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ON THE RUIN PROBLEM WITH INVESTMENT
WHEN THE RISKY ASSET IS A SEMIMARTINGALE

J. Spielmann, LAREMA, Département de
Mathématiques, Université d’Angers, 2, Bd Lavoisier
49045, ANGERS CEDEX 01

L. Vostrikova, LAREMA, Département de
Mathématiques, Université d’Angers, 2, Bd Lavoisier
49045, ANGERS CEDEX 01

ABSTRACT. In this paper, we study the ruin problem with invest-
ment in a general framework where the business part X is a Lévy
process and the return on investment R is a semimartingale. We
obtain upper bounds on the finite and infinite time ruin proba-
bilities that decrease as a power function when the initial capital
increases. When R is a Lévy process, we retrieve the well-known
results. Then, we show that these bounds are asymptotically op-
timal in the finite time case, under some simple conditions on the
characteristics of X. Finally, we obtain a condition for ruin with
probability one when X is a Brownian motion with negative drift
and express it explicitly using the characteristics of R.

MSC 2010 subject classifications: 91B30 (primary), 60G99, 65C30

1. INTRODUCTION AND MAIN RESULTS

The estimation of the probability of ruin of insurance companies is
a fundamental problem for market actors. In his seminal paper [9],
Cramér used a compound Poisson process with drift to model the value
of an insurance company and showed that, under some assumptions
on the parameters of the process, the probability of ruin decreases at
least as an exponential function of the initial capital. Over time, the
compound Poisson process has been replaced by more complex models.
In a first generalisation, the value of the company is modeled by a Lévy
process and then the ruin probability behaves essentially like the tail
of the Lévy measure and, in the light-tailed case, this means that this

probability decreases at least as an exponential function (see [I], [19],
1



2 ON THE RUIN PROBLEM

[21], and [37]). To generalise even further, it can be assumed that
insurance companies invest their capital in a financial market. The
main question is then: how does the probability of ruin changes with
this additional source of risk?

In this general setting, the value of an insurance company with initial
capital y > 0, denoted by Y = (Y})>0, is given as the solution of the
following linear stochastic differential equation

t
(1) Yi=y+ X, +/ Y,_dR,, for all t > 0,
0

where X = (X)i>0 and R = (R;)i>0 are two independent one dimen-
sional stochastic processes defined on some probability space (€2, F, P)
and chosen so that (Il) makes sense. In risk theory, the process X rep-
resents the profit and loss of the business activity and R represents the
return of the investment. The main problem then concerns the study
of the stopping time defined by

7(y) = inf{t > 0]Y; < 0}

with inf{()} = 400 and the evaluation of the ruin probability before
time 7" > 0, namely P(7(y) < T), and the ultimate ruin probability
P(7(y) < 4o00). The ruin problem in this general setting was first
studied in [27].

Before describing our set-up and our results, we give a brief review of
the relevant litterature. The special case when R; = rt, with r > 0,
for all £ > 0 (non-risky investment) is well-studied and we refer to [31]
and references therein for the main results. In brief, in that case and
under some additional conditions, the ruin probability decreases even
faster than an exponential since the capital of the insurance company
is constantly increasing.

The case of risky investment is also well-studied. In that case, it is
assumed in general that X and R are independent Lévy processes.
The first results in this setting appear in [I§] (and later in [39]) where
it was shown that under some conditions there exists C' > 0 and yy > 0
such that for all y > vy and for some b > 0

P(7(y) < +o0) > Cy~".

Qualitatively, this means that the ruin probability cannot decrease
faster as a power function, i.e. the degrowth is much slower than in the
no-investment case. Later, under some conditions on the Lévy triplets
of X and R, it was shown in [30] that for some > 0 and € > 0, there
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exists C' > 0 such that, as y — oo,
yPP(1(y) < +00) = C + o(y ™).

Recently, in [16], it is proven, under different assumptions on the Lévy
triplets and when X has no negative jumps, that there exists C' > 0
such that for the above 5 > 0

lim y’ P(7(y) < 4+00) = C.

Yy—00
Results concerning bounds on P(7(y) < +00) are given in [18] where
it is shown that, for all € > 0, there exists C' > 0 such that for all y > 0
and the same [ > 0

P(7(y) < +oc) < Cy .

In less general settings similar results are available. The case when X
is a compound Poisson process with drift and exponential jumps and R
is a Brownian motion with drift is studied in [13] (negative jumps only)
and in [17] (positive jumps only). In [32] the model with negative jumps
is generalized to the case where the drift of X is a bounded stochastic
process.

Finally, some exact results for the ultimate ruin probability are avail-
able in specific models (see e.g. [31], [39]) and conditions for ruin with
probability one are given, for different levels of generality, in [13], [16],

17, [18], [29] and [32].

The goal of this paper is to contribute to the study of the ruin problem
by extending some results to the case when R is a semimartingale and
by obtaining similar results for the finite-time ruin probability in this
general set-up. Thus, in the following we suppose that the processes
X = (Xi)»0 and R = (R;)i>p are independent one-dimensional pro-
cesses both starting from zero, and such that X is a Lévy process and
R is a semimartingale. We suppose additionally that the jumps of R
denoted AR; = R;— R;_ are strictly bigger than —1, for all ¢ > 0.

