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Abstract. In this paper, we study the ruin problem with invest-
ment in a general framework where the business part X is a Lévy
process and the return on investment R is a semimartingale. We
obtain upper bounds on the finite and infinite time ruin proba-
bilities that decrease as a power function when the initial capital
increases. When R is a Lévy process, we retrieve the well-known
results. Then, we show that these bounds are asymptotically op-
timal in the finite time case, under some simple conditions on the
characteristics of X . Finally, we obtain a condition for ruin with
probability one when X is a Brownian motion with negative drift
and express it explicitly using the characteristics of R.

MSC 2010 subject classifications: 91B30 (primary), 60G99, 65C30

1. Introduction and Main Results

The estimation of the probability of ruin of insurance companies is
a fundamental problem for market actors. In his seminal paper [9],
Cramér used a compound Poisson process with drift to model the value
of an insurance company and showed that, under some assumptions
on the parameters of the process, the probability of ruin decreases at
least as an exponential function of the initial capital. Over time, the
compound Poisson process has been replaced by more complex models.
In a first generalisation, the value of the company is modeled by a Lévy
process and then the ruin probability behaves essentially like the tail
of the Lévy measure and, in the light-tailed case, this means that this
probability decreases at least as an exponential function (see [1], [19],
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2 ON THE RUIN PROBLEM

[21], and [37]). To generalise even further, it can be assumed that
insurance companies invest their capital in a financial market. The
main question is then: how does the probability of ruin changes with
this additional source of risk?

In this general setting, the value of an insurance company with initial
capital y > 0, denoted by Y = (Yt)t≥0, is given as the solution of the
following linear stochastic differential equation

(1) Yt = y +Xt +

∫ t

0

Ys−dRs, for all t ≥ 0,

where X = (Xt)t≥0 and R = (Rt)t≥0 are two independent one dimen-
sional stochastic processes defined on some probability space (Ω,F ,P)
and chosen so that (1) makes sense. In risk theory, the process X rep-
resents the profit and loss of the business activity and R represents the
return of the investment. The main problem then concerns the study
of the stopping time defined by

τ(y) = inf{t ≥ 0|Yt < 0}
with inf{∅} = +∞ and the evaluation of the ruin probability before
time T > 0, namely P(τ(y) ≤ T ), and the ultimate ruin probability
P(τ(y) < +∞). The ruin problem in this general setting was first
studied in [27].

Before describing our set-up and our results, we give a brief review of
the relevant litterature. The special case when Rt = rt, with r > 0,
for all t ≥ 0 (non-risky investment) is well-studied and we refer to [31]
and references therein for the main results. In brief, in that case and
under some additional conditions, the ruin probability decreases even
faster than an exponential since the capital of the insurance company
is constantly increasing.

The case of risky investment is also well-studied. In that case, it is
assumed in general that X and R are independent Lévy processes.
The first results in this setting appear in [18] (and later in [39]) where
it was shown that under some conditions there exists C > 0 and y0 ≥ 0
such that for all y ≥ y0 and for some b > 0

P(τ(y) < +∞) ≥ Cy−b.

Qualitatively, this means that the ruin probability cannot decrease
faster as a power function, i.e. the degrowth is much slower than in the
no-investment case. Later, under some conditions on the Lévy triplets
of X and R, it was shown in [30] that for some β > 0 and ǫ > 0, there
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exists C > 0 such that, as y → ∞,

yβ P(τ(y) < +∞) = C + o(y−ǫ).

Recently, in [16], it is proven, under different assumptions on the Lévy
triplets and when X has no negative jumps, that there exists C > 0
such that for the above β > 0

lim
y→∞

yβ P(τ(y) < +∞) = C.

Results concerning bounds on P(τ(y) < +∞) are given in [18] where
it is shown that, for all ǫ > 0, there exists C > 0 such that for all y ≥ 0
and the same β > 0

P(τ(y) < +∞) ≤ Cy−β+ǫ.

In less general settings similar results are available. The case when X
is a compound Poisson process with drift and exponential jumps and R
is a Brownian motion with drift is studied in [13] (negative jumps only)
and in [17] (positive jumps only). In [32] the model with negative jumps
is generalized to the case where the drift of X is a bounded stochastic
process.

Finally, some exact results for the ultimate ruin probability are avail-
able in specific models (see e.g. [31], [39]) and conditions for ruin with
probability one are given, for different levels of generality, in [13], [16],
[17], [18], [29] and [32].

The goal of this paper is to contribute to the study of the ruin problem
by extending some results to the case when R is a semimartingale and
by obtaining similar results for the finite-time ruin probability in this
general set-up. Thus, in the following we suppose that the processes
X = (Xt)t≥0 and R = (Rt)t≥0 are independent one-dimensional pro-
cesses both starting from zero, and such that X is a Lévy process and
R is a semimartingale. We suppose additionally that the jumps of R
denoted ∆Rt = Rt−Rt− are strictly bigger than −1, for all t > 0.

We denote the generating triplet of the Lévy process X by (aX , σ
2
X , νX)

where aX ∈ R, σX ≥ 0 and νX is a Lévy measure. We recall that
the generating triplet characterizes the law of X via the characteristic
function φX of Xt (see e.g. p.37 in [36]):

φX(λ) = exp

(

t

(

iλaX − σ2
Xλ

2

2
+

∫

R

(eiλx − 1− iλx1{|x|≤1}) νX(dx)

))
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where the Lévy measure νX satisfies
∫

R

min(x2, 1) νX(dx) <∞.

As well-known, the process X can then be written in the form:

Xt = aXt+ σXWt +

∫ t

0

∫

|x|≤1

x(µX(ds, dx)− νX(dx)ds)

+

∫ t

0

∫

|x|>1

xµX(ds, dx),

(2)

where µX is the measure of jumps of X and W is standard Brownian
Motion.

We recall that a semimartingale R = (Rt)t≥0 can be also defined by its
semimartingale decomposition, namely

Rt = Bt +Rc
t +

∫ t

0

∫

|x|≤1

x(µR(ds, dx)− νR(ds, dx))

+

∫ t

0

∫

|x|>1

xµR(ds, dx),

(3)

where B = (Bt)t≥0 is a drift part, Rc = (Rc
t)t≥0 is the continuous

martingale part of R, µR is the measure of jumps of R and νR is its
compensator (see e.g. Chapter 2 of [15] for more information about
these notions).

