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Abstract
The arterial lumen is modeled by a continuous right generalized
cylinder with piece-wise constant parameters. The method is based
on the identification of the parameters of each piece from a se-
ries of contours extracted along an approximate axis of the artery.
This curve is defined by a minimal path between the artery end-
points. The contours are extracted using the Fast Marching algo-
rithm. The identification of the axial parameters is based on a ge-
ometrical analogy with helical curves, while the identification of
the surface parameters uses the Fourier series decomposition of the
contours. Thus identified parameters are used as observations in a
Kalman optimal estimation scheme that manages the spatial con-
sistency from each piece to another. The method was evaluated on
46 datasets from the MICCAI 3D Segmentation in the Clinic Grand
Challenge: Carotid Bifurcation Lumen Segmentation and Stenosis
Grading (http://cls2009.bigr.nl/).

1. Introduction
Image segmentation plays an increasing role in today’s assessment
of vascular diseases. Measurements inferred from the segmentation
help the physician to evaluate the disease severity. For example,
one important measure is the stenosis degree, indicating the per-
centage of lumen reduction of a pathological section compared to
the healthy part of the vessel. Various approaches of vascular seg-
mentation published over the past years are mainly based on ves-
sel tracking and deformable models (see [6] for a review). Vessel
tracking methods scan the vessel incrementally and progressively
build a discrete (geometrical) representation of the vessel, usually
composed by a centerline and a stacking of planar contours. It is
important to note that this approach hardly exploits the 3D conti-
nuity of the vessel surface. On the other hand, deformable models
are usually discrete surfaces (meshes) that deform their geometry
to fit the data. The deformation is obtained by minimizing an objec-
tive function with two competitive terms: a local constraint (data
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attachment) and a global constraint (a priori on the geometrical
shape). This approach does not provide direct access to clinically
useful cross-sectional measures.

This work is motivated by applications involving the segmenta-
tion and the quantification of tubular-shaped objects, e.g. blood ves-
sels, in medical three-dimensional (3D) images. Although healthy
blood-vessels have cylindrical shapes with circular cross-sections,
pathologies such as atherosclerosis, may lead to quite complex de-
formations of the cross-sectional shape.

A generalized cylinder model capable of representing complex
elongated objects, using a reduced number of parameters, was
proposed in [1]. The model is composed of two parts: the first one
describing the axial shape by means of orthonormal bases attached
to the axis, and the second one describing the surface by means of
contours in the planes orthogonal to the axis. This model was called
RGC-sm, which stands for right generalized cylinder state model,
since the authors used the system-state formalism. According to
this formalism, both components (the local base and the cross-
sectional contour) corresponding to any arc-length location, can be
calculated knowing only one initial base and contour, as well as
their dynamics (parameters describing their variation). The main
characteristics of RGC-sm are:

1. Piece-wise constant dynamics - the actual generalized cylinder
is subdivided into segments such that all the state variables
within a segment are constants, and

2. continuity - while continuously varying the arc-length, one ob-
tains a continuous axis and surface.

A similar model was recently used in [7].
In [3] we proposed an image-segmentation framework based on

RGC-sm, which makes use of the Kalman state estimator to deter-
mine the optimal values of the state variables in the consecutive
cylinder pieces. The key point in this algorithm is an appropriate
computation of image-based observations. For each cylinder piece,
these observations are to be inferred from two contours extracted
in the planes bounding the piece. In this paper we assume that the
contour-extraction problem is resolved. The focus is a geometry-
based reasoning that leads to the retrieval of the observations to be
used as input of the Kalman filter.

Thus, this paper is organized as follows: section 2 describes
the RGC-sm model, section 3 describes our vessel segmentation
algorithm based on RGC-sm and, finally, section 4 presents the
results of evaluating the method on 15 training and 31 testing
datasets from the MICCAI 3D Segmentation in the Clinic Grand
Challenge: Carotid Bifurcation Lumen Segmentation and Stenosis
Grading (http://cls2009.bigr.nl/).
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2. Right generalized cylinder model
The RGC-sm model is an association of a generating curve H and
a stack of contours describing the surface S (see figure 1).
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Figure 1: Graphical representation of the RGC-sm parameters: the
generating curve H (function h(t)) and the surface S (function
s(t, ω)). A representation (bottom-right) of the contour placed at
h(t2) is also shown.

