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cUniv Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5208, Institut Camille

Jordan, F-69622 Villeurbanne, France

Abstract

The characterization of acoustic sources typically involves the retro-propa-
gation of the acoustic field measured with a microphone array to a mesh of
the surface of interest, which amounts to solve an inverse problem. Such an
inverse problem is built on the basis of a forward model prone to uncertain-
ties arising from mismatches with the physics of the experiment. Assessing
the effects of these unavoidable uncertainties on the resolution of the inverse
problem represents a challenge. The present paper introduces a practical so-
lution to measure these effects by conducting a sensitivity analysis. The latter
provides a mean to identify and rank the main sources of uncertainty through
the estimation of sensitivity indices. Two inverse methods are investigated
through the sensitivity analysis: Beamforming and Bayesian focusing. The
propagation of uncertainties is carried on numerically. The consistency be-
tween the real experiment and its numerical simulation is assessed by means
of a small batch of measurements performed in a semi-anechoic chamber.

1. Introduction

Numerical models used in various fields (e.g., macroeconomics, fluid dy-
namics, here acoustics) are often build on large sets of complex equations
subject to many sources of uncertainty. This is all the more true for acoustic
imaging methods whose aim is to reconstruct acoustic sources through the
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resolution of an inverse problem. More specifically, the source reconstruction
is achieved by retro-propagating the acoustic field measured with a micro-
phone array to a mesh of the surface of interest. Various methods have been
developed throughout the last decades to solve the acoustic inverse prob-
lem. A recent classification of these methods has been proposed in [1]. The
present papers focuses on two of these methods: conventional Beamforming
[2] and Bayesian focusing [3]. The former assumes that the source field to
be reconstructed is generated by a finite number of scattered point sources
(or monopoles). The latter belongs to the class of “matrix inversion” meth-
ods and possesses a wider range of applications as it relaxes the assumption
of scattered point sources. In addition, Bayesian focusing brings an unifying
framework for acoustic inverse methods, rooted in a Bayesian formalism, that
contains as particular cases: ESM [4], HELS [5], NAH [6].

The acoustic inverse problem is built on the basis of a forward model and
of the measurements of the acoustic field, prone to sources of uncertainty
arising from mismatches with the physics of the experiment. Assessing the
effects of these uncertainties on the reconstruction of the source field rep-
resents a challenge. In such context, sensitivity analysis (SA) methods are
practical tools for studying “how the uncertainty in the output of a model
can be apportioned to different sources of uncertainty in the model input”
[7]. The main objective of SA is to identity the most contributing inputs vari-
ables to an output, i.e., the most important, influential, inputs variables. An
auxiliary goal is to detect, within the model, existing interactions between
inputs variables. SA methods are commonly classified in three categories:
screening, local and global, according to three criteria: their computational
cost (number of model evaluations), the complexity of the studied model and
the nature of the supplied information.

Historically, SA was conceived and defined only through local methods
where the contribution of an input is studied by means of small variations
around a nominal value. Such approaches rely on the calculation (or the
estimation) of partial derivatives of the model at a specific point [8]. Local
methods are however limited by the linearity assumption made on the model
and their intrinsic nature (local information). Screening methods are quali-
tative methods suitable to study sensitivity of models involving several tens
to a hundred inputs variables. These methods investigate the contribution of
each input only through a few values, yielding a fast but shallow exploration
of the model output. The main goal of screening methods is to single out
the non-influential inputs variables with a few model calls. The most widely
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used screening method is due to [9]. A recent and exhaustive survey of local
and screening methods is proposed in [10].

In contrast to both local and screening methods, global SA methods ex-
plore sensitivity on the whole variation range of the inputs and produce sta-
tistical summaries quantifying the contribution of each input. Examples of
statistical summary include: entropy-based indices [11], distribution-based
indices [12] and variance-based indices. The present paper focuses on the
latter which are based on the functional decomposition of the model output
variance [13]. The original approach was introduced by [14] and relies on the
calculation of sensitivity measures also known as Sobol’ indices. These indices
are scalars between zero and one that summarize the influence of each input
or combination of inputs. Alternatively, these indices can be interpreted as
the share (percentage) of the model variance due to a given input or com-
bination of inputs. In most applications, analytical expressions of Sobol’
indices are often inaccessible and one must rely on estimation procedures.
Such procedures might be quite expensive, requiring several thousands of
model evaluations. To overcome this hindrance, [15] proposed cost-efficient
strategies to estimate sets of Sobol’ indices at once. Spectral approaches
were introduced later on to improve the estimation cost, notably: the FAST
method [16], its RBD extension [17] and chaos polynomial-based methods
[18].

Coming back to the acoustic inverse problem, only a few applications of
SA have been proposed in the literature. In [19], a form of local SA is em-
ployed, by means of Taylor series expansions, to study the contributions of
sensor and position mismatch to the measured and reconstructed pressures.
However, the proposed approach only focuses on main effects and disregards
potential interactions. More recently, applications of variance-based methods
have been investigated. In [20] and [21], the FAST method is used to per-
form an SA of respectively an axial fan model and an analytical vibroacoustic
transmission model. Even if not being an application of SA, a recent study
was proposed in [22] to compare, by means of uncertainty quantification,
the robustness of some inverse methods to different sources of uncertainty.
To the best of our knowledge, performing a variance based SA of acoustic
inverse problems has yet to be addressed. By conducting an SA, the aim of
the present paper is to identify and rank the sources of uncertainty altering
the resolution of the acoustic inverse problem when either Beamforming or
Bayesian focusing is used. The nature of the sources of uncertainty is twofold:
the position and orientation of the microphone array, and other sources rel-
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ative to the physics of the experiment, namely the ground reflection, the
temperature and the signal-to-noise ratio. The propagation of these uncer-
tainties is carried on numerically. Given the relatively small number of inputs
and the unknown complexity of the model, Saltelli’s procedure is opted for.

