ γ/q ◦ γ has a non-negative valuation. Hence,
f ◦ γ is continuous.

Moreover, using the substitution property at the origin of the arc, one deduces that the limit
is f(γ(0)). In conclusion, f ∈ R0(V ) and hence B ⊂ R0(V ).
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Let us consider now the case R = R[[t]]alg. Let f ∈ B and as previously γ be an algebraic
Puiseux arc, well-defined at the origin, which is not contained in the polar locus of f . There
exist an integer m such that δ(t) = γ(tm) ∈ (R[[t]]alg)

n. Then, since B satisfies the substitution
property along arcs for R = R[[t]]alg, the arc δ uniquely lifts to B and f ◦ δ is continuous and

admits f(δ(0)) as a limit. Composing with the continuous semi-algebraic function t 7→ m
√
t on

one gets that f ◦ γ is continuous and admits f(γ(0)) as a limit too. �

One natural question is what happens if we replace algebraic Puiseux arcs with formal
Puiseux series. It happens that the substitution property remains true for continuous rational
functions.

Theorem 3.7. Let A = R[V ] be the coordinate ring of a non-singular irreducible real algebraic
variety V ⊂ R

n. Then the ring R0(V ) of continuous rational functions on V satisfies the
substitution property along arcs in R[[t1/N]].

Moreover, if B is a subring of the field R(V ) of rational functions on V which satisfies the
substitution property along arcs in R[[t1/N]], then B ⊂ R0(V ).

Proof. Let us consider γ : R[V ] → R[[t1/N]]. One may see γ as a morphism into R((t1/N))
which is a real closed field. Then, since R0(V ) satisfies the substitution property over R[V ]
(theorem 2.12), one gets the unicity for a lifting of γ to R0(V ).

In order to prove the existence of such a lifting, we show that the unique lifting of γ with
values in R((t1/N)) has, in fact, values in R[[t1/N]]. By the contrary, let us assume that there
is a continuous rational function f such that γ(f) /∈ R[[t1/N]]. By theorem 2.11, there is a
Zariski locally closed stratification V = S1 ∪ . . . ∪ St such that f is regular with restriction to
each stratum. One derives a constructible stratification of the real spectrum of R[V ], namely

Ṽ = S̃1 ∪ . . . ∪ S̃t. Moreover, the morphism γ defines a point of Ṽ that we assume to lye in

S̃1. Since f is regular by stratum, there is two polynomials p, q in R[V ] such that f = p/q is

regular with restriction to S1. In particular γ(q) 6= 0 and we get γ(f) = γ(p)
γ(q)

.

The condition γ(f) /∈ R[[t1/N]] says that ordt(γ(p)) < ordt(γ(q)). By the Artin approxima-
tion theorem ([1]), there exists δ : R[V ] → R[[t1/N]]alg that approximate γ as close as desired
for the (t)-adic topology. More precisely, if S1 = {r = 0, s 6= 0}, where r, s are two polynomials,
one may choose δ satisfying

δ(r) = 0,
ordt(γ(p)) = ordt(δ(p)),
ordt(γ(q)) = ordt(δ(q)),
ordt(γ(s)) = ordt(δ(s)).

Then, one deduces that ordt(δ(p)) < ordt(δ(q)) and δ ∈ S̃1. Thus, δ(f) = δ(p)
δ(q)

. By theorem

3.5, one knows that δ(f) ∈ R[[t1/N]]alg and hence ordt(γ(p)) ≥ ordt(γ(q)), a contradiction.
This concludes the proof. �

Remark 3.8. The proof of Theorem 3.7 heavily relies on the existence of a stratification,
associated with a given continuous rational function, such that the function is regular on the
strata. This result can also be generalized (with exactly the same proof) to a singular real
algebraic variety if we replace the ring of continuous rational functions by the ring of regulous
functions as considered in Theorem 2.13. Moreover, all the previous results that concern non-
singular real algebraic varieties can be extended to central real algebraic varieties with isolated
singularities since in this case rational continuous functions are still regulous [11, Theorem
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2.25]. However, the question to know whether we get the same notion if we replace algebraic
Puiseux arcs with formal ones in the definition of the substitution along arcs for general rings
(definition 3.1) seems open.

