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Abstract. Acute respiratory distress syndrome (ARDS) is associated
with a high mortality rate in intensive care units. To lower the number
of fatal cases, it is necessary to customize the mechanical ventilator pa-
rameters according to the patient’s clinical condition. For this, lung seg-
mentation is required to assess aeration and alveolar recruitment. Airway
segmentation may be used to reach a more accurate lung segmentation.

In this paper, we seek to improve lung segmentation results by propos-
ing a novel automatic airway-tree segmentation that is able to address
the heterogeneity of ARDS pathology by handling various lung intensi-
ties differently. The method detects a simplified airway skeleton, thereby
obtains a set of seed points together with an approximate radius and
intensity range related to each of the points. These seeds are the input
for an onion-kernel region-growing segmentation algorithm where knowl-
edge about radius and intensity range restricts the possible leakage in
the parenchyma. The method was evaluated qualitatively on 70 thoracic
Computed Tomography volumes of subjects with ARDS, acquired at sig-
nificantly different mechanical ventilation conditions. It found a large
proportion of airway branches including tiny poorly-aerated bronchi.
Quantitative evaluation was performed indirectly and showed that the
resulting airway segmentation provides important anatomic landmarks.
Their correspondences are needed to help a registration-based segmen-
tation of the lungs in difficult ARDS cases where the lung boundary
contrast is completely missing. The proposed method takes an average
time of 43 s to process a thoracic volume which is valuable for the clinical
use.

Keywords: Airway segmentation, Airway-tree centerline detection, Tho-
racic CT, ARDS
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1 Introduction

Acute Respiratory Distress Syndrome (ARDS) is a life-threatening respiratory
condition. This syndrome may occur as a consequence of a major injury or differ-
ent pulmonary aggressions (bacteriological or chemical). As a result, the lungs
are unable to fill with air and cannot provide enough oxygen into the blood-
stream. The treatment requires the use of mechanical ventilation to pump air
into the patient’s lungs until the cause of the disease is detected and treated.
Mechanical ventilator parameters (tidal volume and positive end-expiratory pres-
sure - PEEP) need to be set carefully, taking into account the patient’s clinical
condition. Too large air volumes or too high PEEP may injure the lungs. On the
other hand, lack of oxygen in the blood may lead to a multiple organ dysfunction
syndrome. Both cases are with fatal consequences. Knowledge about the lung
aeration is the key to helping prevent the injury. Since gray levels in Computed
Tomography (CT) images are associated with the tissue density, thoracic CT
scans are well suited to obtain this knowledge. Nevertheless, the accuracy of
lung aeration quantification is hampered by two factors: the difficulty in delin-
eating the outer boundary of the lungs (due to local lack of contrast), and the
inclusion of internal structures not belonging to the parenchyma, such as the
airway tree. To cope with both problems, airway segmentation can be useful. It
can provide anatomic landmarks useful in lung delineation, and it can also serve
for airway removal.

Airway segmentation is confronted with specific difficulties related to vari-
able contrast in CT images from subjects with ARDS. In deflated lungs with
low PEEP condition, the large opacities of non-aerated parenchyma make it very
difficult, if at all possible, to see the lung boundary. Also, small bronchi are thin-
ner in this condition. At the other extreme, when lungs are strongly inflated, the
problem is mainly caused by a low contrast between the parenchyma and bronchi
lumen. For smaller bronchi, the thickness of the wall may be below the scan res-
olution and can cause the segmentation algorithms to leak into the parenchyma.
Bronchi filled with liquid or mucus seem to be disconnected on the CT scan,
which presents another complication, mainly for segmentation algorithms based
on a region-growing or wave propagation.