This paper is organized as follows. The two investigated inverse for-
mulations, Beamforming and Bayesian focusing, are presented in Section 2.
Section 3 provides background on Sobol’ indices and reviews Saltelli’s es-
timation procedure. Section 4 presents a numerical application of Saltelli’s
procedure for the reconstruction of an acoustic source. In addition, a batch of
measurements is used to assess the consistency between the real experiment
and its numerical simulation.

2. Acoustic inverse problem

2.1. Problem statement

In the frequency domain, the problem of reconstructing an acoustic source
is based on a linear relationship between a set of acoustic pressures p, mea-
sured with a microphone array, and the source field q to be reconstructed.
The terms p and q both denote discrete complex quantities. The following
set-up is considered to formulate this relationship at a fixed frequency f . De-
note by ri, i = 1, . . . ,M , the microphones positions where the acoustic field
is measured. Let Γ be the surface, discretized into a set of points r, on which
the source field is reconstructed. Then, the linear relationship is completely
determined by:

p(ri) =
∑
r∈Γ

G(ri|r)q(r) + ni , i = 1, . . . ,M , (1)

where G(ri|r) denotes the Green function between the surface Γ, at point r,
and the measurement point ri, and n = (n1, . . . , nM) is the vector of mea-
surement noises. Equation (1) can be rewritten in matrix form to consider
all measurements at once:

p = Gq + n . (2)

A classical challenge in the acoustic literature is to recover the source field
q from (2). This task corresponds to an inverse problem, since one needs to
provide an inversion of the operator G. Such a problem is typically ill-posed
as existence, uniqueness and stability of the solution are not guaranteed.
Most of the methods devised to solve this problem, including the ones studied
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in this paper, formulate the inverse problem solution through a linear system
[3]:

q̂(r) =
M∑
i=1

ai(r)p(ri) , (3)

where the ai(r) are coefficients that depend on the calculation points r. The
following two sections focus on the characterization of the solution q̂ when
either conventional Beamforming or Bayesian focusing is applied.

2.2. Beamforming

Assuming that the source field can be modeled as a distribution of scat-
tered monopoles, the solution q̂ obtained by conventional Beamforming is
based on a component-wise least squares resolution of Eq. (2). The strength
of each candidate q̂(r) is estimated independently from the others, as the
minimum of the functional:

Jls(q) = ‖Gq − p‖2
2 .

In particular:

∂Jls(q)

∂q(r)∗
= 0⇔ q̂(r) =

M∑
i=1

G(ri|r)∗∑M
k=1 G(rk|r)∗G(rk|r)

p(ri) ,

where the superscript ∗ stands for the conjugate transpose operator. By
identification with Eq. (3):

ai(r) =
G(ri|r)∗∑M

k=1 G(rk|r)∗G(rk|r)
, (4)

which are the elements of the so-called “steering vector”.

2.3. Bayesian focusing

In some acoustic configurations, Beamforming methods might perform
poorly. In the low frequency band typically, the hypothesis of uncorrelated
source becomes unrealistic, which worsen the spatial resolution of the results.
Several alternatives have been proposed in the last decades. This section
focuses on a contribution [3] based on Bayesian analysis. The idea is to seek
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an optimal interpolation basis that minimizes the reconstruction error of the
source field,

q̂(r) =
P∑
k=1

ckφk(r) , (5)

where the ck are coefficients that depend on the measurements p(ri) and the
φk are spatial basis functions. Note that this formulation is fully equivalent
to Eq. (3), the parallel will be drawn at the end of the section. Substituting
Eq. (5) into Eq. (2) leads to:

p = Gφc+ n = Hc+ n , (6)

where φ is the matrix whose columns are the basis functions φk and c =
(c1, . . . , cP ) is the vector of coefficients.

Bayesian focusing introduced in [3], builds on such optimality while con-
jointly incorporating the effects of both noise and prior spatial information,
through a Bayesian formulation of the inverse problem. This method has a
wider range of applications than Beamforming as it relaxes the assumption
of scattered point sources. Bayesian focusing is a “matrix inversion” method
that brings a unifying framework for acoustic inverse methods. Through the
choice of the basis functions φk, this framework contains Beamforming, as
well as ESM, HELS or NAH as particular cases. The main results of Bayesian
focusing are outlined below.

2.3.1. Bayesian framework

Equation (6) is handled within a Bayesian framework, in particular the
coefficients ck are viewed as random variables that produce a random source
field q. All along this paper, the notation [.] will denote the probability
density function of a continuous random variable. The main ingredients of
the Bayesian formulation are: the likelihood [p|c] expressing the probability
distribution of the measured pressures p given c, and the prior probabil-
ity distribution [c] that incorporates any a priori on the source field. Us-
ing Bayes’ rule, one may express the posterior probability distribution (or
posterior) which corresponds to the solution of the inverse problem in the
Bayesian setting. This posterior can be viewed as the “inverse probability”
of the source field given measurements p:

[c|p] =
[p|c] [c]

[p]
∝ [p|c] [c] ,
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where ∝ denotes the “proportional to” symbol. The higher the value of [c|p],
the higher the probability that measurements p explain the source field.