Another natural question which arises is what can be said about substitution along arcs
for continuous rational functions defined on singular varieties. Note already that this times
considering Puiseux arcs or formal arcs makes a crucial difference.

Example 3.9. Consider the (singular but central) variety V ⊂ R
3 defined by the equation

y3 = z2x3. The arc γ given by x = y = 0 and z = t is contained in V . Let us now consider
the rational function f = y/x on V . This function is continuous on V because of the relation
f 3 = z2. Note now that the power series arc γ ∈ (R[[t]]alg)

3 lifts to f ◦ γ = t2/3 which belongs
to R[[t1/N]]alg but not to R[[t]]alg.

4. Substitution property for singular varieties

We give some examples and partial results under some assumptions and perform also a
counterexample showing that there is no hope to get the substitution property along arcs for
continuous rational functions defined on a general singular variety.

4.1. First facts. From now on, let V ⊂ R
n be a singular irreducible central algebraic variety.

We first state an elementary result that will imply the weak substitution property.

Proposition 4.1. Let A = R[V ] the coordinate ring of V ⊂ R
n and B an A-algebra which is

a subring of the ring of semi-algebraic continuous functions on V . Assume that B satisfies the
Łojasiewicz property over A. Namely for any f and g in B such that Z(f) ⊂ Z(g), there is
h ∈ B and an integer n such that gn = fh.

Then, B satisfies the weak substitution property over points.

Proof. Let φ : A → R be a morphism. Since B is a subring of the ring of semi-algebraic
continuous functions, φ admits a canonical lifting to B. Hence, one has only to show the
unicity. The argument (already met in the proof of theorem 2.12) is the following.

One may assume, for simplicity, that φ(x1) = . . . = φ(xn) = 0. Let us assume then, for
simplicity, that the origin o of Rn is in V . Let f ∈ B. Up to considering f − f(o), one may
assume that f(o) = 0.

Then, by Łojasiewicz property applied to x21 + . . .+ x2n and f , there exists an integer N and
a semi-algebraic continuous function g ∈ B such that fN = (x21 + . . . + x2n)g. This algebraic
identity implies that φ(f) = 0 which concludes the proof. �

As a consequence, since the ring R0(V ) has the Łojasiewicz property, one gets :

Proposition 4.2. The ring R0(V ) of continuous rational functions on V satisfies the weak
substitution property on points.

One can get also the substitution along arcs but under some additional hypothesis.

Proposition 4.3. Let π : Ṽ → V be a birational regular morphism with Ṽ non-singular, such

that π is an homeomorphism for the Euclidean topology. Then R0(V ) is isomorphic to R0(Ṽ )
and satisfies the substitution property along arcs.
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Proof. The canonical morphism R0(V ) → R0(Ṽ ), given by the composition by π, is an iso-
morphism whose inverse isomorphism is given by the composition by the continuous rational
map π−1 (the composition is still rational continuous because π is birational).

We know, by theorem 3.5, that R0(Ṽ ) satisfies the substitution property along arcs, since

Ṽ is non-singular. Hence, the substitution property along arcs holds also for R0(V ). Indeed,
one has to show that any arc γ : R[V ] → R, where R = R[[t1/N]]alg or R[[t]]alg, admits a unique

lifting to R[Ṽ ]. One may compose γ with the evaluation morphism eu : R → R sending t onto

u ∈ [0, ǫ[. Since Ṽ → V is a bijection, the morphism eu ◦ γ admits a unique lifting to R[Ṽ ] for

any u ∈ [0, ǫ[. This shows that γ has a unique lifting to R[Ṽ ]. �

One may illustrate this result with the following example.

Example 4.4. Let us consider the surface with equation x3 = (1+z2)y3, for which continuous

rational functions and regulous functions differ [5]. The blowing-up Ṽ → V along the z-axis
is an homeomorphism and hence the ring R0(V ) does satisfy the substitution property along
arcs. Note moreover that for the continuous rational function x/y, the denominator has a zero
set of codimension only one (to be compared with the smooth case given by Proposition 2.9).