We denote the generating triplet of the Lévy process X by (ax, 0%, vx)
where ay € R, ox > 0 and vy is a Lévy measure. We recall that
the generating triplet characterizes the law of X via the characteristic
function ¢x of X; (see e.g. p.37 in [30]):

2 )\2 )
ox + /(ew\x —-1- i)\l’l{‘x‘gl}) l/X(dil?)))
R

ox() = exp (1 (idax -
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where the Lévy measure vy satisfies

/Rmin(atz, 1) vx(dx) < oo.

As well-known, the process X can then be written in the form:

t
Xy =axt+oxW, + / / x(px(ds,dr) — vx(dz)ds)
0 Jz|<1

t
_%L/ﬁu/m Jﬁix(dS,d$),
0 J|z[>1

where px is the measure of jumps of X and W is standard Brownian
Motion.

(2)

We recall that a semimartingale R = (R;)¢>0 can be also defined by its
semimartingale decomposition, namely

t
R, = B + R} +/ / x(ur(ds,dzr) — vg(ds, dz))
0 Jz|<1

t
+ / / vpr(ds, dz),
0 Jlz|>1

where B = (By)i>o is a drift part, R® = (R{);>o is the continuous
martingale part of R, ug is the measure of jumps of R and vg is its
compensator (see e.g. Chapter 2 of [I5] for more information about
these notions).

(3)

As well-known the equation () has a unique strong solution (see e.g.
Theorem 11.3 in [28]): for t > 0

(1) vi—em v+ t )

where £(R) is Doléans-Dade’s exponential,

5(R)t = exp <Rt — %<Rc>t) H (1 + ARS)e_ARS

0<s<t

(for more details about Doléans-Dade’s exponential see e.g. Ch.1, §4f
p. 58 in [15]). Then the time of ruin is simply

bdXx
5 = infdt>0 s < —
) i =it {ez 0| [ e <y}
because E(R); > 0, for all t > 0, and this last fact follows from the
assumption that AR, > —1, for all ¢t > 0.
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In this paper, we show that the behaviour of 7(y) for finite horizon
T > 0 depends strongly on the behaviour of the exponential functionals
at T, i.e. on the behaviour of

T . T .
Iy :/ e fds and Jp(a) :/ e~ (s
0 0

where o > 0 and R, = In£(R),, for all ¢ > 0, and for infinite horizon
on the behaviour of

I :/ e fds and Joo(@) :/ e s s,
0 0

For convenience we denote Jr = Jr(2) and J = J(2). More pre-
cisely, defining

Br = sup {ﬁ > 0: E(J?) < 00, E(J7(8)) < oo} ,
we prove the following theorem.

Theorem 1. Let T" > 0. Assume that Sy > 0 and that, for some
0 < a < fBr, we have

(6) / | Jelowa(a) < oo

Then, for all y > 0,

CLE(I3) + CoE(J5) + C3E(Jr(a))
yCl{
where the expectations on the right hand side are finite and Cy > 0,

Cy >0, and C5 > 0 are constants that depend only on o in an explicit
way.

P(r(y) <T) <

Y

This theorem links the ruin probability with the tails of the Lévy mea-
sure of X and the exponential functionals of the process R which are
well-studied objects. It also gives the first results for the case when
R belongs to the class of semimartingales, and the case when R is a
Lévy process is recovered as a special case. This could be used to
study the ruin probabilities when the asset has stochastic volatility or
when the investment is in a risk-free asset with a stochastic interest
rate. Theorem [ is also, up to our knowledge, the first result, when
R is not deterministic, for the ruin before a finite time for processes
given by equations of the form (Il) even in the case when R is a Lévy
process.



6 ON THE RUIN PROBLEM

From Theorem [I], we can easily obtain a similar results for the ultimate
ruin probability. Define

Boo =sup {8 >0:E(I]) < 00, B(J%?) < 00, E(JK(B)) < 00} .

Then, since (I;)i>0, (Ji)i>0 and (Ji(a))i>o are increasing, we obtain,
letting T" — oo and using the monotone convergence theorem with the
upper bound of Theorem [I] the following corollary.

Corollary 1. Assume that s > 0 and that (@) holds for some 0 <
a < Bu, then

P(r(y) < o) < CLEUR) + CoE( ) + CE(J(0))
< n

where C7 > 0, Cy > 0, and C3 > 0 are constants that depend only on
a in an explicit way.

Y

We can show, when Sr > 1 and under some simple conditions on
the Lévy triplet of X, that the bound in Theorem [I] is asymptotically
optimal in a sense given below.