2.3.2. MAP estimator

The posterior is viewed as a cost function whose maximization with re-
spect to c will return an optimal solution that most fits the measurements
p. Consequently, the solution ĉ of Eq. (6) is sought as the maximum a
posteriori (MAP) estimate:

ĉ = argmax
c

[c|p] ∝ argmax
c

[p|c] [c] . (7)

Expressing the MAP estimate requires selecting distributions for both the
likelihood [p|c] and the prior [c]. Equation (6) states that the likelihood is
completely defined by the distribution assigned to the measurement noise n.
As in [3], here n is assumed to follow a circularly-symmetric complex normal
distribution [23]:

[n] = CN (0, β2Ωn) , (8)

where β2 characterizes the unknown expected noise energy and Ωn is the
covariance matrix, expressing the correlation between the different compo-
nents of the noise field. As a result, the likelihood follows a circularly complex
normal distribution:

[p|c] = CN (Hc, β2Ωn) . (9)

The last assumption concerns the prior which is also assumed to follow a
circularly-symmetric complex normal distribution:

[c] = CN (0, α2Ωc) , (10)

where α2 characterizes the unknown source energy. Injecting (9) and (10)
into (7) yields the solution [24]:

ĉ = ΩcH
∗(HΩcH

∗ + η2Ωn)−1p , (11)

where η2 = β2/α2 identifies as the signal-to-noise ratio (SNR). One may
recognize in Eq. (11) the solution of a generalized Thikonov regularization
[25] where η2 plays the role of the regularization parameter. Note that since
α2 and β2 are unknown variables, the parameter η2 has to be calibrated. An
estimation procedure of η2, rooted in the posterior distribution, is introduced
in [24]. This procedure operates as follows: first the distribution [η2|p] is

7



obtained by marginalizing the posterior, [η2|p] =
∫

[c, η2|p] [c] dc. Then,
[η2|p] is viewed as a posterior, [η2|p] ∝ [p|η2] [η2], whose maximization with
respect to η2 yields the regularization parameter.

The choice of the interpolation basis is achieved by considering a singular-
value decomposition of G through Ωc and whitened by the covariance matrix
Ωn:

Ω
− 1

2
n GΩ

1
2
c = UΣV ∗ ,

where Σ is a diagonal matrix containing the eigenvalues sM ≥ sM−1 ≥ · · · ≥
s1 ≥ 0. It is proved in [3] that the optimal basis functions φk, k = 1, . . . , P,

are the columns of Ω
1
2
cV and that these functions are orthogonal through Ωc.

With the interpolation basis and the coefficients (11), the solution of (5) is
completely identified with P = M , and reads:

q̂(r) =
M∑
k=1

sk
s2
k + η2

φk(r)U ∗kΩ
− 1

2
n p ,

where Uk is the k-th column of U . Introducing the vector Ũk = U ∗kΩ
− 1

2
n with

elements Ũk,i, i = 1, . . . ,M , the latter expression of q̂(r) can be reformulated
as in (3) with:

ai(r) =
M∑
k=1

sk
s2
k + η2

Ũk,i φk(r) . (12)

Remark that Bayesian focusing admits Beamforming as a limit case when
the set of eigenvalues reduces to a singleton, i.e., s1 > 0 and ∀ k > 1, sk ≈ 0.
Such a phenomenon can occurs, for instance, in far-field acoustic imaging.

2.4. Preliminary observations

Looking at Eqs. (4) and (12) the expressions of the coefficients ai(r)
differ between Beamforming and Bayesian focusing. In the former, these
coefficients remain unaffected by the sources of uncertainties propagated in
the forward problem. In the latter however, the sources of uncertainties have
an effect on the coefficients ai(r) through the regularization parameter η2.

More generally, the two methods differ on the way the source q is recon-
structed. Beamforming is classically formulated to retain only the estimated
source q̂(r) on the node r where the estimated acoustic strength is maxi-
mal (the approach considered in Section 4 will be different). On the other

8



hand, Bayesian focusing assumes that all nodes of the reconstruction surface
are potential radiating point sources. With these two observations in mind,
one can expect to observe significant contrasts between the results of the
sensitivity analyses performed with each method.

3. Background on Sobol’ indices

3.1. Definition of Sobol’ indices

Let g represent a deterministic numerical model:

g : Kd → R
x = (x1, . . . , xd) 7→ g(x) ,

where x is the vector of inputs of g (the sources of uncertainty), d is the
dimension of the input space and Kd is a compact subspace of Rd. Let u be
a subset of D = {1, . . . , d}, −u its complement and |u| its cardinality. Then,
xu represents a point in K |u| with components xj, j ∈ u. Given two points x
and x′, the hybrid point (xu : x′−u) is defined as xj if j ∈ u and x′j if j /∈ u.
E[.] and Var[.] denote the expectation and the variance of a random variable.

The uncertainty on x is defined within a probabilistic setting: x is mod-
eled by a vector of independent random variables and is assumed to be
uniformly distributed in Kd. For the sake of simplicity, in the following
Kd = [0, 1]d 1. Assume further that g ∈ L2([0, 1]d, λ) where λ denotes the
Lebesgue measure on [0, 1]d. Consider the Hoeffding’s decomposition [27, 14]
of g:

g(x) = g∅ +
∑

u⊆D,u6=∅

gu(xu) . (13)

Under the assumptions that g∅ is constant and each term gu, u 6= ∅, satisfies:∫ 1

0

gu(xu)dxj = 0, ∀j ∈ u ,

the Hoeffding’s decomposition becomes unique and g∅ = E[g(x)] = µ. Then,
the variance of Eq. (13) leads to the variance decomposition of g:

σ2 = Var[g(x)] =
∑

u⊆D,u6=∅

σ2
u , (14)

1The assumption Kd = [0, 1]d is not restrictive, the generalization to other continuous
probability distributions can be achieved through many procedures (see [26] for more
details)
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where σ2
u = Var[gu(xu)]. From this latter decomposition, one can define the

two following quantities:

τ 2
u =

∑
v⊆u

σ2
v , τ

2
u =

∑
v∩u6=∅

σ2
v , u ⊆ D . (15)

Both τ 2
u and τ 2

u satisfy the following relations: 0 ≤ τ 2
u ≤ τ 2

u and τ 2
u = σ2−τ 2

−u.
The definition of Sobol’ indices is then obtained by normalizing the two
quantities expressed in (15):

Su = τ 2
u/σ

2 , Su = τ 2
u/σ

2 , u ⊆ D . (16)

In this paper, only the case |u| = 1 is studied. In this context, Su is called
first-order Sobol’ index and quantifies the main effect of the input xu on the
output g(x). Its analogue Su is called total effect Sobol’ index and quantifies
the main effect of xu plus the effects of all interactions between xu and other
inputs variables. One may define higher order Sobol’ indices but their use is
beyond the scope of the present paper.