One may generalize a bit the previous proposition in a version which will be useful in the
next subsection.

Proposition 4.5. Let W ⊂ R
m be an irreducible real algebraic variety, π : W → V a surjective

regular birational morphism and assume V is central. Then, R0(V ) is isomorphic to the ring
Rπ

0 (W ) of continuous rational functions on W which are constant on the fibers of π.

Proof. Let us consider the morphism π∗ : R0(V ) → Rπ
0 (W ) defined by f 7→ f ◦ π. This

morphism is well defined since, being a composition of continuous functions, the function f ◦π
is also continuous, and also constant on the fibers of π by construction. It is moreover rational
since π is birational. And the morphism π∗ is injective since π est surjective.

Finally, π∗ is surjective since any continuous function on W constant on the fibers of π goes
down to a continuous function on V . By birationality of π, this new function on V remains
rational if the function on W was so. �

Remark 4.6. Note that if V is a central variety and π : W → V is a blowing-up, then π is
surjective and one may use proposition 4.5.

4.2. A counterexample. The aim of this subsection is to show that the ring R0(V ) does not
necessarily satisfy the substitution property along arcs if V is singular.

Theorem 4.7. Let us denote by V the central hypersurface in R
4 given by the equation

x8 = (z21 + z22)y
8. The ring R0(V ) of continuous rational functions on V does not satisfy

the substitution property along arcs.

Proof. We are going to prove that the unicity in the substitution fails. First note that the
variety V is central, irreducible and singular along the plane of coordinates (z1, z2) and also
along the y axis.

Let us remark that the rational function x2/y2, which is well defined outside the singular

plane, does extend by continuity on the whole V to the function 4
√
z21 + z22 , and hence x2/y2

defines a function g in R0(V ). Note that it is not the case for the function x/y. Indeed, for
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all (x, y, 1, 0) ∈ V , one has
(
x
y

)8

= 1 and hence x
y
→ ±1 as (x, y) → (0, 0). Since x and y can

take positive and negative values on X, x
y

does not admit a limit as (x, y) goes to (0, 0).

The blowing-up π : W → V of V along the plane of coordinates (z1, z2) can be seen in the
chart given by the coordinates

x = uv, y = v, z1 = w1, z2 = w2

as the variety with equation u8 = w2
1 + w2

2. Hence W is the product of a surface S in R
3,

defined by the same equation as the one of W , with a line (the v-axis). The surface S has an
isolated singularity at the origin, hence the singular locus of W consists of the v-axis.

Since V is a central variety, the blowing-up π is surjective (see remark 4.6) and, using 4.5,
one may identify R0(V ) with the ring Rπ

0 (W ) of continuous rational functions on W which are
constant on the fibers of π.

We are going to exhibit an algebraic Puiseux arc contained in the variety V which can be
lifted to the ring R0(V ) in two different ways. Let us denote by γ : [0, ǫ[→ V the polynomial
arc defined by γ(t) = (0, 0, 0, t). The arc γ is contained in the singular plane of V . Moreover,
it can be lifted to W into exactly two different algebraic Puiseux arcs given by

γ̃±(t) = (±4
√
t, 0, 0, t).

Lemma 4.8. Let f ∈ R0(V ). The semi-algebraic function t 7→ f ◦ γ(t) is the composition of a
one variable rational function F , regular at any point in [0,+∞), with the square root function,

i.e. (f ◦ γ)(t) = U(
√
t)

V (
√
t)

where U and V are one-variable polynomials such that V (0) 6= 0.

Proof. It suffices to show the result for the function f ◦ π composed with a lifting of the arc γ
on Y (for instance γ̃+) since f ◦ γ = f ◦ π ◦ γ̃+.

We want to restrict the function f ◦ π, which is continuous rational on W , to the image of
γ̃+. The Zariski closure of the image of γ̃+ is the nonsingular irreducible curve C defined by
u4 = w2 and v = w1 = 0 in S×{0} ⊂W . Note that C is not contained in the singular locus of
W . Therefore the restriction of f ◦ π to C is still rational by [5, Proposition 8], and of course
continuous. In particular, it is a regular function on C because C is a nonsingular curve.