The model is piece-wise, i.e. it assumes that a generalized cylin-
der can be subdivided into pieces such that the model parameters be
constant within each piece separately. Each piece Hi of the gener-
ating curve is defined by its length ∆i, curvature κi, torsion τi and
by the azimuthal rotation angle νi of the local basis Γi(t) attached
to Hi, with respect to the corresponding Frenet frame (see figure
2).
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Figure 2: Simple schema showing the connection between the base
Γ(t) = [ T(t) U(t) V(t) ] and the Frenet frame Fr(t) =
[ T(t) N(t) B(t) ]: the contour’s first point is aligned with
the vector U(t), which is the rotated version of N(t) around the
vector T(t) by an angle ν.

Each piece Si of the surface is a continuous stack of contours
ci(t, ω) defined by a tuple {Zi,Λi}, where

Zi = {zi,l ∈ C;−q ≤ l ≤ +q}

(a) Surface representation. (b) Stack of contours. Note the pres-
ence of the generating axis.

Figure 3: Example of a RGC-sm.

represents the Fourier coefficients describing the first contour in the
piece, and

Λi = {λi,l ∈ C;−q ≤ l ≤ +q}
is an ordered set of 2q + 1 coefficients linearly transforming the
contour alongHi:

ci(t, ω) =

+qX
l=−q

(λi,l(t− ti) + zi,l)e
jlω, (1)

where t and ω respectively are arc-length and azimuthal parame-
ters. The number q of harmonics controls the level of details of the
contours, and thus of the whole generalized cylinder surface. Each
surface piece Si is connected to the corresponding generating curve
pieceHi by the following equation:

si(t, ω) = Γi(t) ·

24 0
Re(ci(t, ω))
Im(ci(t, ω))

35+ hi(t), (2)

where hi(t) is the spatial location of the origin of Γi(t), which
belongs toHi. The entire model is thus:

M≡ {h0,Γ0,Z0, {κi, τi, νi,∆i,Λi; 0 ≤ i < n}} , (3)

where h0 ≡ h0(t = 0) is the first point of H, Γ0 ≡ Γ0(t = 0)
is the first basis attached to h0 and Z0 ≡ Z0(t = 0) is the Fourier
decomposition of the first RGC contour.

An example of a RGC-sm is shown on figure 3.

3. Vessel tracking algorithm
Figure 4 shows the global flowchart of the proposed algorithm for
vascular segmentation. The vascular segment of interest is delim-
ited by two points interactively given by the user. The Kalman state
estimator (KSE) [8] (see section 3.1) is used to control the vessel
tracking along an approximate axis between these points (see sec-
tion 3.3). It predicts the 3D locations, orientations and shapes of the
contours that delimit the consecutive cylinder pieces. The observa-
tion vector, coding the RGC-sm parameters of the i-th piece (see
section 3.2), is computed from the result of the contour extraction
performed in the predicted plane (see section 3.4). The observation
is then filtered by the KSE to produce a corrected estimate of the
parameters, which is expected to smooth out the possible errors of
the contours and initial axis extraction. Only the very first contour
remains uncorrected.

The KSE adapts the tracking speed to the complexity of the lo-
cal vascular shapes (axial and superficial). In complex shapes (high
local changes of curvature, for example) the length of the cylin-
der piece is automatically reduced. This occurs when the predicted
contours are too different from the observations.



Figure 4: Flowchart of the segmentation algorithm.

3.1 Kalman state estimator
The KSE, [8], addresses the general problem of estimation of the
x−dimensional state x ∈ Rx of a discrete-time controlled process
that is governed by the linear stochastic difference equation:

xi = A · xi−1 + B · ui + wi−1 (4)

with a m−dimensional measurement m ∈ Rm:

mi = H · xi + vi (5)

where the random variables wi and vi represent, respectively, the
process and measurement noises. These noises are assumed to
be statistically independent between them, white and with normal
probability distributions:

p(w) ∼ N(0,Q)
p(v) ∼ N(0,R)

(6)

where Q and R are the respective covariance matrices.
The x×xmatrix A in equation 4 relates the state at the previous

step i − 1 to the state at the current step i, in the absence of either
a driving function or process noise. The x× u matrix B relates the
optional u−dimensional control input u ∈ Ru to the state x. The
m× x matrix H in the measurement equation 5 relates the state to
the measurement m.