Sobol’ indices enjoy several practical properties. First, their values are
scalars varying between zero and one. This yields a straightforward inter-
pretation: the higher the index, the more influential the input. Note that
an input is considered as influential if the variance of the output is strongly
reduced when this input is fixed. In particular, it must be stress that Sobol’
indices inform by no means directly on the value of the outputs. Secondly,
subtracting the first-order index Su to its counterpart Su returns a direct
quantification of all interaction effects between xu and other inputs. Hence,
one may categorize inputs following the nature of their effects: main, inter-
actions, both or none. Third, the following equation can be derived from Eq.
(14): ∑

u∈D

Su +
∑

u⊆D,u6=∅,|u|6=1

σ2
u

σ2
= 1 . (17)

As a consequence, if the sum of all first-order indices Su is close to one, one
can conclude that there exists no interactions between the inputs variables.
This last property provides a better understanding of the model behavior.

3.2. Estimation of Sobol’ indices

Usually the complexity of the model leads to intractable analytical ex-
pressions of Sobol’ indices displayed in Eq. (16). In such cases, only approx-
imations of these indices through estimation procedures can be expected.
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This section reviews the procedure introduced by Saltelli to estimate both
all first-order and all total effect Sobol’ indices. This procedure requires the
construction of so-called numerical designs of experiments, referred as de-
signs hereafter, to perform evaluations of the model. A design is a point set
P = {xi}ni=1, xi = (xi,1, . . . , xi,n) ∈ [0, 1]d, obtained by sampling each input
variable xj n times. It is represented as an n × d array, where each row
corresponds to a point xi and yields one evaluation of the model g(xi).

Consider now two designs P = {xi}ni=1 and P ′ = {x′i}ni=1 such that
(xi,x

′
i) is uniformly distributed in [0, 1]2d. One possible way to estimate the

two quantities defined in Eq. (15) is:

τ̂ 2
u =

1

n

n−1∑
i=0

(g(xi,u : x′i,−u)− g(x′i)) g(xi) ,

τ̂ 2
u =

1

2n

n−1∑
i=0

(g(x′i)− g(xi,u : x′i,−u))
2 .

Then, using an estimator σ̂2 of σ2 defined as:

σ̂2 =
1

n− 1

n−1∑
i=0

(g(xi)− µ̂)2 , µ̂ =
1

n

n−1∑
i=0

g(xi) ,

the Sobol’ indices can be estimated by:

Ŝu = τ̂ 2
u/σ̂

2, Ŝu = τ̂ 2
u/σ̂

2 . (18)

Based on Eq. (18), the estimation of a single pair (Su, Su) requires 3n
evaluations of the model g. As a result, one would need 3ndmodel evaluations
to estimate all first order and total effect indices. To improve this estimation
cost, Saltelli introduced in [15, Theorem 1] a subtle estimation strategy based
on the following result:

Theorem 1. The d+2 designs {xi,u : x′i,−u}ni=1 constructed for u ∈ {∅, {1},
. . . , {d},D} allow the estimation of all first-order and total effect Sobol’
indices at a cost of n(d+ 2) evaluations of the model.

Theorem 1 states that there is no need to reevaluate g(xi) and g(x′i) for
each u. Alternatively, one can simply evaluate g(xi) n times, g(x′i) n times,
and g(xi,u : x′i,−u) nd times, which amounts to a total of n(d+2) evaluations.
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The d+ 2 designs of Theorem 1 are obtained by substituting columns of
P for columns of P ′ according to u. While elegant, this approach requires a
number of model evaluations that grows linearly with respect to d, the input
space dimension. However, for applications with a relatively low number of
inputs and an affordable computational cost (as in this paper), the number
of model evaluations remains reasonable.

4. Application

4.1. Case study

The general set-up that will be studied is presented in Fig. 1-(a). The
acoustic source is modeled by a set of 21 correlated monopoles. The closer
the monopole to the center of the reconstruction surface Γ, the higher its
strength. The aim is to match the acoustic source used in the real experiment.
Statistically speaking, each of the 21 monopoles is a random variable:

qk = σk × u, k = 1, . . . , 21 ,

where u follows the standard normal distributionN (0, 1) and σk characterizes
the strength of the monopole. Figure 1-(b) shows a colormap of the values
assigned to the σk. The dashed black circle outlines the set of 21 monopoles
modeling the source.

The microphone array is circular and composed of 36 microphones. Ini-
tially, the microphone array is facing towards the reconstruction surface at a
distance of 0.6 meters. In the following, this position will be referred as the
reference position of the microphone array. The surface of reconstruction Γ
is modeled by a rectangular grid, placed in the plane z = 0.6, and discretized
into 441 points. The ground is modeled by the plane y = −0.72.