As well-known the equation (1) has a unique strong solution (see e.g.
Theorem 11.3 in [28]): for t > 0

(4) Yt = E(R)t
(

y +

∫ t

0

dXs

E(R)s−

)

where E(R) is Doléans-Dade’s exponential,

E(R)t = exp

(

Rt −
1

2
〈Rc〉t

)

∏

0<s≤t

(1 + ∆Rs)e
−∆Rs

(for more details about Doléans-Dade’s exponential see e.g. Ch.1, §4f,
p. 58 in [15]). Then the time of ruin is simply

(5) τ(y) = inf

{

t ≥ 0

∣

∣

∣

∣

∫ t

0

dXs

E(R)s−
< −y

}

because E(R)t > 0, for all t ≥ 0, and this last fact follows from the
assumption that ∆Rt > −1, for all t ≥ 0.
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In this paper, we show that the behaviour of τ(y) for finite horizon
T > 0 depends strongly on the behaviour of the exponential functionals
at T , i.e. on the behaviour of

IT =

∫ T

0

e−R̂sds and JT (α) =

∫ T

0

e−αR̂sds

where α > 0 and R̂t = ln E(R)t, for all t ≥ 0, and for infinite horizon
on the behaviour of

I∞ =

∫ ∞

0

e−R̂sds and J∞(α) =

∫ ∞

0

e−αR̂sds.

For convenience we denote JT = JT (2) and J∞ = J∞(2). More pre-
cisely, defining

βT = sup
{

β ≥ 0 : E(J
β/2
T ) <∞,E(JT (β)) <∞

}

,

we prove the following theorem.

Theorem 1. Let T > 0. Assume that βT > 0 and that, for some
0 < α < βT , we have

(6)

∫

|x|>1

|x|ανX(dx) <∞.

Then, for all y > 0,

P(τ(y) ≤ T ) ≤ C1E(I
α
T ) + C2E(J

α/2
T ) + C3E(JT (α))

yα
,

where the expectations on the right hand side are finite and C1 ≥ 0,
C2 ≥ 0, and C3 ≥ 0 are constants that depend only on α in an explicit
way.

This theorem links the ruin probability with the tails of the Lévy mea-
sure of X and the exponential functionals of the process R which are
well-studied objects. It also gives the first results for the case when
R belongs to the class of semimartingales, and the case when R is a
Lévy process is recovered as a special case. This could be used to
study the ruin probabilities when the asset has stochastic volatility or
when the investment is in a risk-free asset with a stochastic interest
rate. Theorem 1 is also, up to our knowledge, the first result, when
R is not deterministic, for the ruin before a finite time for processes
given by equations of the form (1) even in the case when R is a Lévy
process.
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From Theorem 1, we can easily obtain a similar results for the ultimate
ruin probability. Define

β∞ = sup
{

β ≥ 0 : E(Iβ∞) <∞,E(Jβ/2
∞ ) <∞,E(J∞(β)) <∞

}

.

Then, since (It)t≥0, (Jt)t≥0 and (Jt(α))t≥0 are increasing, we obtain,
letting T → ∞ and using the monotone convergence theorem with the
upper bound of Theorem 1, the following corollary.

Corollary 1. Assume that β∞ > 0 and that (6) holds for some 0 <
α < β∞, then

P(τ(y) <∞) ≤ C1E(I
α
∞) + C2E(J

α/2
∞ ) + C3E(J∞(α))

yα
,

where C1 ≥ 0, C2 ≥ 0, and C3 ≥ 0 are constants that depend only on
α in an explicit way.

We can show, when βT ≥ 1 and under some simple conditions on
the Lévy triplet of X , that the bound in Theorem 1 is asymptotically
optimal in a sense given below.

Theorem 2. Let T > 0. Assume that 1 ≤ βT <∞ and that E(IβT

T ) =
+∞. Additionally, assume that

∫

|x|>1

|x|νX(dx) < +∞

and that

(7) aX +

∫

|x|>1

xνX(dx) < 0 or σX > 0.

Then, for all δ > 0, there exists a positive numerical sequence (yn)n∈N
increasing to +∞ such that, for all C > 0, there exists n0 ∈ N such
that for all n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yβT
n ln(yn)1+δ

.

Moreover, if (6) is satisfied for all α < βT , then,

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
= −βT .

To complete our study of the ruin problem in this setting, we give in
our last result a sufficient condition for ruin with probability one in the
particular case when X is a Brownian motion with negative drift.
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Proposition 1. Assume that Xt = aXt + σXWt, for all t ≥ 0, with

aX ≤ 0, σX ≥ 0 and a2X+σX > 0. Assume also that limt→∞
R̂t

t
= µ < 0

(P− a.s.). Then, for all y > 0,

P(τ(y) <∞) = 1.

The rest of the paper is structured as follows. In Section 2, we point
to the known results about exponential functionals of semimartingales,
give a simple way to obtain βT and β∞ in the case when R is a Lévy
process and apply it to some examples. In Section 3, we prove Theorem
1 and, in Section 4, we prove Theorem 2. In Section 5, we prove
Theorem 1 and we obtain explicit conditions on the characteristics

of R to have limt→∞
R̂t

t
< 0 (P − a.s.). Finally, we show also that

in the case when R is a Lévy process this corresponds to the known
results.

2. Exponential functionals of semimartingales

Exponential functionals of semimartingales (especially of Lévy pro-
cesses) are very well-studied. The question of existence of the moments
of I∞ and the formula in the case when R is a subordinator was con-
sidered in [6], [10] and [34]. In the case when R is a Lévy process, the
question of the existence of the density of the law of I∞, PDE equations
for the density and the asymptotics for the law were investigated in [2],
[3], [4], [5], [7], [11], [12], [14], [20], [25], [26] and [33]. In the more
general case of processes with independent increments, conditions for
the existence of the moments and reccurent equations for the moments
were studied in [34] and [35]. The existence of the density of such func-
tionals and the corresponding PDE equations were considered in [38].
Here, we give two simple results concerning the finiteness of βT and β∞
when R is a Lévy process and apply them to the computation of βT
and β∞ in some examples. Then, we present an example when R is an
additive process.

First of all, we give some basic facts about the exponential transform
R̂ = (R̂t)t≥0 of R, i.e. the process defined by

E(R)t = exp(R̂t).

Since

E(R̂t) = exp

(

Rt −
1

2
〈Rc〉t +

∑

0<s≤t

(ln(1 + ∆Rs)−∆Rs)

)
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we get that

R̂t = Rt −
1

2
〈Rc〉t +

∑

0<s≤t

(ln(1 + ∆Rs)−∆Rs).

When R is a semimartingale, the process R̂ is also a semimartingale
and the jumps of R̂ are given by

∆R̂t = ln(1 + ∆Rt), for all t ≥ 0.

