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Evaluation of partial volume effects in computed tomography images for the improvement of coronary artery segmentation
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p(x i |t)=∫G(x i ;αμ u +(1-α)μ v ,√(ασ u 2 +(1-α)σ v 2 ))dα. (1)
A collection of labels Λ={λ 1 ,λ 2 ,...,λ L } is used to describe the tissue types (pure or mixed) present at each voxel in the image. The likelihood for all measurements in the image can be expressed as:

p(X|Λ)=∏ i p(x i |λ i ). (2)
As image intensity in CT is spatially dependent, a Markov random field is included to take into account the spatial correlation. Here we use the Potts model [2]:

p(Λ)=(1/Z)exp(-β∑ i ∑ k in Ni (δ(λ i ,λ k )/d(i,k)) (3)
where Λ is the labelled image, N i represents the neighborhood of voxel i, Z is a scaling constant, β controls the strength of the prior, d(i,k) is the distance between voxel i and k. The potentials δ(λ i ,λ k ) were fixed as follows : 2 if λ i =λ k, 1 if λ i ,λk share a component (i.e. one of them corresponds to a tissue s and the other one to a mixture of s and of another tissue), and -1 otherwise.

The algorithm. Using Bayes\' formula, a maximum a posteriori classifier is constructed in order to find the labelled image Λ * with the highest conditional probability.

Λ * =arg max_Λ [∑ i log(p(x i |λ i ))-β∑ i ∑ k in Ni (δ(λ i ,λ k )/d(i,k))] (4)
Evaluation. We seek the optimal parameter configuration for the model in order to be used on CT cardiac images. For this purpose, we generated synthetic images with geometric (cavities and vessels) and intensity characteristics similar to cardiac images (Fig. 1). Images were created at a high resolution and then subsampled to a resolution similar to typical cardiac CT, in order to simulate the PV effect. Due to PV effect, the simulated cavities and arteries cannot be properly segmented, so we check if PV can be detected between them and thus separate the structures. Gaussian noise levels (σ n = 10, 20, 60 and 100), vessel radius (r = 5, 3, 1.5 and 0.4mm) and distance to cavities (dc = 5, 3, 2 and 1 voxel) as well as the neighborhood configuration (6, 18 and 26connectedness) were varied in order to determine the limit conditions of the method and the neighborhood configuration that provides the best response. The method was also evaluated on 8 cardiac CT images of real patients, with varying neighborhood configuration.

For all cases, initialization via the Fuzzy C-means algorithm was performed, using three classes that corresponded to the three main histogram modes that are typically observed in cardiac CT images: background (λ 1 ), muscle (λ 2 ) and blood (λ 3 ). Phantoms were constructed respecting this rule. Although PV voxels can be found along the boundaries of all the classes we focused only on the detection of PV voxels (λ 4 ) between "muscle" and "blood" classes since we focus on coronary arteries segmentation and want to keep an acceptable computational cost.

RESULTS

Phantom data (fig. 1). PV detection can be used for the discrimination of neighborhing structures, with some limitations. The method works properly with acceptable noise levels (σ < 60), but the quality of the labelling diminishes as the noise increases. The method always achieves the separation of the structures but, when the vessel radius is of the order of the voxel spacing (0.4mm), the whole vessel tends to be labelled as PV.

Limitation in vessel distance to cavities was found between 1 and 2 voxels. Note that the cavities in the phantom images have the same intensities as the arteries, since both belong to the class "blood". Variation of neighborhood configuration didn't report substantial changes in results.

Patients (fig. 2). The use of a 6-connected neighborhood tends to label wide regions as PV. This is incorrect since PV zones should be only marked at the boundaries of pure classes. Results for 18-and 26-connectedness do not have this problem and correctly delineate the boundary between vessels and cavities. Labelling with these two configurations is comparable but the 18-connectedness is less time consuming.

CONCLUSIONS

Detection of PV can improve the separation of neighboring structures in coronary artery segmentation for moderate noise levels. To reduce its computational cost the method will be included in an artery tracking scheme that performs computations locally when demanded. Future work will also focus on the issue of very small low-signal vessels that tend to be labelled as PV.
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  fig 1. Synthetic phantom with noise level σ = 10, r = 3 and dc=5, and final labelling. fig 2. Real patient and the final labelling.
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	PURPOSE
	To demonstrate the feasibility of coronary artery segmentation improvement by use of
	partial volume (PV) statistical models applied to computed tomography (CT) cardiac
	images in order to isolate the arteries from neighboring structures such as heart cavities.
	The marginal probability [1] is thus expressed as:

METHODS

The PV Model. A CT image is modeled by a union of pure regions (voxels made up of only one tissue type) and of PV layers (voxels made of a mixture of different tissues) possibly located on the boundaries between these regions. Intensity distribution of pure voxels (tissue type s) is modeled by means of a Gaussian function G(x i ;μ s ,σ s ), .