The measurement noises introduced in Eq. (1) are supposed independent
and are each defined by:

ni = 10−SNR/20δie
θi

√
‖p0‖2

2

M
, i = 1, . . . ,M , (19)

where δi and θi are two independent random variables following respectively
a standard normal distribution and a uniform distribution on [0, 2π], while
p0 is the vector of noise-free pressure.
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Figure 1: (color online) (a) Scheme of the study case set-up including: the circular micro-
phone array, the ground, and the reconstruction surface containing the acoustic source.
(b) Colormap of the values characterizing the source strength. The dashed circle outlines
the set of 21 monopoles (black dots) modeling the source. The nodes of the reconstruction
surface are represented by the gray dots.

4.2. Sensitivity analysis setting

4.2.1. Inputs

The sources of uncertainty that will be considered as inputs of the SA
are listed in Table 1. The nature of these sources is twofold. Six of them are
spatial variables describing the position and orientation of the microphone
array: three spatial coordinates cx, cy, cz and three angles ϕx, ϕy, ϕz. The
remaining three inputs variables gather uncertainties relative to the physics
of the experiment, namely: the air temperature T , the SNR and the ground
reflection coefficient R. Together, these 9 variables form the vector of inputs
x introduced in Section 3.1.

T , SNR and R are uniformly distributed (their ranges are specified in Ta-
ble 1). The three spatial coordinates cx, cy, cz and the three angles ϕx, ϕy, ϕz
all follow truncated normal distributions [28]. The rationale for using trun-
cated normal distributions over normal ones is to discard the tails. The two
truncated normal distributions used here are parametrized as follows:

T N c(0, σc,−`c, `c) for cx, cy, cz, (20)

T N ϕ(0, σϕ,−`ϕ, `ϕ) for ϕx, ϕy, ϕz . (21)
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inputs notation distribution description
x1 cx T N c position x of the array (meters)
x2 cy T N c position y of the array (meters)
x3 cz T N c position z of the array (meters)
x4 ϕx T N ϕ angle of rotation about axis x (radians)
x5 ϕy T N ϕ angle of rotation about axis y (radians)
x6 ϕz T N ϕ angle of rotation about axis z (radians)
x7 T U([15, 25]) air temperature (degrees Celsius)
x8 SNR U([2, 30]) signal-to-noise ratio
x9 R U([0, 1]) ground reflection coefficient

Table 1: Input variables and their distributions. Symbols T N c, T Nϕ stand for truncated
normal distributions whose arguments are specified in Eqs. (20),(21), U stands for the
uniform distribution.

φxD

rφ “ 2D sinpφx
2 q

x z

y

Figure 2: Geometrical interpretation of `ϕ with ϕ = ϕx. rϕ is the chord of ϕ, D is the
radius of the microphone array (in black). Given D = 0.25 m, `ϕ is set to be the maximum
value of ϕ such that rϕ = 0.04 m.

The parameters `c, σc are the same for the three spatial coordinates cx, cy, cz
and likewise for `ϕ, σϕ and ϕx, ϕy, ϕz. The standard deviations σc, σϕ and
bounds `c, `ϕ have been selected to model small position and orientation
mismatches that occur when setting a microphone array in an experiment:

`c = 0.06, σc =
`c

q0.999

, `ϕ =
1

2
arcsin

(
0.04

2× 0.25

)
≈ 9π

180
, σc =

`ϕ
q0.999

,

and q0.999 is the 99, 9% quantile of the standard normal distribution. The
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geometrical interpretation of `ϕ is sketched in Fig. 2 with ϕ = ϕx. rϕ denotes
the chord of ϕ, D is the radius of the microphone array. With D = 0.25 m,
`ϕ is sought as the maximum value of ϕ such that rϕ = 0.04 m. Setting
rϕ = 0.04 m ensures the range of variation of the angles ϕx, ϕy, ϕz is similar
to those of the spatial coordinates cx, cy, cz.

It is important to point out that the matrices of rotation related to
ϕx, ϕy, ϕz do not commute (since SO(3) is a non-commutative group). Here,
the sequence of rotations is applied in the following order: ϕx → ϕy → ϕz.

4.2.2. Outputs

Three outputs are selected for the SA: the regularization parameter η2

(Eq. (11)), a normalized mean square error between cross-spectral matrices
and the acoustic power radiated by the reconstructed source field. The last
two outputs are investigated with both Beamforming and Bayesian focusing.
These two outputs are rooted on quadratic quantities that are often of prime
interest in industrial applications. The regularization parameter is interesting
to study as it encompasses the effects of the sources of uncertainty on the
coefficients ai(r) (Eq. (12)).

The normalized mean square error reads:

MSE =
‖Spp − Sp̂p̂‖F
‖Spp‖F

, (22)

where Spp is the cross-spectral matrix of the pressures p obtained after prop-
agating the sources of uncertainty and Sp̂p̂ is the cross-spectral matrix of the
pressures obtained from the reconstructed acoustic sources (see Eq. (3))
and propagated without perturbations, that is p̂ = Gq̂. The notation ‖.‖F
denotes the Frobenius norm. The mean square error assesses whether the
acoustic source is well reconstructed or not. Using this output, the SA will
inform on the inputs having the most effect on the source reconstruction
when their uncertainties are propagated during the forward problem (Eq.
(2)).

The last output considered is the acoustic power radiated by the recon-
structed source field. The expression of this output varies whether Beam-
forming or Bayesian focusing is employed. With Beamforming, the acoustic
power is taken as the power radiated by the reconstructed source q̂ on the
node r0 of Γ where the source strength is maximal (i.e., the center of Γ,
r0 = (0.0, 0.0, 0.6)):

Wbeam =
ρck2|q̂(r0)|2

8π
. (23)
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With Bayesian focusing, the acoustic power consists of summing the power
radiated by each virtual source, i.e. each node of Γ, independently and a
second term characterizing the influence of the neighbor sources. Formally,
this reads:

Wbaye =
∑
r∈Γ

ρck2|q̂(r)|2
8π

+
Re{prq̂∗(r)}

2
, (24)

where Re{. } is the real part operator and pr is the acoustic pressure at
position r generated by the other correlated sources:

pr =
∑

r′∈Γ\{r}

G(r|r′)q̂(r′) .