Similarly, when R is a Lévy process, the process R̂ is also a Lévy
process.

Proposition 2. Suppose that R is a Lévy process. For α > 0 and
T > 0 the following conditions are equivalent:

(i) E(JT (α)) <∞,

(ii)
∫

|x|>1
e−αxνR̂(dx) <∞,

(iii)
∫∞
−1

1{| ln(1+x)|>1}(1 + x)−ανR(dx) <∞.

Proof. By Fubini’s theorem, we obtain

E(JT (α)) = E

(
∫ T

0

e−αR̂tdt

)

=

∫ T

0

E(e−αR̂t)dt.

So, E(JT (α)) <∞ is equivalent to E(e−αR̂t) <∞, for all t ≥ 0, which,
by Theorem 25.3, p.159 in [36], is equivalent to

∫

|x|>1

e−αxνR̂(dx) <∞.

Then, note that
∫

|x|>1

e−αxνR̂(dx) =

∫ 1

0

∫

|x|>1

e−αxνR̂(dx)ds

= E

(

∑

0<s≤1

e−α∆R̂s1{|∆R̂s|>1}

)

= E

(

∑

0<s≤1

(1 + ∆Rs)
−α1{| ln(1+∆Rs)|>1}

)

=

∫ ∞

−1

1{| ln(1+x)|>1}(1 + x)−ανR(dx).

�
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Proposition 2 allows us to compute βT in some standard models of
mathematical finance.

Example 1. Suppose that R̂ is given by R̂t = aR̂t+ σR̂Wt +
∑Nt

n=0 Yn,
where aR̂ ∈ R, σR̂ ≥ 0, W = (Wt)t≥0 is a standard Brownian motion
and N = (Nt)t≥0 is a Poisson process with rate γ > 0, and (Yn)n∈N
is a sequence of iid random variables. Suppose, in addition, that all
processes involved are independent. If for (Yn)n∈N we take any sequence
of iid random variables with E(e−αY1) < ∞, for all α > 0, then βT =
+∞. If for (Yn)n∈N we take a sequence of iid random variables with
E(e−αY1) < ∞, when α < α0, for some α0 > 0, and E(e−α0Y1) = +∞,
then βT = α0.

Example 2. Suppose that R̂ is a Lévy process with triplet (aR̂, σ
2
R̂
, νR̂),

where aR̂ ∈ R, σR̂ ≥ 0 and νR̂ is the measure on R given by

νR̂(dx) =
(

C1|x|−(1+α1)e−λ1|x|1{x<0} + C2x
−(1+α2)e−λ2x1{x>0}

)

dx,

where C1, C2 > 0, λ1, λ2 > 0 and α1, α2 < 2. This specification includes
as special cases the Kou, CGMY and variance-gamma models (see e.g.
Section 4.5 p.119 in [8]). We will show that if λ1 ≥ 2, then βT = λ1.
Note that, using Proposition 2 and the change of variables y = −x, we
see that E(JT (α)) <∞, for α > 0, is equivalent to

C1

∫ ∞

1

y−(1+α1)e−(λ1−α)ydy + C2

∫ ∞

1

x−(1+α2)e−(α+λ2)xdx <∞.

But, the first integral converges if α < λ1 and diverges if α > λ1 and
second integral always converges. Now, if α ≥ 2, it is easy to show that

E(JT (α)) < ∞ implies E(J
α/2
T ) < ∞ (see Lemma 1 below). Thus, if

λ1 ≥ 2, we have βT = λ1.

We now give an example when R is not a Lévy process.

Example 3. Suppose that L = (Lt)t≥0 is a Lévy process with triplet
(aL, σ

2
L, νL) where νL is assumed to be absolutely continuous w.r.t. the

Lebesgue measure with density fL. Suppose that g is a deterministic,
positive, measurable and square-integrable function on R. Let Rt =
∫ t

0
g(s−)dLs, for all t ≥ 0. Then, in general, R is a process with

independent but non-homogeneous increments. From Proposition 1
and Example 3 in [34], we see that, if α ≥ 2 and

(8)

∫ T

0

∫

x<−1

e−αxg(s)νL(dx)ds < +∞

then E(JT (α)) < +∞ and, by Lemma 1 below, E(J
α/2
T ) < +∞. Thus,

α ≤ βT .
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Proposition 3. Suppose that the Lévy process R̂ admits a Laplace
transform, for all t ≥ 0, i.e. for α > 0

E(exp(−αR̂t)) = exp(tψR̂(α))

and that its Laplace exponent ψR̂ has a strictly positive root β. Then
the following conditions are equivalent:

(i) E(Iα∞) <∞,

(ii) E(J
α/2
∞ ) <∞,

(iii) E(J∞(α)) <∞,

(iv) α < β.

Therefore, β∞ = β.

Proof. Note that, for any α > 0 and k > 0,

exp(tψR̂(α)) = E(exp(−αR̂t)) = E
(

exp
(

−α
k
kR̂t

))

= exp
(

tψkR̂

(α

k

))

.

Therefore, ψR̂(α) = ψkR̂

(

α
k

)

, for all α > 0 and k > 0. Then, Lemma 3
in [33] yields the desired result. �

Remark 1. Note that the root of the Laplace exponent was already
identified as the relevant quantity for the tails of P(τ(y) <∞) in [30].

Using Proposition 3 we can compute β∞ in two important examples.

Example 4. Suppose that Rt = aRt + σRWt, for all t ≥ 0, where
aR ∈ R, σR > 0 and W = (Wt)t≥0 is a standard Brownian motion,

then R̂t =
(

aR − σ2
R

2

)

t+σRWt, for all t ≥ 0. Thus, we obtain ψR̂(α) =

−
(

aR − 1
2
σ2
R

)

α +
σ2
R

2
α2 and, by Proposition 3, β∞ = 2aR

σ2
R

− 1. We

remark that this coincides with the results in e.g. [13] and [17].

Example 5. Suppose that R̂t = aR̂t + σR̂Wt +
∑Nt

n=0 Yn, where aR̂ ∈
R, σR̂ ≥ 0 and W = (Wt)t≥0 is a standard Brownian motion and
N = (Nt)t≥0 is a Poisson process with rate γ > 0, and (Yn)n∈N is a
sequence of iid random variables with E(e−αY1) < ∞, for all α > 0.
Suppose, in addition, that all processes involved are independent. It is
easy to see that, for all α > 0,

ψR̂(α) = −aR̂α +
σ2
R̂

2
α2 + γ

(

E(e−αY1)− 1
)

.
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Now, it is possible to show (see e.g. [37]) that the equation ψR̂(α) = 0

has an unique non-zero solution if, and only if, R̂ is not a subordinator
and ψ′(0+) < 0 which, under some additional conditions to invert the
differentiation and expectation operators, is equivalent to aR̂ > γE(Y1)
(and which corresponds, in actuarial theory, to the ”safety loading
condition”). In that case, β∞ is the unique non-zero real solution of
this equation.