In this paper, we propose a novel airway-tree segmentation method that suc-
cessfully deals with the challenges brought by ARDS. The method detects an
approximate airway centerline tree and then applies the obtained intensity and
distance information to restrict the onion-kernel region-growing segmentation
and prevent it from leaking into the parenchyma. The method was evaluated on
a series of thoracic CT images of subjects with ARDS, acquired at significantly
different mechanical-ventilation conditions. The results show that the proposed
method is able to find a large number of branches including tiny bronchi. This is
important for achieving our overall goal - the improvement of the lung segmen-
tation - especially in low PEEP conditions where the lung boundary contrast is
missing. A possible approach is to use a self-atlas segmentation. It consists in
segmenting the lungs in the most-contrasted volume and warping them towards
the least-contrasted one by means of registration. In this work, we confirmed that
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using a hybrid registration that combines airway-tree landmark correspondences
obtained from the segmented airway tree with gray-level information leads to an
improvement in the lung segmentation. In addition, the proposed method is fast,
which is valuable for clinical use.

2 Related Work

The segmentation of airway trees plays an important role in the analysis of var-
ious lung diseases. Since each disease brings its own challenges, specifications,
and restrictions, there exist many different methods for airway-tree segmenta-
tion. An intuitive approach is based on a 3D region-growing [1–3] and relies on
the contrast between the airway lumen and the airway wall that is usually rel-
atively high. However, due to noise or partial volume effect, the contrast may
be missing and the region-growing segmentation may leak into the parenchyma.
Algorithms applying region-growing differ in the way they prevent the leakages.
Many algorithms use region-growing only for large airways and implement ad-
ditional procedures to identify smaller airways. A review work of Pu et al. [4]
provides a division of other methods for airway segmentation into five categories
based on their methodology as follows:

Morphological methods [5] use morphological reconstruction techniques to
identify airways on CT slices and then reconstruct them as a connected 3D
airway tree. Nevertheless, the reconstruction largely depends on how continuous
the detected airway candidates are in space.

Knowledge-based methods [6] identify the airways by using various anatomical
knowledge and rules. Since it is hard to list all the rules that characterize the
airways, these methods are often used in combination with other approaches and
remove false positives rather than detect the true positives.

Template matching methods [7] search for airway regions that match a set of
predefined elliptical (2D) or tubular (3D) templates. Just like with the previous
category, the main problem is to list all the templates that would fully describe
the airways together with their size variability.

Machine learning methods [8] automatically learn specific airway characteris-
tics during the training process. However, the diversity of the pre-labelled train-
ing data and the feature selection are critical for the final performance.

Geometric shape analysis methods [9] make use of Hessian-matrix based filters
for tubular shape detection. However, these filters are sensitive to noise and
irregularities caused by diseases. In addition, Gaussian convolution filter may
blur small airways.

A summary and comparison of 15 different airway-tree segmentation meth-
ods can be found in the EXACT’09 challenge [10]. Each of the algorithms has
its advantages and disadvantages. From the published results, it is evident that
there is no one algorithm solving all application challenges. Therefore, we pro-
pose a method focused on subjects with ARDS. The method can be categorized
as a knowledge-based method combined with 3D region-growing. A detailed de-
scription of the proposed method follows in the next section.
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Fig. 1. Algorithmic overview. From input CT volume, a centerline tree is extracted in
two steps, followed by airway segmentation based on region growing.

3 The proposed method

The proposed method takes a thoracic CT volume as an input. Since airways
appear as elliptical regions on orthogonal CT image slices, our method uses
knowledge-based filters to identify central voxels of these regions - the graph
nodes. These nodes can represent bifurcating airways, as well as end or line
points of the airway. There is no need to detect every single airway central voxel
– a sparse detection is satisfactory. The distance between the central voxels (de-
tected nodes) is, in general, longer for thicker airways and much shorter (only 1-2
voxels) for thinner ones which safely detects also curved branches. The nodes are
then connected with straight edges into a tree graph structure representing the
approximate centerline tree of the airway. The connection process is controlled
by a set of criteria to ensure that the edges lie inside the airway tree and loops
are avoided. The approximate centerline tree serves as a sufficient input for the
subsequent segmentation algorithm. The complete centerline tree is voxelised,
and for each voxel, information about its position, expected radius and an in-
tensity range related to the position is stored. This information is important to
prevent leakage into the parenchyma. Each voxel is then used as a seed point
in a modified region-growing algorithm, which generates as output a binary seg-
mentation of the airway tree. The pipeline of the whole algorithm is visualised
in Fig. 3. In the following subsections, we describe the centerline tree extraction
and segmentation algorithms more in detail.