The KSE algorithm is basically a loop that updates the “time”
i by projecting (predicting) the previous estimated state x̂i−1 to
x̂−i and then correcting this prediction using the current measure-
ment mi to obtain the newly estimated (innovated) state x̂i. Fur-
thermore, a measure of the error estimation of the process is kept
in the x×x matrices Pi. The pseudo-code of the KSE is written in
algorithm 1.

The key to use a KSE is the definition of the matrices A, B,
H, Q, R, the initialization vector x̂0, the process noise vector P0,
the time-depending input vector ui and measurement vector mi.
Furthermore, a stop criteria has to be defined in order to terminate
the prediction-innovation loop. These definitions are discussed in
the next section.

Algorithm 1 Kalman state estimator basic algorithm as presented
in [12].
Q,R← InitNoises()
x̂0 ← InitState()
P0 ← InitProcessNoise()
while ¬StopCriteria :

ui ← LoadInput(i); Load current input

x̂−i = A · x̂i−1 + B · ui; Predict next state

P−i = A ·Pi−1 ·A>+ Q; Predict the process noise

Ki = P−i ·H
> · (H ·P−i ·H

> + R)−1; Update gain
mi ← LoadObservation(i)
x̂i = x̂−i +Ki ·(mi−H·x̂−i ); Estimate the next state

Pi = (I−Ki ·H) ·P−i ; Update noise
elihw

3.1.1 Kalman equations for vessel tracking and RGC
construction

The matrices and vectors used in our KSE-based vessel tracking
algorithm are:

• The measurement vector m contains the information needed to
construct the vector defined in equation 3.
• The state vector x contains the information needed to construct

the vector defined in equation 3, together with its velocity
(x ≡ [ M M′ ]>). In other words, it also describes RGC-
sm pieces with the rate of change of each RGC-sm parameter.
• ui = 0 ∧B = 0. In other words, there are no external inputs.

• A =

»
I I
0 0

–
: i.e. predicted pieces are just projections of

previously estimated pieces, taking into account the velocity, as
in the Newton’s laws.
• H = I: i.e. measured pieces, in the absence of noise, should be

considered as good estimations.
• Experimentally, we fixed the noise covariance matrices to Q =

10−3 · I and R = 10−3 · I.
• Accordingly, the initial process noise matrix P0 = 10−3 · I.

After each iteration, the estimated state x̂i is appended to the result-
ing RGC-sm, thus constructing the final cylindrical representation
of the chosen vessel.

3.2 Retrieval of observations from image data
Without loss of generality, we explain the process for the first
cylinder piece. Under the assumption of constant curvature and
torsion, each piece of H is a helix, and a geometrical reasoning
demonstrates that its parameters can be recovered if the frames
Γ0, Γ1 at its extremities, as well as their origin locations h0 and
h1, are available. Owing to a lack of space here, this reasoning
will be given in a future publication. The remaining parameters are
calculated using the Fourier decompositions of the contours Z0 and
Z1. We first give main equations that lead from Γ0, Γ1, h0, h1,
Z0 and Z1 to the RGC-sm parameters. Then we explain the image
processing steps that lead from the initial image and seed-points to
these intermediate data.

3.2.1 Calculation of model parameters
We first compute the transition operators, respectively rotation and
translation, between the extremities:

Φ(0,∆0) = Γ>0 · Γ1, (7)

Tr(0,∆0) = Γ>0 · (h1 − h0) . (8)



Φ is a rotation operator and one of the properties of the rota-
tion matrices is the existence of Θ and Ξ such that Φ(0,∆0) −
Φ(0,∆0)> = 2 sin Θ · Ξ, where Θ is the rotation angle and the
non-zero elements of the antisymmetric matrix Ξ compose the vec-
tor defining the rotation axis. Moreover, it can be demonstrated that
Φ(t1, t2) = exp((t2 − t1) · Ψ), where Ψ is proportional to Ξ:
Ψ = µΞ. In the case where Φ describes the rotation between two
frames attached to a helix, the coefficient µ is also involved in the
calculation of the curvature and torsion of the helix. Indeed, these
are proportional (via µ) to the cosine and sine of the angle ϕ that
represents the “slope” of the helix. Hence, the second step is the
subtraction:

Φ(0,∆0)−Φ(0,∆0)> =

24 0 −c b
c 0 −a
−b a 0

35
⇒ Θ = arcsin

`
1
2

√
a2 + b2 + c2

´ .
It can be demonstrated that a, b, c can be used to calculate ϕ, then
µ:

ϕ = arcsin
`
a/
√
a2 + b2 + c2

´
µ = sin Θ cos2 ϕ+Θ sin2 ϕh

Φ(0,∆0) [1 0 0]>
i>

Tr(0,∆0)

,

which in turn permits the computation of the axial parameters:8><>:
ν0 = arctan(b/c),
κ0 = µ cosϕ,
τ0 = µ sinϕ,
∆0 = Θ/µ.