3. Upper bound

In this section, we prove Theorem 1. We start with some preliminary
results.

Lemma 1. For all T > 0, we have the following.

(a) If 0 < α < 2, then E(J
α/2
T ) < ∞ implies E(IαT ) < ∞ and

E(JT (α)) <∞.

(b) If α ≥ 2, E(JT (α)) <∞ implies E(IαT ) <∞ and E(J
α/2
T ) <∞.

Proof. First note that by the Cauchy-Schwarz inequality we obtain, for
all T > 0,

IT =

∫ T

0

E(R)−1
s ds ≤

√
T

(
∫ T

0

E(R)−2
s ds

)1/2

=
√
T
√

JT .

So, E(IαT ) ≤ T α/2E(J
α/2
T ), for all α > 0.

Now, if 0 < α < 2, we have 2
α
> 1 and by Hölder’s inequality

JT (α) =

∫ T

0

E(R)−α
s ds ≤ T (2−α)/2

(
∫ T

0

E(R)−2
s ds

)α/2

= T (2−α)/2J
α/2
T .

These inequalities yield (a).

Now, if α ≥ 2, we have either α = 2 which yields the desired result or
α > 2. In that case, we have α

2
> 1 and, by Hölder’s inequality, we

obtain

JT =

∫ T

0

E(R)−2
s ds ≤ T (α−2)/α

(
∫ T

0

E(R)−α
s ds

)2/α

= T (α−2)/αJT (α)
2/α.

So, E(J
α/2
T ) ≤ T (α−2)/2E(JT (α)), which yields (b). �
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Denote by Md = (Md
t )t≥0 the local martingale defined as:

Md
t =

∫ t

0

∫

|x|≤1

x

E(R)s−
(µX(ds, dx)− νX(dx)ds)

and by U = (Ut)t≥0 the process given by

Ut =

∫ t

0

∫

|x|>1

x

E(R)s−
µX(ds, dx).

If
∫

|x|>1
|x|νX(dx) < +∞, we can also define the local martingale Nd =

(Nd
t )t≥0 as

Nd
t =

∫ t

0

∫

R

x

E(R)s−
(µX(ds, dx)− νX(dx)ds).

Proposition 4. We have the following identity in law:
(
∫ t

0

dXs

E(R)s−

)

t≥0

L
=
(

aXIt + σXWJt +Md
t + Ut

)

t≥0
.

Moreover, if
∫

|x|>1
|x|νX(dx) < +∞, then,

(
∫ t

0

dXs

E(R)s−

)

t≥0

L
=
(

δXIt + σXWJt +Nd
t

)

t≥0
,

where δX = aX +
∫

|x|>1
xνX(dx).

Proof. We show first that

L
(

(
∫ t

0

dXs

E(R)s−

)

t≥0

| E(R)s = qs, s ≥ 0

)

= L
(

(
∫ t

0

dXs

qs−

)

t≥0

)

To prove this equality in law we consider the representation of the
stochastic integrals by Riemann sums (see [15], Proposition I.4.44, p.
51). We recall that for any increasing sequence of stopping times τ =
(Tn)n∈N with T0 = 0 such that supn Tn = ∞ and Tn < Tn+1 on the set

{Tn <∞}, Riemann approximation of the stochastic integral
∫ t

0
dXs

E(R)s−
will be

τ

(
∫ t

0

dXs

E(R)s−

)

=
∞
∑

n=0

1

E(R)Tn−

(

XTn+1∧t −XTn∧t
)

The sequence τn = (T (n,m))m∈N of the adapted subdivisions is called
Riemann sequence if supm∈N(T (n,m + 1) ∧ t − T (n,m) ∧ t) → 0 as
n → ∞ for all t > 0. For our purposes we will take a deterministic
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Riemann sequences. Then, Proposition I.4.44, p.51 of [15] says that for
all t > 0

(9) τn

(
∫ t

0

dXs

E(R)s−

)

P−→
∫ t

0

dXs

E(R)s−
and

(10) τn

(
∫ t

0

dXs

qs−

)

P−→
∫ t

0

dXs

qs−

where
P−→ denotes the convergence in probability. According to the

Kolmogorov theorem, the law of the process is entirely defined by
its finite-dimensional distributions. Let us take for k ≥ 0 a subdi-
vision t0 = 0 < t1 < t2 · · · < tk and a continuous bounded function
F : R

k → R, to prove by standard arguments that

E

[

F

(

τn

(
∫ t1

0

dXs

E(R)s−

)

, · · · τn
(
∫ tk

0

dXs

E(R)s−

))

| E(R)s = qs, s ≥ 0

]

= E

[

F

(

τn

(
∫ t1

0

dXs

qs−

)

, · · · τn
(
∫ tk

0

dXs

qs−

))]

Taking into account (9) and (10), we pass to the limit as n → ∞ and
we obtain

E

[

F

(
∫ t1

0

dXs

E(R)s−
, · · ·

∫ tk

0

dXs

E(R)s−

)

| E(R)s = qs, s ≥ 0

]

= E

[

F

(
∫ t1

0

dXs

qs−
, · · ·

∫ tk

0

dXs

qs−

)]

and this proves the claim.

Using the decomposition (2) we get that
∫ t

0

dXs

qs−
= aX

∫ t

0

ds

qs
+ σX

∫ t

0

dWs

qs−

+

∫ t

0

∫

|x|≤1

x

qs−
(µX(ds, dx)− νX(ds, dx))

+

∫ t

0

∫

|x|>1

x

qs−
µX(ds, dx).

We denote the last two terms in the r.h.s. of the equality above by
Md

t (q) and Ut(q) respectively. Recall that since X is Lévy process the
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four processes appearing in the right-hand side of the above equality
are independent. We use the well-known identity in law

(
∫ t

0

dWs

qs−

)

t≥0

L
=

(

W∫ t
0

ds

q2s

)

t≥0

to write
(

aX

∫ t

0

ds

qs
, σX

∫ t

0

dWs

qs−
,Md

t (q), Ut(q)

)

t≥0

L
=

(

aX

∫ t

0

ds

qs
, σXW∫ t

0

ds

q2s

,Md
t (q), Ut(q)

)

t≥0

.