3.1 Centerline Tree Extraction Algorithm

The basic centerline tree extraction algorithm is based on an idea presented in
[11]. However, it has been modified and extended for the needs of airway-tree
centerline detection. Since airways are filled with air, potential graph nodes -
voxels of interest - are expected to be aerated. Furthermore, the morphology of
a lung suffering from the ARDS is very heterogeneous, it is meaningful to divide
these potential voxels of interest into classes based on their physical density and
to treat each of the classes differently. In literature, voxels in the parenchyma
are divided based on their physical density into four aeration classes [12]. The
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denser the tissue inside the voxel, the higher the X-ray attenuation, which results
in a higher gray level value (CT number). The gray level values are expressed
in Hounsfield units (HU). Pure air voxels are assigned values of -1000 HU (no
attenuation), whereas pure water voxels have values of 0 HU. Since tissues are
mainly composed of water, their typical density is close to that of water. The
four aeration classes then are:

– Over-aerated voxels [-1024,-900) HU may be found in over-distended
parenchymal regions of mechanically ventilated lungs; in normal lungs, voxels
with densities from this range are located mainly inside the largest airways.

– Normally aerated voxels [-900,-500) HU, in case of healthy subjects, are
mostly located in parenchyma or can be located in thin airway bronchi,
where the partial volume effect causes the rise in their intensities. In subjects
suffering from ARDS, bronchi can be partly filled or completely blocked by
mucus or liquid, which may increase the density even in the thick bronchi.

– Poorly aerated voxels [-500,-100) HU are usually observed in diseased
parenchyma affected by ARDS, but gray levels from this range may also
occur in tiny bronchi.

– Non-aerated voxels [-100,100) HU, as the name of the class specifies,
correspond to parenchymal regions that do not contain any air. These voxels
may also correspond to structures like airway wall or vessels.

The potential graph nodes should be within the range [-1024,-100) HU which
corresponds to the intensity ranges of the three aerated classes defined for the
parenchyma. The parenchyma of sick subjects is very heterogeneous and can
contain voxels of all kind of aeration. As it is possible to see from the class
description, the voxels that fit within the intensity range of our interest are po-
tential graph nodes present, either inside the airway tubes or in the parenchyma.
Therefore, some filters to distinguish between the true and false airway voxels
are needed. The rules are introduced in the following subsections where a further
description of the detection and connection steps are provided.

Node detection The input volume is analysed through all slices in the three
axis-oriented directions (axial, sagittal and coronal). In each slice, if a voxel has
the intensity within the range [-1024, -100) HU, it is considered as a potential
airway node. Such voxel needs to be examined further by looking into the in-
tensities of surrounding voxels from the same slice. First, the position of the
candidate voxel must be confirmed to be central within the lumen. This is done
by casting rays in four main directions (up, down, left and right) starting from
the candidate voxel position outwards until they reach a lumen border. The lu-
men border is defined as the first of n consecutive voxels of intensity higher than
I, where I is either the upper bound of the aeration class where the candidate
voxel belongs or intensity of the candidate voxel increased by 100 HU, whichever
of them is higher. This offers an overlap if the candidate voxel intensity is similar
to the higher bound intensity. If the two vertical distances and the two horizontal
distances to the lumen border are pairwise equal, then these distances are saved
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Table 1. Parameters used in the algorithm listed with their corresponding values