4.3. Results

Saltelli’s procedure is carried on with n = 10 000 samples of each input
variable. The total cost of the procedure corresponds to 110 000 model
evaluations. The analysis is conducted for a set of 128 frequencies ranging
from 100 Hz to 12 800 Hz with a spacing of 100 Hz. Since the formulation
presented in Section 2.1 assumed a fixed frequency, the SA returns one set of
Sobol’ estimates per frequency. Results are explored with stacked area chart
to observe the evolution of the Sobol’ estimates in function of the frequency.
For each of the three outputs selected, stack area charts of the first-order
indices and of the total effect order indices are drawn.

Within Bayesian focusing, the noise covariance matrix Ωn (Eq. (8)) is
chosen to be the identity matrix. The covariance matrix Ωc (Eq. (10)) is
deduced from Ωq [24, Eq. (6)], the covariance matrix of the prior distribution
of the source field. Here, Ωq is a diagonal matrix whose elements are designed
from a two-dimensional Hanning window with radial symmetry and radius
0.05 m.

4.3.1. Regularization parameter

This section displays the results of the SA for the regularization parameter
η2. Figure 3 shows the stacked area chart obtained for the first-order (Fig.
3-a) and the total effect Sobol’ estimates (Fig. 3-b).

First, it can be observed that six of the nine inputs have a significant
effect on the output: the SNR and R are influential mainly by main effects,
the position cx and cy of the microphone array are influential mainly by
interactions, the angles ϕx and ϕy are influential by both main effects and
interactions.
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Figure 3: (color online) Stack area charts for the regularization parameter η2. (a) First-
order Sobol’ indices. (b) Total effect Sobol’ indices.

The second observation focus on the behavior of the output η2. The
two vertical dashed lines indicate respectively the low cutoff frequency, flc ≈
1000 Hz, and high cutoff frequency of the microphone array, fhc ≈ 5000
Hz. These frequencies mark a transition between uncertainties due to the
propagation model and uncertainties due to the position and orientation of
the microphone array. Up to flc, only SNR and R are influential, that is only
uncertainties due to the propagation model affect η2. From flc to fhc the
effects of SNR and R progressively decrease while those of cx, cy, ϕx and ϕy
increase. From fhc onward, SNR and R stop being influential and only the
uncertainties about the position and the orientation of the antenna affect η2.

As a final observation, the sum of the first-order indices is always lower
than 0.5 from 3000 Hz onward. This shows the importance of the interaction
effects on the parameter η2.

4.3.2. Mean square error

This section displays the results of the SA for the mean square output
defined in Eq. (22). Figure 4 shows the stacked area chart obtained with
Beamforming (Figs. 4-a, 4-b) and Bayesian focusing (Figs. 4-c, 4-d).

From a qualitative point of view, the stack area charts obtained with
Beamforming or Bayesian focusing allow the identification of the same subset
of influential inputs: R, cx, cy, ϕx, ϕy. The nature of their effects is the same
as in the study conducted on η2, that is: R is influential mainly by main

17



100 2100 4100 6100 8100 10100 12100
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0
cx
cy

cz
ϕx

ϕy

ϕz

T

SNR

R

(a)

100 2100 4100 6100 8100 10100 12100
frequency (Hz)

0.0

0.5

1.0

1.5

2.0

2.5

(b)

100 2100 4100 6100 8100 10100 12100
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

(c)

100 2100 4100 6100 8100 10100 12100
frequency (Hz)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

(d)

Figure 4: (color online) Stack area charts for the MSE with Beamforming: (a) first-order
Sobol’ indices, (b) total effect Sobol’ indices, and with Bayesian focusing: (c) first-order
Sobol’ indices, (d) total effect Sobol’ indices.

effect, cx, cy mainly by interactions and ϕx, ϕy by both. The only exception
is the SNR captured with Bayesian focusing alone. This is not unforeseen as
the Bayesian formulation, reviewed in Section 2.3.2, specifically accounts for
the noise effect through the covariance matrix Ωn.

From a quantitative point of view however, the results differ between
Beamforming and Bayesian focusing. The SNR and R are influential on a
much wider frequency band with Bayesian focusing: from 100 to 7000 Hz
against 100 to 1000 Hz with Beamforming. This shows that, in terms of
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mean square error, Beamforming is more robust to “model” uncertainties
than Bayesian focusing.

Such a discrepancy can easily be explained. As discussed in Section 2.4,
with Beamforming, the reconstructed source q̂ (Eq. (3)) is only affected by
the uncertainties through p. With Bayesian focusing instead, q̂ is not only
affected by these uncertainties, but also by those through η2 as seen in Eq.
(12). Yet the previous SA of η2 highlighted the influence of SNR and R up
to roughly 5000 Hz. This explains why these two parameters possess a wider
frequency range of influence with Bayesian focusing, and also why similar
transitions to those highlighted in the study of η2 can be observed.

To conclude this analysis, one may observe in Figs. 4-a and 4-c a pro-
gressive decrease of the sum of the main effects (conversely an increase of the
interaction effects). This outlines again the importance of the interactions
between inputs modeling the position and orientation of the microphone ar-
ray.

4.3.3. Acoustic power

This section displays the results of the SA for the acoustic power defined
in Eqs. (23) and (24). Figure 5 shows the stacked area chart obtained with
Beamforming (Figs. 5-a, 5-b) and Bayesian focusing (Figs. 5-c, 5-d).