Parametrizing C with θ 7→ (θ, θ4), one gets the existence of a regular function G on R such
that f ◦ π(θ, 0, 0, θ4) = G(θ). Moreover, this regular function is even since (θ, 0, 0, θ4) ∈ W
and (−θ, 0, 0, θ4) ∈ W lies over the same point (0, 0, 0, θ4) ∈ V and f ∈ R0

π(W ). Hence,
we claim there is a one-variable rational function F , regular at any point in [0,+∞), such
that G(θ) = F (θ2). Indeed, we may write G(θ) = R(θ)/(1 + Q(θ)) with R,Q some real one-
variable polynomials and such that Q is a sum of squares of one-variable polynomials. Since
G(θ) = (R(θ)(1 + Q(−θ)))/((1 + Q(θ))(1 + Q(−θ))) and ((1 + Q(θ))(1 + Q(−θ))) have even
parity then it follows that (R(θ)(1 + Q(−θ))) has also even parity and we get the claim. To
end, one sets θ4 = t and gets

(f ◦ γ)(t) = G( 4
√
t) = F (

√
t)

as desired. �

Lemma 4.9. Any morphism φ : R0(V ) → R[[t1/N]]alg which extends the morphism given by
the evaluation along γ on polynomial functions, is entirely determined by the image of the
continuous rational function g (which extends x2/y2 by continuity on all V ).

Proof. According to lemma 4.8 and since (g ◦ γ)(t) =
√
t, for any f ∈ R0(V ), there is a one-

variable rational function F regular at any point in [0,+∞) such that f ◦ γ = F (g ◦ γ). Hence,
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for any t ∈ [0, ǫ[, one has (f − F ◦ g)(γ(t)) = 0. Note also that F ◦ g ∈ R0(V ). Since the
image of γ is locally contained in the zero set of x2 + y2 + z21 , one has, by Łojaciewicz equality
([2, théorème 2.6.6]), the existence of an integer N and a semi-algebraic continuous function h
such that

(f − F ◦ g)N = (x2 + y2 + z21)h.

Note that this equality shows also that h ∈ R0(V ). Hence, for any given morphism φ, one has
φ((f −F ◦ g)N) = 0 which gives φ(f) = φ(F ◦ g). Since F is regular at 0, one may evaluate its
denominator at any arc going through the origin, and hence one gets also φ(f) = F (φ(g)). �

In particular, one deduces that there exist at most two candidates for such morphisms :
either φ+ which sends g onto

√
t or φ− which sends g onto −

√
t. The morphism φ+ is the

natural morphism coming from the evaluation of continuous semi-algebraic functions along γ.
The next lemma states that the choice φ− is also possible.

Lemma 4.10. The setting φ−(g) = −
√
t defines a morphism φ− : R0(V ) → R[[t1/N]]alg which

extends the morphism given by γ on R[V ] the ring of polynomial functions over V .

Proof. One has to check that φ− does respect algebraic relations existing for elements of
R0(V ) over R[V ], the ring of polynomial functions over V . Let f1, . . . , fn in R0(V ) such
that P (f1, . . . , fn) = 0 where P ∈ R[V ]. One has to show that φ−(P (f1, . . . , fn)) = 0.

According to the end of the proof of the previous lemma, there exists a one-variable rational
function F , regular at 0, such that φ+(P (f1, . . . , fn)) = F (φ+(g)) and φ−(P (f1, . . . , fn)) =
F (φ−(g)).

Let us write F = U/V where U and V are one-variable polynomials.
Since the natural morphism φ+ is well defined, one gets from P (f1, . . . , fn) = 0 that

φ+(P (f1, . . . , fn)) = 0. Namely, one has F (φ+(g)) = 0, which means that U(φ+(g)) = 0.
One may write U(x) = S(x2) + xT (x2) where S and T are one-variable polynomials. Then,

U(t) = 0 for any t ∈ [0,
√
ǫ[, and hence S = T = 0, i.e. U = 0.

Consequently, F (φ−(g)) = 0 and hence φ−(P (f1, . . . , fn)) = 0, the desired equality. �

As a consequence the unicity in the substitution property fails. �
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