Parameter name [-1024,-900) HU [-900,-500) HU [-500,-100) HU
n number of border voxels 3 2 1
min radius 1mm limited by the voxel size limited by the voxel size
max radius 20 mm 5 mm 3 mm
x voxels shorter 1 1 1
y voxels longer 2 1 0
max edge length 35mm 10mm 5mm

as a major (a) and a minor (b) axis of a bounding ellipse. If the length of these
two axes falls outside the specified minimum and maximum allowed radius, then
the candidate voxel is discarded. In a subsequent step two auxiliary ellipses -
inner and outer - are introduced. Both ellipses share the same center with the
bounding ellipse and lie in the same slice, but have different axis lengths. They
are shorter by x (inner ellipse) and longer by y (outer ellipse) pixels than the
bounding ellipse axes. By subtracting the average intensity of voxels on the in-
ner ellipse from the average intensity of voxels on the outer ellipse, we check
if the region supposed to be the lumen is sufficiently darker than its wall. The
difference, how much darker the inside should be, compared to the outside, is
a function of a radius. The radius, r =

√
ab, is calculated from the major and

minor axes as an area-preserving transformation from an ellipse to a circle. For
bigger radii, the difference should be larger than for smaller radii since we ex-
pect that bigger bronchi are less affected by the partial-volume effect, as well
as by physiological-liquid blockages, than smaller bronchi. The nodes that pass
the complete set of filters are saved together with information about position,
intensity and radius. Table 1 summarises the values for all the parameters.

Node connection In this step, the previously detected graph nodes are con-
nected into a graph structure. Starting with each node considered as a separate
graph, the graphs are gradually merged by adding links between them. A link
between two nodes can be created only if the straight-line connection is shorter
than max edge length (See Table 1), and lies within the airway lumen, i.e., if
all voxels intersected by the connection line have intensities within the range
[-1024 HU, L), where L is the upper bound of the aeration class corresponding
to the brighter of the two connected nodes. If the two nodes are already part of
the same graph (connected via other nodes), or if there exists another node at a
closer distance that fulfills the conditions, then the connection is not established.
After all possible connections have been created, one or more approximate air-
way centerline trees represent the result. In situations when the bronchi contain
mucus, the detected centerline trees are disconnected. The mucus consists mainly
of liquid and therefore the corresponding intensity is outside the aerated range.
Based only on the distance and the intensity, it is not possible to decide whether
the connection passes through the mucus (and should be part of bronchi) or
through the parenchyma (and should not be part of bronchi). Therefore, cen-
terline trees of bronchi filled with liquid or mucus are left disconnected but not
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Fig. 2. Onion-kernel region-growing, (a) the input centerline tree is voxelised, (b) each
centerline tree voxel becomes a seed; the segmentation is not allowed to grow backwards
to fill the cavities (the dark green border delineates the region that would be filled
otherwise, (c) the final segmentation.

removed. If only one resulting tree is desired, all centerline trees not connected
to the biggest centerline tree are removed.

3.2 Airway Segmentation

The approximate centerline tree is an important input for the modified onion-
kernel region-growing algorithm, originally proposed for use in colon segmenta-
tion [14]. The centerline tree consists of nodes that contain information about
their position, the airway radius and the intensity range in which the nodes have
been detected. Now, the linear edge connections need to be voxelised and the
node information interpolated for all the voxels on the line between two nodes.
All these voxels become seeds for the region-growing algorithm. Since airway-
tree segmentation is challenging mainly because the parenchyma has intensities
very similar to those inside the airway, and the airway wall is often disconnected
on several places, the region growing algorithm uses the information about the
airway radius and intensity to stop the leakage. The region growing can not
propagate further than twice the radius at the seed point. Furthermore, only
voxels within the intensity range [-1024 HU, L) - where L is again the upper
bound of the aeration class corresponding to the brighter of the two connected
nodes - should be included in the segmentation.

The onion-kernel region-growing algorithm itself is similar to classical region
growing (26 neighbours). However, in the onion kernel case the growing is per-
formed in layers from the seed point outwards (inverse onion peeling). First,
the seed voxel is automatically included in the segmentation and is considered
to be a zero layer. Then, all voxels from the first layer (1 voxel away from the
seed) are processed. One voxel is included in the segmentation if it meets the
intensity-based inclusion criterion and is 26-connected with at least one voxel
from the previous layer that is already part of the segmentation. Afterward, all
voxels which are 1 voxel further from the seed than the voxels considered in the
previous step, are processed. This repeats until the distance from the seed point
reaches twice the radius. The reasoning behind this inverse onion peeling is to
achieve locally convex segmentation without segmentation “overhangs”. Figure 2
shows the advantage of the inverse onion peeling propagation.
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4 Evaluation and Results

We evaluated the proposed method, both qualitatively and quantitatively, using
real 3D thoracic CT volumes of piglets with ARDS induced. The qualitative
comparison was performed against a reference method based on region-growing
and introduced by Mori et al. [1]. The quantitative evaluation tested if the goal
of our work - to improve the lung segmentation by use of the airway-tree seg-
mentation - is fulfilled.