Then, we take the sum of these processes and we integrate w.r.t. the
law of E(R). This yields the first result.

The proof of the second part is the same except we take the following
decomposition of X :

Xt = δXt+ σXWt +

∫ t

0

∫

R

x(µX(ds, dx)− νX(dx)ds).

�

The last ingredient in the proof of Theorem 1 are the Novikov maximal
inequalities for compensated integrals with respect to random measures
(see [4], [24] and also [23]) which we will state below after introducing
some notations. Let f : (ω, t, x) 7→ f(ω, t, x) be a left-continuous and
measurable random function on Ω×R+×R. Specializing the notations
of [24] to our case, we say that f ∈ F2 if, for almost all ω ∈ Ω,

∫ t

0

∫

R

f(ω, s, x)2νX(dx)ds <∞.

If f ∈ F2, we can define the compensated integral by

Cf(t) =

∫ t

0

∫

R

f(ω, s, x) (µX(ds, dx)− νX(dx)ds)

for all t ≥ 0. For these compensated integrals, we then have the fol-
lowing inequalities.

Proposition 5 (c.f. Theorem 1 in [24]). Let f be a left-continuous
measurable random function with f ∈ F2. Let Cf = (Cf (t))t≥0 be the
compensated integral of f as defined above.
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(a) For all 0 ≤ α ≤ 2,

E

(

sup
0≤t≤T

|Cf(t)|α
)

≤ K1E

[

(
∫ T

0

∫

R

f 2νX(dx)ds

)α/2
]

.

(b) For all α ≥ 2,

E

(

sup
0≤t≤T

|Cf(t)|α
)

≤ K2E

[

(
∫ T

0

∫

R

|f |2νX(dx)ds
)α/2

]

+K3E

(
∫ T

0

∫

R

|f |ανX(dx)ds
)

where K1 ≥ 0, K2 ≥ 0, and K3 ≥ 0 are constants depending only on α
in an explicit way.

Proof of Theorem 1. Note that

sup
0≤t≤T

−(aXIt + σXWJt +Md
t + Ut)

≤ |aX |IT + sup
0≤t≤T

σX |WJt |+ sup
0≤t≤T

|Md
t |+ sup

0≤t≤T
|Ut|,

and that for positive random variable Z1, Z2, Z3, Z4 we have

{Z1 + Z2 + Z3 + Z4 > y}

⊆
{

Z1 >
y

4

}

∪
{

Z2 >
y

4

}

∪
{

Z3 >
y

4

}

∪
{

Z4 >
y

4

}

.

Therefore, using Proposition 4, we obtain

P(τ(y) ≤ T ) =P

(

sup
0≤t≤T

−(aXIt + σXWJt +Md
t + Ut) > y

)

≤P
(

|aX |IT >
y

4

)

+P

(

sup
0≤t≤T

σX |WJt| >
y

4

)

+P

(

sup
0≤t≤T

|Md
t | >

y

4

)

+P

(

sup
0≤t≤T

|Ut| >
y

4

)

.

For the first term, using Markov’s inequality, we obtain

P
(

|aX |IT >
y

4

)

≤ 4α|aX |α
yα

E(IαT ).
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For the second term, since (Jt)0≤t≤T is increasing we can change the
time in the supremum and condition on (E(R)t)0≤t≤T to obtain

P

(

sup
0≤t≤T

σX |WJt| >
y

4

)

= P

(

sup
0≤t≤JT

σX |Wt| >
y

4

)

= E

[

P

(

sup
0≤t≤JT

σX |Wt| >
y

4

∣

∣

∣

∣

(E(R)t)0≤t≤T

)]

Since W and R are independent, we obtain, using the reflection princi-

ple, the fact that W∫ T
0

q−2
t dt

L
=
(

∫ T

0
q−2
t dt

)1/2

W1 and Markov’s inequal-

ity, that

P

(

sup
0≤t≤JT

σX |Wt| >
y

4

∣

∣

∣

∣

E(R)t = qt, 0 ≤ t ≤ T

)

= 2P

(

(
∫ T

0

q−2
t dt

)1/2

σX |W1| >
y

4

)

≤ 2
4ασα

X

yα

(
∫ T

0

q−2
t dt

)α/2

E(|W1|α).

Then, since E(|W1|α) = 2α/2
√
π
Γ
(

α+1
2

)

, we obtain

P

(

sup
0≤t≤T

σX |WJt | >
y

4

)

≤ 2(5α+2)/2Γ
(

α+1
2

)

σα
X√

πyα
E(J

α/2
T ).

Note that the inequalities for the first two terms work for all α > 0.

Suppose now that 0 < α ≤ 1. We see that E(R)−1
t− (ω)x1{|x|≤1} ∈ F2.

Therefore, using Markov’s inequality and part (a) of Proposition 5, we
obtain

P

(

sup
0≤t≤T

|Md
t | >

y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Md
t |α
)

≤ K1
4α

yα
E

[

(
∫ T

0

∫

R

x2

E(R)2s−
1{|x|≤1}νX(dx)ds

)α/2
]

= K1
4α

yα

(
∫

R

x21{|x|≤1}νX(dx)

)α/2

E(J
α/2
T ).
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For the last term, note that since 0 < α ≤ 1, we have
(

∑N
i=1 xi

)α

≤
∑N

i=1 x
α
i , for xi ≥ 0 and N ∈ N

∗ and, for each t ≥ 0,

|Ut|α ≤
(

∑

0<s≤t

E(R)−1
s−|∆Xs|1{|∆Xs|>1}

)α

≤
∑

0<s≤t

E(R)−α
s− |∆Xs|α1{|∆Xs|>1}

=

∫ t

0

∫

R

E(R)−α
s− |x|α1{|x|>1}µX(ds, dx).

Therefore, using Markov’s inequality and the compensation formula
(see e.g. Theorem II.1.8 p.66-67 in [15]), we obtain

P

(

sup
0≤t≤T

|Ut| >
y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Ut|α
)

≤ 4α

yα
E

(

sup
0≤t≤T

∫ t

0

∫

R

E(R)−α
s− |x|α1{|x|>1}µX(ds, dx)

)

=
4α

yα
E

(
∫ T

0

∫

R

E(R)−α
s− |x|α1{|x|>1}νX(dx)ds

)

=
4α

yα

(
∫

R

|x|α1{|x|>1}νX(dx)

)

E(JT (α)).

This finishes the proof when 0 < α ≤ 1.