Unsurprisingly, the results obtained with both methods are drastically
different. This is simply due to the formulation of the acoustic power con-
trasting between the two approaches. With Beamforming, six influential
inputs are identified: cx, cy, cz, ϕx, ϕy and R. The inputs cz and R are
influential by main effects and only in the low frequency band, cx, cy are in-
fluential by interactions and ϕx and ϕy by both. The influence of cz is most
likely due to the acoustic power decreasing as 1/D2 in low frequencies where
D is the distance between a microphone and a node of the reconstruction
surface.

With Bayesian focusing, seven inputs are influential: cx, cy, ϕx, ϕy, T ,
SNR and R, all by both main effects and interactions over the whole fre-
quency range. The exception is the temperature T , influential only in the
low frequency band. The effect of the temperature stems from the second
term of Wbaye (Eq. (24)) that accounts for the pressure generated by neigh-
bor sources. Once more, the low cutoff frequency of the microphone array
indicates transitions, although different from those observed in the last two
studies. Up to flc, only SNR, R and T are influential. Then, from flc onward,
the effects of cx, cy, ϕx, ϕy, SNR and R progressively grow.
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Figure 5: (color online) Stack area charts for the acoustic power with Beamforming
(Wbeam) : (a) first-order Sobol’ indices, (b) total effect Sobol’ indices, and with Bayesian
focusing (Wbaye): (c) first-order Sobol’ indices, (d) total effect Sobol’ indices.

The results for both methods highlight once again the importance of the
interaction effects between inputs modeling the position and orientation of
the microphone array.

4.3.4. Additional remarks

Among the three SA performed, the input ϕz is the only one to never be
influential. This was predictable given the geometry of the set-up: a rotation
of angle ϕz about the z axis leaves the microphone array in the same plane
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(i.e. the circular array revolves around axis z), parallel to the reconstruction
surface.

The results of the SA underline the complexity of acoustic imaging: im-
portant variations of the Sobol’ indices with the frequency in addition to the
predominance of interaction effects (in most numerical models it is generally
the main effects that drive the variance of the output). All three outputs
studied point out the effects of interactions between inputs modeling the po-
sition and the direction of the microphone array. Hence, the array should be
set with utmost care before conducting and experiment.

As a conclusive remark, one should pay attention that the SA performed
here is dependent of many factors: the number of inputs, the distributions
assigned to the inputs, the nature of the output selected, the configuration
of the set-up (number of microphones, number of sources, geometry of the
microphone array and so on). Consequently, the conclusions drawn for this
particular set-up cannot be easily generalized to other case studies.

4.4. Comparison with real measurements

This section provides a comparison between the real experiment, using
a batch of measurements conducted in a semi-anechoic chamber, and its
numerical approximation. Due to material constraints, only four of the nine
parameters listed in Table 1 were used in the real experiment: the positions
cx, cy, cz of the microphone array and the ground reflection R. The effect
of the ground reflection was captured by the addition or subtraction of an
absorbent foam on the ground. This constrains R to be modeled as a bimodal
variable. A total of 8 experiments were conducted by varying the four inputs
at once.

The adequation between the real experiment and its numerical approx-
imation is gauged by checking if the real output values (obtained with the
real experiments) fall far from the distribution of the numerical outputs. The
adequation is analyzed for the two outputs: MSE and acoustic power level,
and with the two inverse methods: Beamforming and Bayesian focusing. The
acoustic power levels are derived from Eqs. (23) and (24) by:

LWbeam
= 10 log10

(
Wbeam

10−12

)
, LWbaye

= 10 log10

(
Wbaye

10−12

)
.

The sampling used in Saltelli’s procedure enables the computation of some
statistical features characterizing the output distribution. These features
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Figure 6: (color online) Distribution of the output MSE when the acoustic source is
reconstructed with either: (a) Beamforming or (b) Bayesian focusing. The two regions are
delimited by the fifth and the 95-th percentiles of the numerical outputs.

can be exploited in turns, and in parallel with the results of the sensitivity
analysis, to draw further conclusions. The features selected here are the
mean and the fifth and 95-th percentiles. In Figures (6) and (7), the mean is
displayed as a dashed curve, the fifth and the 95-th percentiles delimit two
regions: one encompassing 90% of the numerical values, the other containing
the remaining 10%.

4.4.1. Mean square error

Figure 6-(a) shows the values of the MSE when the source q is recon-
structed with Beamforming. It can be seen that the real outputs match well
with the distribution of the numerical outputs. The real outputs all spread
inside the region containing 90% of the values. The mismatch observed in
the very low frequency band (below 500 Hz) is most likely due to the Beam-
forming method itself, known to perform poorly in this frequency range.

Results shown on Fig. 6-(b), when the source q is reconstructed with
Bayesian focusing, are more mitigated. Up to 5000 Hz, the real outputs fall
almost all within the region containing 10% of the values. From 5000 Hz
onward, the real outputs fall within the 90% region but are still far from
the mean curve. The origin of the discrepancy observed up to 5000 Hz
presumably follows from the presence of other sources of uncertainty that
were not accounted for in the numerical model (e.g. diffraction or reflection
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on objects in the chamber during the experiment). The results presented in
Figs. (4)-(c) and (4)-(d)) back up this assertion. It was revealed that up to
the frequency 5000 Hz, the MSE is mainly affected by source of uncertainties
inherent to the propagation model (SNR and R).