4.1 Dataset

For each piglet, several 3D image pairs (end-inspiration/end-expiration) were
acquired at various volume and pressure settings. For the qualitative evaluation
two piglets were chosen, providing 35 image pairs, resulting in a total of 70
thoracic CT volumes that were processed. For the quantitative evaluation, large
displacements and density changes between the analysed volumes are the most
challenging and, therefore, three images acquired in end-inspiration at extreme
and intermediate PEEP values – 20, 10, and 2 cmH2O, with a constant tidal
volume Vt = 5 ml/kg – were chosen.

4.2 Qualitative evaluation

The reference segmentation method used for a visual comparison of the results is
commonly referred to be a benchmark within the airway segmentation methods.
It is simple and fast, and it avoids leakages into the parenchyma. The main idea
of the algorithm is to gradually increase the threshold value of a region-growing
until a sudden leakage appears. Afterward, the segmentation that was grown
with the last threshold without leakage, is retained.

We have segmented the airway tree from 70 thoracic CT volumes using this
method and the proposed one. In volumes acquired at high pressure, the two
methods performed similarly, although the proposed method detected slightly
longer branches. In images with lower PEEP, the pulmonary parenchyma has
higher density and the contrast with the airway lumen may locally increase but
leaving still leakages at various sites, therefore methods based on region grow-
ing don’t perform better. Thanks to the underlying shape model the proposed
method was able to better detect small airways, which resulted in more and
longer branches compared to the standard method, as illustrated in Figure 3.

4.3 Quantitative evaluation pipeline

Quantitative evaluation was performed indirectly by comparing two registration-
based lung-segmentation methods. The first one used an intensity-driven regis-
tration method while the second one used a hybrid registration where intensity
information was enriched with airway-tree landmark correspondences. The goal
was to test whether the bifurcation and end points obtained from the proposed
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Fig. 3. Qualitative airway segmentation results, (a) Coronal slice of thoracic CT show-
ing the differences in parenchyma intensities between high and low PEEP, (b) result
of the reference method, (c) result of the reference method overlayed with a skeleton
from the proposed method (d) result of the proposed method.

airway-tree segmentation can improve the lung segmentation in situations where
the lung boundary itself does not have sufficient contrast.

To assess registration accuracy, an expert in ARDS was asked to interactively
segment the lungs and to mark several anatomical landmarks in the most chal-
lenging region of six CT volumes acquired at high, medium and low PEEP. The
lung mask segmented by the expert in the image with the best lung boundary
contrast (high PEEP), as well as the landmarks in this image, were warped us-
ing the transformation field resulting from the registration process between the
original image with the highest PEEP and the original image with medium or
low PEEP, where the lung is to be automatically segmented.

Registration accuracy was quantitatively evaluated in two ways: 1) the Dice
score was calculated between the deformed lung mask of the image with the
highest PEEP and the lung mask interactively segmented by the expert in the
image with medium or low PEEP, and 2) the residual Euclidean distance was
computed, after warping, between corresponding pairs of landmarks.

The landmark correspondences needed to drive the hybrid registration pro-
cess were obtained from each airway segmentation by first extracting its graph
representation [16] where nodes represent bifurcations or end points, and then
by using a matching algorithm proposed in [17]. The latter provides a list of
node pairs that match between two airway trees.