Suppose now that 1 < α ≤ 2. The bound for P
(

sup0≤t≤T |Md
t | > y

4

)

can be obtained in the same way as in the previous case. Applying
Hölder’s inequality we obtain

|Ut|α ≤
(
∫ t

0

∫

R

E(R)−1/α
s− E(R)1/α−1

s− |x|1{|x|>1}µX(ds, dx)

)α

≤
(
∫ t

0

∫

R

E(R)−1
s−|x|α1{|x|>1}µX(ds, dx)

)

×
(
∫ t

0

∫

R

E(R)−1
s−1{|x|>1}µX(ds, dx)

)α−1

≤
(
∫ t

0

∫

R

E(R)−1
s−|x|α1{|x|>1}µX(ds, dx)

)α

.
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Then, using Markov’s inequality and the compensation formula, we
obtain

P

(

sup
0≤t≤T

|Ut| >
y

4

)

≤ 4α

yα
E

(

sup
0≤t≤T

|Ut|α
)

=

(
∫

R

|x|α1{|x|>1}νX(dx)

)α

E(IαT ).

This finishes the proof in the case 1 < α ≤ 2.

Finally, suppose that α ≥ 2. The estimation for P
(

sup0≤t≤T |Ut| > y
4

)

still works in this case. Moreover, since E(R)−1
t− (ω)x1{|x|≤1} ∈ F2, we

obtain, applying part (b) of Proposition 5 that

P

(

sup
0≤t≤T

|Md
t | >

y

4

)

≤K2E

[

(
∫ T

0

∫

R

E(R)−2
s−x

21{|x|≤1}νX(dx)ds

)α/2
]

+K3E

(
∫ T

0

∫

R

E(R)−α
s− |x|α1{|x|≤1}νX(dx)ds

)

=K2

(
∫

R

x21{|x|≤1}νX(dx)

)α/2

E(J
α/2
T )

+K3

(
∫

R

|x|α1{|x|≤1}νX(dx)

)

E(JT (α)).

Note that the right-hand side is finite since |x|α1{|x|≤1} ≤ |x|21{|x|≤1}
when α ≥ 2. This finishes the proof. �

4. Asymptotic lower bound

In this section, we prove Theorem 2 and, therefore, show that the upper
bound obtained in Theorem 1 is asymptotically optimal for a large class
of Lévy processes X . We start with some preliminary results. Denote
x+,p = (max(x, 0))p, for all x ∈ R and p > 0.

Lemma 2. Suppose that a random variable Z > 0 (P− a.s.) satisfies
E(Zp) = ∞, for some p > 0. Then, for all δ > 0, there exists a positive
numerical sequence (yn)n∈N increasing to +∞ such that, for all C > 0,
there exists n0 ∈ N such that for all n ≥ n0,

P(Z ≥ yn) ≥
C

ypn ln(yn)1+δ
.

Proof. If Z > 0 (P − a.s.) is a random variable and g : R+ → R+

is a function of class C1 with positive derivative, then, using Fubini’s
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theorem, we obtain

g(0) +

∫ ∞

0

g′(u)P(Z ≥ u)du = g(0) + E

(
∫ Z

0

g′(u)du

)

= E(g(Z)).

Applying this to the function g(z) = zp with p > 0 we obtain, for all
y ≥ e,

∫ ∞

y

up−1P(Z ≥ u)du = ∞.

Moreover, for all δ > 0,

sup
u≥y

[up ln(u)1+δP(Z ≥ u)]

∫ ∞

y

du

u ln(u)1+δ
≥
∫ ∞

y

up−1P(Z ≥ u)du.

So, since
∫∞
y

du
u ln(u)1+δ <∞, we obtain, for all y ≥ e,

sup
u≥y

[up ln(u)1+δP(Z ≥ u)] = ∞.

Therefore, there exists a numerical sequence (yn)n∈N increasing to +∞
such that,

lim
n→∞

ypn ln(yn)
1+δP(Z ≥ yn) = +∞.

�

Lemma 3. Assume that X and Y are independent random variables
with E(Y ) = 0. Assume that p ≥ 1. Then, E[X+,p] ≤ E[(X + Y )+,p].

Proof. For each x ∈ R, we define the function hx : y 7→ (x + y)+,p on
R. Since p ≥ 1, hx is a convex function and we obtain, using Jensen’s
inequality, that for each x ∈ R,

E[(x+ Y )+,p] = E[hx(Y )] ≥ hx(E(Y )) = hx(0) = x+,p.

We obtain the desired result by integrating w.r.t. the law of X . �

Lemma 4. Let T > 0. Assume that a < 0 or σ > 0 and that there
exists β > 0 such that E(IβT ) = ∞. Then, E[(−aIT − σWJT )

+,β] = ∞.

Proof. Suppose first that a < 0 and σ = 0. Then,

E[(−aIT − σWJT )
+,β] = |a|βE(IβT ) = ∞.

Next, suppose that a ≤ 0 and σ > 0. In that case, using the identities

in law W
L
= −W and WJT

L
=

√
JTW1, the Cauchy-Schwarz inequality
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and the conditional independence between W1 and JT given E(R), we
obtain

E[(−aIT − σWJT )
+,β] ≥ E[(σ

√

JTW1)
+,β] = σβE(W+,β

1 )E(J
β/2
T )

≥ σαE(W+,β
1 )T−β/2E(IβT ) = ∞.

Finally, if a > 0 and σ > 0, using the fact that W
L
= −W , that

WJT
L
=

√
JTW1 and choosing C > 1, we obtain that

E[(−aIT − σWJT )
+,β] = E[(−|a|IT + σ

√

JTW1)
+,β]

≥ E[(−|a|IT + σ
√

JTW1)
+,β1{σ

√
JTW1≥C|a|IT }]

≥ E[((C − 1)|a|IT )β1{σ
√
JTW1≥C|a|IT }].

Since IT√
JT

≤
√
T , by Cauchy-Schwarz’s inequality, we obtain using the

conditional independence between W1 and IT given E(R)

E[(−aIT − σWJT )
+,β] ≥ E

[

((C − 1)|a|IT )β1{

W1≥C|a|
√

T
σ

}

]

= P

(

W1 ≥
C|a|

√
T

σ

)

(C − 1)β|a|βE(IβT ) = ∞.

�

Proof of Theorem 2. The assumptions imply
∫

|x|>1
|x|νX(dx) < +∞

and so, by Proposition 4, we obtain

P

(

sup
0≤t≤T

(

−
∫ t

0

dXs

E(R)s−

)

≥ y

)

≥ P((−δXIT − σXWJT −Nd
T )

+ ≥ y),

where δX and Nd = (Nd
t )t∈[0,T ] are defined as in Proposition 4.