(9)

Numerical stability problems might arise when Φ(0,∆0) =
I, which occurs when H0 is a straight line segment. This is
checked after the computation of Γ0 and Γ1, and the parame-
ters, in this case, are set as follows:

ˆ
κ0 τ0 ν0 ∆0

˜>
=ˆ

0 0 0 |h1 − h0|
˜>. The last step is the computation of

the parameters describing the linear evolution of the Fourier de-
composition of the contours:

Λ0 =
nz1,l − z0,l

∆
∈ C : −q ≤ l ≤ +q

o
. (10)

3.3 Approximate axial shape extraction
As mentioned above, in the current implementation, the vessel
tracking with Kalman estimation of RGC-sm parameters is per-
formed along an initial approximate axis H̃. The line H̃, that
coarsely describes the axial shape of the vessel, is constructed as
follows:

1. A binary image1 B(p) is computed from the initial image f(p),
using locally adaptive thresholds fL, fH that coarsely separate
the vascular lumen from the background. These thresholds are
defined using the results presented in [4]. According to that
work, the vascular lumen intensities along the carotids have
two properties: (a) the global lower threshold values are in the
range [140HU, 420HU], and (b) the local threshold values vary
almost linearly along the vessel axis. Using these properties, the
lumen is segmented using a flooding algorithm that computes
thresholds depending on the distance of each voxel to user-
given seeds. The local threshold properties are computed using
the Robust Automatic Threshold Selection (RATS) scheme [9].

2. An Euclidean distance map E(p) is computed within B(p)
using the algorithm proposed in [10].

1 From hereafter we suppose that images are functions defined in a n-
dimensional space: f(p) : Rn → R, where p are the pixels of the image.

3. Finally, a cost function F(p) = 1
1+E(p)

is used for a minimal
path algorithm (as proposed in [13]), which finds a set H̃ of
points ordered along the shape and connecting the seed-points
even in the presence of lumen discontinuities (severe stenoses).
These points are expected to be located near the center of the
vessel due to the cost function F(p), related to the distance
map E(p).

3.4 Contours extraction
The planar contours are extracted using the fast marching (FM)
method [11]. FM is a front propagation technique that provides a set
of (counter-clockwise) ordered points Ci = {ci,k : 0 ≤ k < K}.
This technique needs the definition of a potential field P(p) ex-
pected to be maximum at discontinuities (edges) and minimum
within uniform regions. We use the potentials proposed in [2],
where the native image intensities f(p) along with image disconti-
nuities represented by the gradient magnitude |∇f(p)| are used:

P (p) = |∇f (p)| ·
K (d (p) , α1, β1) ·
K (f (p) , α2, β2) ·
K (f (p) , α3, β3)

(11)

The function K (·) of a scalar u is defined as follows:

K (u, α, β) = 1 + exp

„
−u− α

β

«
, (12)

where α is a shift, β is a signed sharpness parameter and d (p)
is a mono-dimensional derivative of |∇f (p)| along the direction
normal to the front. With α1 = 0, α2 = fL, α3 = fH , β1 =
100, β2 = 1 and β3 = −1, this potential function P strongly
decreases the propagation speed when the front moves beyond local
maxima of the gradient norm (i.e. beyond borders of the arteries)
or beyond the range [fL, fH ] of luminal intensities, defined as
described in previous subsection. Furthermore, in this work the
authors recommend that the FM propagation should be stopped at
time value T when the growth of the area A encompassed by the
front becomes very slow, which is characterized by a large value of
∆T/∆A. Actually, at each iteration we compute the mean mT/A

and the standard deviation σT/A of ∆T/∆A and the propagation
stops when ∆T/∆A > mT/A + 10σT/A. All the coefficient
settings correspond to the experimental values from [2].

Front propagation is performed in the plane passing through the
predicted point ĥi ∈ H̃, and oriented according to the predicted
vessel orientation expressed by the orthogonal base Γ̂i. Summariz-
ing, the point set Ci is extracted as follows:

1. The potential field P(p) is sliced by the plane passing by ĥi

and oriented by the first column vector of Γ̂i, to obtain a 2D
imageQi(p).