Looking at the distribution of the numerical outputs, Bayesian focusing
is clearly more resilient to uncertainties than Beamforming, both in terms
of mean and 90% region. With Bayesian focusing, the MSE starts worsen-
ing around the high cutoff frequency of the antenna, which corresponds to
the frequency where the parameters describing the position and orientation
of the antenna start being influential (see Figs. (4)-(c) and (4)-(d)). The
observation is identical with Beamforming, the MSE progressively worsen
as the effects of these parameters grow. From these observations, it can be
concluded that the effects of these parameters are those altering the most
the resolution of the inverse problem, while the effects of the SNR and the
ground reflection are less pronounced.

4.4.2. Acoustic power level

For the results presented in this section, the values of the acoustic power
level computed numerically were adjusted to match the order of magnitude
of the acoustic power level obtained from the real experiments.

Fig. 7-(a) shows the values of the acoustic power level when the source
q is reconstructed with Beamforming. Again, the real outputs match well
with the distribution of the numerical outputs. The real outputs are more
concentrated in the upper half of the 90% region. The results highlight the
interaction effects, taking place from 2000 Hz onward and lessening the power
level.

Figure 7-(b) shows the values of the acoustic power level when the source q
is reconstructed with Bayesian focusing. The real outputs match particularly
well with the distribution of the numerical outputs. The experiment curves
are spread close to the mean in the low and high frequency bands. In contrast
to Beamforming, the interaction effects can diminish as much as increase the
power level. The rationale for such a result most probably comes from the
additional term in Wbaye (Eq. (24)).

Concerning the distribution of the numerical outputs, the conclusions are
identical to those drawn in the previous section. The acoustic power level
worsen in the frequency band where the effects of the parameters related
to the position and the orientation of the antenna prevail. Furthermore,
Bayesian focusing appears to be more resilient once again.
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Figure 7: (color online) Distribution of the acoustic power level when the source is re-
constructed with either: (a) Beamforming or (b) Bayesian focusing. The two regions are
delimited by the fifth and the 95-th percentiles of the numerical outputs.

4.4.3. Conclusive remarks

The distribution of the numerical outputs shown in Fig. 6 and Fig. 7
might seem extreme. However, this can easily be explained by the wide range
of variations selected for the study performed in this paper, in particular for
the position and orientation of the antenna. Smaller ranges would lead to
tighter 90% and 10% regions.

On the other hand, one may wonder why the experimental curves are not
scattered inside the 90% region. This can be explained by the three angles
characterizing the microphone array orientation, whose effects were not con-
sider in the real experiments due to logistic constraints. The importance of
these parameters have been highlighted in all the SA conducted as much as
in the quantitative studies of Section 4. By not including these parameters,
the variation of the different outputs is greatly reduced and the experimental
curves are close to each others.

As a final note, an equivalent analysis was conducted for η2 with matching
results as well, although not presented here due to lack of space.

5. Conclusion

The sensitivity analysis method based on the calculation of Sobol’ indices
has been employed in this paper to study the effect of uncertainties on the
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reconstruction of an acoustic source. Two inverse methods have been in-
vestigated for the reconstruction: Beamforming and Bayesian focusing. The
sources of uncertainty that have been considered are spatial variables de-
scribing the position and orientation of the microphone array and variables
relative to the physics of the experiment: temperature, ground reflection and
SNR. The SA has been performed for the following outputs: a normalized
mean square error between cross-spectral matrices, the acoustic power radi-
ated by the reconstructed source field and the regularization parameter of
the Bayesian approach.

All in all, both the results of the SA and the studies of the outputs dis-
tributions have pointed out the importance of the effects of the parameters
modeling the position and the direction of the microphone array. From an
experimental point of view, this suggests that the main effort should be fo-
cused on properly setting the microphone array. The SA results also backed
up the assertion that Beamforming and Bayesian focusing differ drastically.
From a qualitative point of view, the subset of influential parameters are not
identical. Quantitatively speaking, while the nature of the influences (inter-
actions and/or main effects) have been found similar with both formulations,
the frequency range of each influential input is contrasted.

The results of the real experiments conducted in the semi-anechoic cham-
ber have agreed quite well with the numerical model. The slight discrepancies
observed most probably stem from other sources of uncertainty that were not
considered in the SA or from the method itself (e.g., Beamforming known to
perform badly in the low frequency band). Bayesian focusing was also shown
to be overall more resilient than Beamforming to the sources of uncertainty.
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erated by the French National Research Agency (ANR-10-LABX-0060/ANR-
11-IDEX-0007).

References

[1] Q. Q. Leclère, A. Pereira, C. Bailly, J. Antoni, C. Picard, A unified for-
malism for acoustic imaging based on microphone array measurements,
International Journal of Aeroacoustics 16 (4-5) (2017) 431–456.

25



[2] J. Billingsley, R. Kinns, The acoustic telescope, J. Sound Vib. 48 (4)
(1976) 485–510.

[3] J. Antoni, A bayesian approach to sound source reconstruction: Optimal
basis, regularization, and focusing, J. Acoust. Soc. Am. 131 (4) (2012)
2873–2890.

[4] A. Sarkissian, Extension of measurement surface in near-field acoustic
holography, J. Acoust. Soc. Am. 115 (4) (2004) 1593–1596.

[5] S. F. Wu, On reconstruction of acoustic pressure fields using the
helmholtz equation least squares method, J. Acoust. Soc. Am. 107 (5)
(2000) 2511–2522.

[6] E. G. Williams, Fourier Acoustics: Sound Radiation and Nearfield
Acoustical Holography, Academic Press, London, 1999.

[7] A. Saltelli, K. Chan, E. M. Scott, Sensitivity Analysis, Wiley, 2008.

[8] H. Rabitz, Systems analysis at the molecular scale, Science 246 (1989)
221–226.

[9] M. D. Morris, Factorial sampling plans for preliminary com-
putational experiments, Technometrics 33 (2) (1991) 161–174.
doi:10.2307/1269043.
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