Then, by independence, we obtain

E[(− δXIT − σXWJT −Nd
T )

+,βT ]

=

∫

D

E[(−δXIT (q)− σXWJT (q) −Nd
T (q))

+,βT ]P(E(R) ∈ dq),

where D is the Skorokhod space of càdlàg functions on [0, T ], the

measure P(E(R) ∈ dq) is the law of (E(R)t)t∈[0,T ], IT (q) =
∫ T

0
ds
qs
,
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JT (q) =
∫ T

0
ds
q2s

and

Nd
T (q) =

∫ T

0

∫

|x|≤1

x

qs−
(µX(ds, dx)− νX(dx)ds)

+

∫ T

0

∫

|x|>1

x

qs−
(µX(ds, dx)− νX(dx)ds).

Denote by N ′
T (q) and N

′′
T (q) the two terms on the r.h.s. of the equation

above. Fixing q ∈ D, we now prove that E(N ′
T (q)) = 0 and E(N ′′

T (q)) =
0. First, note that by Theorem 1 p.176 in [22] and Theorem II.1.8 p.66-
67 in [15], we find that

E([N ′
. (q), N

′
. (q)]T ) = E

(
∫ T

0

∫

|x|≤1

x2

q2s−
µX(ds, dx)

)

= E

(
∫ T

0

∫

|x|≤1

x2

q2s
νX(dx)ds

)

=

(
∫ T

0

ds

q2s

)(
∫

|x|≤1

x2νX(dx)

)

.

Then, since q a strictly positive càdlàg function on a compact interval,

it is bounded with
∫ T

0
ds
q2s
< +∞ and since

∫

|x|≤1
x2νX(dx) < +∞ by def-

inition of the Lévy measure, we have E([N ′
. (q), N

′
. (q)]T ) < +∞. This

shows thatN ′(q) is a (square integrable) martingale and so E(N ′
T (q)) =

0. For the second term, similarly we have
∫ T

0

∫

|x|>1

|x|
qs
νX(dx)ds =

(
∫ T

0

ds

qs

)(
∫

|x|>1

|x|νX(dx)
)

< +∞.

Therefore, by Proposition II.1.28 p.72 in [15] and Theorem II.1.8 p.66-
67 in [15], we have

E(N ′′
T (q)) = E

(
∫ T

0

∫

|x|>1

x

qs−
µX(ds, dx)

)

−E

(
∫ T

0

∫

|x|>1

x

qs−
νX(dx)ds

)

= 0.

Now, since the random variables −δXIT (q)−σXWJT (q) and −Nd
T (q) are

independent and E(Nd
T (q)) = 0, for all q ∈ D, we can apply Lemma 3

to obtain

E[(−δXIT − σXWJT −Nd
T )

+,βT ] ≥ E[(−δXIT − σXWJT )
+,βT ].
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Then, using Lemma 2 and Lemma 4 with a = δX and σ = σX , we can
conclude that for all δ > 0, there exists a strictly positive sequence
(yn)n∈N increasing to +∞ such that, for all C > 0, there exists n0 ∈ N

such that, for all n ≥ n0,

P(τ(yn) ≤ T ) ≥ C

yβT
n ln(yn)1+δ

.

For the second part, note that the above implies that

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≥ −βT + lim

n→∞

ln(C)− ln(ln(yn)
1+δ)

ln(yn)
= −βT .

Now, using Theorem 1, we obtain

lim sup
y→∞

ln(P(τ(y) ≤ T ))

ln(y)
≤ −α,

for all α < βT , and letting α → βT , we obtain

lim sup
y→∞

ln (P(τ(y) ≤ T ))

ln(y)
≤ −βT ,

and, hence, the claimed equality. �

5. Conditions for Ruin with Probability 1

In this section, after giving a simple result about the limits of the
exponential functionals, we prove Theorem 1. Then, we state explicit
condition on the characteristics of R for ruin with probability one and
apply it to the Lévy case.

Lemma 5. Assume that limt→∞
R̂t

t
= µ < 0 (P− a.s.). Then,

lim
t→∞

It = +∞ and lim
t→∞

Jt = +∞ (P− a.s.).

Proof. Since limt→∞
R̂t

t
= µ < 0 (P-a.s.) implies that limt→∞ R̂t =

−∞ (P-a.s.), we can show that It =
∫ t

0
e−R̂sds and Jt =

∫ t

0
e−2R̂sds

diverge (P-a.s.). In fact, denote by Ω0 a set of probability one such

that limt→∞ R̂t(ω) = −∞, for each ω ∈ Ω0, i.e. for each C > 0, there

exists t0(ω) ≥ 0, such that, for all t ≥ t0(ω), −R̂t(ω) ≥ C. Then, for
each ω ∈ Ω0 and for each K > 0, we have, taking C = ln(K + 1) and
τ(ω) = t0(ω) + 1, that, for all t ≥ τ(ω),

∫ t

0

e−R̂s(ω)ds ≥
∫ τ(ω)

t0(ω)

e−R̂s(ω)ds ≥ ec = K + 1 ≥ K.
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The proof of the divergence for Jt is similar. �

Proof of Proposition 1. Using Proposition 4, we have, for all y > 0,

P(τ(y) <∞) = P

(

sup
t≥0

(−aXIt − σXWJt) ≥ y

)

≥ P

(

lim sup
t→∞

(−aXIt − σXWJt) ≥ y

)

.

When σX = 0, we have by assumption that aX < 0, and therefore

P

(

lim sup
t→∞

(−aXIt − σXWJt) ≥ y

)

= P

(

lim sup
t→∞

|aX |It ≥ y

)

= 1.

When σX > 0, since W is a Brownian motion and limt→∞ Jt = +∞,
we have lim supt→∞WJt = +∞ and thus

P

(

lim sup
t→∞

(−aXIt − σXWJt) ≥ y

)

= 1.

�

Under some integrability conditions, we can prove a more explicit con-
dition for ruin with probability one.

Proposition 6. Assume that Xt = aXt + σXWt, for all t ≥ 0, with
aX ≤ 0, σX ≥ 0 and a2X + σX > 0. Assume that

(i)
∫∞
0
(1 + s)−2d〈Rc〉s <∞,

(ii) there exists p ∈ (1, 2) such that
∫ ∞

0

∫ ∞

−1

min(| ln(1 + x)|2, | ln(1 + x)|p)
(1 + s)p

νR(ds, dx) <∞,

(iii) there exists D < 0 such that (P− a.s.),

D = lim
t→∞

1

t

(

Bt −
1

2
〈Rc〉t

+

∫ t

0

∫ ∞

−1

(

ln(1 + x)− x1{| ln(1+x)|≤1}
)

νR(ds, dx)

)

where B = (Bt)t≥0 is the drift part of R.