2. The FM algorithm is executed onQi(p) with ĥi as the first trial
point (front initialization).

3. The FM generates the level set Li(p) which contains Ci as its
last level.

The initialization of the RGC-sm reconstruction process requires
h0, Γ0 and Z0. One of the seed-points (typically the distal one) is
taken as h0. The orthonormal basis Γ0 is constructed such that its
first vector is tangent to H̃ in h0, the second vector is oriented along
h0 − c0,0, and the third one is orthogonal to both. Z0 is calculated
as the Fourier series corresponding to C0, using the harmonics up to
the third order (q = 3), which is sufficient to represent reasonably
complex cross-sections.

Stenosis quantification from the reconstructed model involves
an analytic calculation of the cross-sectional areas directly from



Fourier coefficients, while the diameters are computed from dis-
crete contours.

4. Results
Both lumen segmentation and stenosis quantification were evalu-
ated on 15 training and 31 testing carotid CTA datasets available
within the Carotid Bifurcation Algorithm Evaluation Framework.
Details of the evaluation methodology can be found on the web
page of the challenge [5]. Figure 5 displays an example of segmen-
tation result.

Figure 5: Example of the segmentation of a CTA image of a carotid
using our algorithm. The internal carotid is presented in cyan and
the external carotid is presented in red. The yellow and blue lines
represent the generating curves calculated.

Stenosis quantification was evaluated by calculating the differ-
ence between the calculated percentage and the one provided by the
reference standard, using both cross-sectional areas and diameters.
The results are presented in table 1.

Four criteria were evaluated to assess the lumen segmentation:
Dice similarity index, mean surface distance, RMS surface distance
and maximal surface distance. Table 2 summarizes the results ob-
tained.

The average running time of our algorithm, including lumen
segmentation, stenosis grading and display of intermediate and
final results, was 3.7± 1.3 minutes.

Team area diam
name % %

Our method 32.76 40.31
ObserverA 2.71 3.61
ObserverB 4.55 5.29
ObserverC 5.61 5.74

Table 1: Testing stenosis.

Team dice msd rmssd max
name % mm mm mm

Our method 51.8 3.42 4.29 9.46
ObserverA 95.4 0.10 0.13 0.56
ObserverB 94.8 0.11 0.15 0.59
ObserverC 94.7 0.11 0.15 0.71

Table 2: Averages testing lumen.

5. Discussion and conclusion
RGC-sm is a powerful tool that permits a concise description of
complex generalized cylindrical shapes. The theoretical framework
permits the reconstruction of a continuous surface corresponding to
the lumen, based on a limited number of discrete contours. Addi-
tionally, the Kalman estimator permits a correction of the observa-
tion errors when these remain within a reasonable range. However,
our current implementation of the image processing steps devised
to provide the observations is clearly not optimal. The initial rough
extraction of the axial shape begins by a thresholding step, which
is prone to errors when neighboring structures have a similar in-
tensity range. Actually, this initial curve needs to be quite well-
centered within the lumen. Indeed, as the Fast Marching algorithm
in planes orthogonal to this initial curve starts from the intersec-
tion between the plane and the curve, this intersection has to fall
within the lumen, otherwise the contour extraction fails. Failures
are also observed when the curve is located within the lumen, close
to a poorly contrasted boundary. In fact, the use of an always inflat-
ing deformable contour, such as the Fast Marching front, is uneasy,
since the speed function and stopping criteria hardly can cope with
all possible configurations (nearby veins, calcifications, etc.). Fur-
thermore, 2D Fast Marching does not exploit the 3D continuity of
the vascular lumen, which might be helpful in some complicated
situations. Future work will be oriented towards an implementation
that do not require the initial extraction of an approximate axial
shape and that perform a piece-wise local 3D boundary extraction.
Let us also note that the current implementation was designed with
an implicit assumption (constraint) that the seed-points are also
end-points, and are given at "easy" locations, i.e. healthy circular
cross-sections without neighboring structures "stuck" to the artery
of interest. Hence, the method had difficulties in datasets where the
seed-point in the internal carotid artery was located either close to
the bifurcation, so that our method segmented a too short part of
the artery, or near the skull where the assumption of the absence of
neighboring structures did not hold. Further work is necessary to
cope with seed-points located anywhere within the vessel of inter-
est.
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