4.4 Quantitative evaluation results

The accuracy of the registration process is closely related to the number and
location of landmark correspondences. Thus, it is important to have accurate
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Fig. 4. Coronal slices of moving and fixed images, from the experiment between high
PEEP and low PEEP, superposed: before registration (left), after intensity-driven regis-
tration (center), and after hybrid registration (right). Color areas correspond to regions
where gray levels differ between the images due to lack of alignment and/or to density
changes in diseased zones.

airway segmentation with as many branches as possible and without leakages.
Therefore, the visual assessment of the segmentation results motivated the use
of the proposed method to improve the registration process.

The Dice similarity score for the lung mask segmentation was calculated
for the intensity-driven and hybrid registration. For images acquired at high
and low PEEP the Dice score was 0.81 for intensity-driven registration and
0.88 for the hybrid registration. Figure 4 visually illustrates these similarities
on coronal slices from the posterior region, where the lack of contrast hampered
the registration. The main difference is observed in the lowest part of the lung
where the hybrid approach reached a better alignment than the intensity-based
one. For images acquired at high and medium PEEP, the Dice score was 0.94
for intensity-driven and 0.96 for the hybrid registration.

The Euclidean distance between the pairs of manually placed landmarks was
calculated between volumes acquired at high and medium PEEP. The average
residual distance between the pairs of landmark locations before any transfor-
mation was 25.3 mm (range 21.9 - 29.7 mm). After applying the intensity-based
registration and after applying the hybrid registration the average residual dis-
tance was 23.5 mm (range 20.4 - 26.3 mm) and 10.9 mm (range 0.71 - 29.3 mm),
respectively.

Nevertheless, almost the same results (Dice scores and residual distances) were
obtained using the reference airway-segmentation method (Mori et al. [1]), within
the hybrid registration.

4.5 Computation Time

The proposed algorithm for airway-tree segmentation was implemented in C++.
The average running time of a single-threaded implementation was 43 s per
thoracic CT volume of mean size 512 × 512 × 441 voxels. The centerline tree
extraction took an average time of 41 s, while the onion-kernel region-growing
algorithm took an average time of 2 s.
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5 Discussion and Conclusions

First, an approximate airway centerline tree is detected and then the onion-kernel
region-growing expands from each voxel of the voxelized centerline tree until
the distance or intensity criteria stop the growth. The method is able to cope
with the gray-level diversity in subjects with ARDS that changes with time,
mechanical ventilation, and patient position, and it improved lung segmentation
by providing landmarks for registration.

Qualitative assessment of the proposed method and the reference method
showed that the proposed method detected a larger number of small branches,
particularly in poorly-contrasted images acquired at low-pressure conditions.
Occasionally, the resulting airway-tree segmentation contained small spurious
bulges, caused by a leakage that was stopped by the distance criterion. The dis-
tance criterion was set to cover the local neighbourhood that is part of bronchi
and at the same time stops the leakage growth already in an early stage. Quan-
titative evaluation of the proposed method demonstrated that higher number of
detected branches yields to automatic extraction of more landmark correspon-
dences between trees from images acquired at different ventilation conditions.
This result was used to improve the registration between thoracic CT images
from subjects with ARDS, by means of a hybrid approach that uses gray-level
correspondences to align well-contrasted structures and landmark correspon-
dences to align regions lacking contrast. The hybrid registration method outper-
formed gray-level-based registration. Evaluation of the registration serves as an
indirect measure of the airway segmentation method because landmark distri-
bution and location strongly depend on the airway-tree segmentation quality.
Although registration results using landmarks from both airways segmentation
methods are comparable, this does not devalue the superiority of the proposed
method but rather reflects a limitation of the hybrid registration, which would
require landmarks in the least contrasted region, where the bronchi are not
visible, because they are too thin, and none of the methods can segment them.

In future work, we would like to explore an anatomical evaluation of the
approximate centerline tree, based on angles at the bifurcations, to be able to
remove the max edge length criterion. This should allow establishing longer
connections between the nodes and, at the same time, the anatomical evaluation
will filter out possible spurious branches. The anatomical evaluation will be
helpful also for connecting bronchi that are partially filled with mucus and appear
disconnected in the CT volumes.
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