Then, for all y > 0,

P(τ(y) <∞) = 1.
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Proof. We are going to show that limt→∞
R̂t

t
= D. Since, s 7→ (1+s)−p

is a continuous function, for each t > 0, we have (1 + s)−p ≥ dt for
some constant dt > 0 and for all s ∈ [0, t]. Thus, we have, for all t ≥ 0,

∫ t

0

∫ ∞

−1

| ln(1 + x)|1{| ln(1+x)|>1}νR(ds, dx)

≤ 1

dt

∫ t

0

∫ ∞

−1

| ln(1 + x)|p
(1 + s)p

1{| ln(1+x)|>1}νR(ds, dx) <∞.

Thus, using the semimartingale decomposition of R for the truncation
function h(x) = 1{| ln(1+x)|>1} and Proposition II.1.28 p.72 in [15], we
obtain

R̂t = Bt −
1

2
〈Rc〉t +

∫ t

0

∫ ∞

−1

(

ln(1 + x)− x1{| ln(1+x)|≤1}
)

νR(ds, dx)

+Rc
t +

∫ t

0

∫ ∞

−1

ln(1 + x)1{| ln(1+x)|≤1}(µR(ds, dx)− νR(ds, dx))

+

∫ t

0

∫ ∞

−1

ln(1 + x)1{| ln(1+x)|>1}(µR(ds, dx)− ν)R(ds, dx)).

Denoting by H ′
t and H

′′
t the last two terms of the r.h.s. of the equation

above, we show that limt→∞
Rc

t

t
= 0, limt→∞

H′
t

t
= 0, and limt→∞

H′′
t

t
= 0

(P− a.s.).

ForH ′ andH ′′ we apply Theorem 9 p.142-143 in [22]. SinceH ′ is purely

discontinuous, this theorem tells us that limt→∞
H′

t

t
= 0 (P − a.s.), if

Q̃∞ < +∞, where Q̃ is the compensator of the process Q = (Qt)t≥0

given by

Qt =
∑

0<s≤t

(∆H ′
s/(1 + s))2

1 + |∆H ′
s/(1 + s)| .

The same holds for H ′′ when we replace ∆H ′
t by ∆H ′′

t .

Since ∆H ′
t = ln(1 + ∆Rt)1{| ln(1+∆Rt)|≤1} and p ≤ 2, we have

Q̃∞ =

∫ ∞

0

∫ ∞

−1

(ln(1 + x)/(1 + s))2

1 + | ln(1 + x)/(1 + s)|1{| ln(1+x)|≤1}νR(ds, dx)

≤
∫ ∞

0

∫ ∞

−1

ln(1 + x)2

(1 + s)2
1{| ln(1+x)|≤1}νR(ds, dx)

≤
∫ ∞

0

∫ ∞

−1

ln(1 + x)2

(1 + s)p
1{| ln(1+x)|≤1}νR(ds, dx) <∞.
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Then, note that by Young’s inequality, ab ≤ an

n
+ bm

m
, for a, b > 0, with

n = 1
p−1

and m given by 1
n
+ 1

m
= 1, we obtain for all s ≥ 0 and x ∈ R,

1

(1 + s) + | ln(1 + x)| ≤
1

n1/nm1/m(1 + s)p−1| ln(1 + x)|2−p
.

Denoting K = 1
n1/nm1/m and since ∆H ′′

t = ln(1 + ∆Rt)1{| ln(1+∆Rt)|>1},
we have

Q̃∞ =

∫ ∞

0

∫ ∞

−1

(ln(1 + x)/(1 + s))2

1 + | ln(1 + x)/(1 + s)|1{| ln(1+x)|>1}νR(ds, dx)

=

∫ ∞

0

∫ ∞

−1

ln(1 + x)2

(1 + s)(1 + s+ | ln(1 + x)|)1{| ln(1+x)|>1}νR(ds, dx)

≤ K

∫ ∞

0

∫ ∞

−1

| ln(1 + x)|p
(1 + s)p

1{| ln(1+x)|>1}νR(ds, dx) < +∞.

Finally, to show that limt→∞
Rc

t

t
= 0 (P − a.s.), we apply Theorem 9

p.142-143 in [22] again. Since Rc is continuous, the theorem tells us
that it is enough that

∫∞
0
(1 + s)−2d〈Rc〉s < ∞. But, this holds by

assumption.

So limt→∞
R̂t

t
= D and by Theorem 1, if D < 0, we obtain for all y > 0

that

P(τ(y) <∞) = 1.

�

In the case when R is a Lévy process, the assumptions in the propo-
sition above simplify considerably and correspond to the conditions in
[29] (under slightly different integrability assumptions).

Corollary 2. Suppose that R is a Lévy process with triplet (aR, σ
2
R, νR).

Assume that Xt = aXt+σXWt, for all t ≥ 0, with aX ≤ 0, σX ≥ 0 and
a2X + σX > 0. Assume that there exists p ∈ (1, 2) such that

∫ ∞

−1

| ln(1 + x)|p1{| ln(1+x)|>1}νR(dx) <∞.

In addition, assume that

aR − 1

2
σ2
R +

∫ ∞

−1

(

ln(1 + x)− x1{| ln(1+x)|≤1}
)

νR(dx) < 0.

Then, for all y > 0,

P(τ(y) <∞) = 1.
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Proof. Since R is a Lévy process, its semimartingale characteristics are
given by Bt = aRt, 〈Rc〉t = σ2

Rt and νR(ds, dx) = νR(dx)ds (see e.g.
Corollary II.4.19, p.107, in [15]). Note that since R is a Lévy process,

R̂ is also a Lévy process, and
∫ ∞

−1

| ln(1 + x)|21{| ln(1+x)|≤1}νR(dx)

=

∫ 1

0

∫ ∞

−1

| ln(1 + x)|21{| ln(1+x)≤1|}νR(dx)ds

= E

(

∑

0<s≤1

| ln(1 + ∆Rs)|21{| ln(1+∆Rs)|≤1}

)

= E

(

∑

0<s≤1

(∆R̂s)
21{|∆R̂s|≤1}

)

=

∫ 1

0

∫

R

x21{|x|≤1}νR̂(dx)ds <∞,

so (ii) of Proposition 6 holds. The conditions (i) and (iii) follow directly
from the assumptions. �
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functionals of Lévy processes, Bernoulli, 1938-1964.



28 ON THE RUIN PROBLEM

[26] P. Patie, M. Savov(2016)Bernstein-Gamma functions and exponential func-
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