Theorem 2. Let T > 0. Assume that 1 < fp < oo and that E(IPT) =
+o00. Additionally, assume that

/ |x|vx (dzr) < 400
|z|>1
and that

(7) ax +/ xvx(dz) <0 orox > 0.
|z|>1

Then, for all § > 0, there exists a positive numerical sequence (Yn)nen
increasing to +0o such that, for all C' > 0, there exists ng € N such
that for all n > ng,

C

P(r(yo) <T) > ——.
(T(yn) <T) (g

Moreover, if (@) is satisfied for all o < Br, then,
In(P(r(y) <T))

lims = —[p.
ol In(y) o

To complete our study of the ruin problem in this setting, we give in
our last result a sufficient condition for ruin with probability one in the
particular case when X is a Brownian motion with negative drift.
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Proposition 1. Assume that X; = axt + oxW,, for all t > 0, with

ax <0,0x >0 anda%k+ox > 0. Assume also that limy o0 5 B _ =u<0
(P —a.s.). Then, for ally >0,

P(r(y) < o0) = 1.

The rest of the paper is structured as follows. In Section 2, we point
to the known results about exponential functionals of semimartingales,
give a simple way to obtain Sy and [, in the case when R is a Lévy
process and apply it to some examples. In Section 3, we prove Theorem
0 and, in Section 4, we prove Theorem In Section 5, we prove
Theorem [l and we obtain explicit conditions on the characteristics
of R to have lim; o % < 0 (P — a.s.). Finally, we show also that
in the case when R is a Lévy process this corresponds to the known
results.

2. EXPONENTIAL FUNCTIONALS OF SEMIMARTINGALES

Exponential functionals of semimartingales (especially of Lévy pro-
cesses) are very well-studied. The question of existence of the moments
of I, and the formula in the case when R is a subordinator was con-
sidered in [6], [I0] and [34]. In the case when R is a Lévy process, the
question of the existence of the density of the law of I, PDE equations
for the density and the asymptotics for the law were investigated in [2],
B, [, 5], [, 110, [12], [I4], [20], [25], [26] and [33]. In the more
general case of processes with independent increments, conditions for
the existence of the moments and reccurent equations for the moments
were studied in [34] and [35]. The existence of the density of such func-
tionals and the corresponding PDE equations were considered in [3§].
Here, we give two simple results concerning the finiteness of 5y and [
when R is a Lévy process and apply them to the computation of fr
and [ in some examples. Then, we present an example when R is an
additive process.

First of all, we give some basic facts about the exponential transform
R= (Rt)t>0 of R, i.e. the process defined by

E(R), = exp(Rt).
Since

E(Rt) = eXp (Rt - %(Rc>t + Z (In(1 + AR,) — ARS))

0<s<t
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we get that

Bo=Ro— (B + 3 (n(1+AR,) — AR,).

2
0<s<t

When R is a semimartingale, the process R is also a semimartingale
and the jumps of R are given by

AR, =In(1+ AR,), for all t > 0.

Similarly, when R is a Lévy process, the process R is also a Lévy
process.

Proposition 2. Suppose that R is a Lévy process. For a > 0 and
T > 0 the following conditions are equivalent:

(i) E(Jr(o)) < o0,
(i) fipeq € “Va(d) < oo,

(iii) f_oc{ 1{‘1n(1+x)|>1}(1 + [L’)_al/R(dZL') < 0.
Proof. By Fubini’s theorem, we obtain

E(Jr(a) = E ( /0 : e‘aétdt> - /0 "B,

So, E(Jr(a)) < oo is equivalent to E(e=**) < oo, for all ¢ > 0, which,
by Theorem 25.3, p.159 in [36], is equivalent to

/ e “vp(dr) < 0.
|z|>1

Then, note that

1
/ e_‘”VR(dx):// e “vp(dr)ds
|z[>1 0 Jiz|>1

—aARs
=E ( > e 1{|ARS>1}>
0<s<1
=E ( Z (1+ ARS)_al{|ln(1+ARs)|>1}>
0<s<1

:/ Lmta)>13 (1 +2) " vr(dz).
1
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Proposition 2 allows us to compute 7 in some standard models of
mathematical finance.

Example 1. Suppose that R is given by R, = apt +op Wi+ Zﬁio Y,,
where ap € R, 0 > 0, W = (W;)>0 is a standard Brownian motion
and N = (N;)i>o is a Poisson process with rate v > 0, and (Y},)nen
is a sequence of iid random variables. Suppose, in addition, that all
processes involved are independent. If for (Y},),en we take any sequence
of iid random variables with E(e=°1) < oo, for all a > 0, then 3 =
+o00. If for (Y,)nen we take a sequence of iid random variables with
E(e ") < oo, when a < ag, for some oy > 0, and E(e™*"1) = 400,
then Br = ayp.

Example 2. Suppose that R is a Lévy process with triplet (ap, 012%, Vg),
where ap € R, 0 > 0 and v is the measure on R given by

I/R(dl’) = (Cl‘SL’|_(1+Q1)€_>\1|9E|1{50<0} + CQSL’_(1+Q2)6_)‘2:B1{I>O}) dx,

where C, Cy > 0, A\, Ay > 0 and aq, as < 2. This specification includes
as special cases the Kou, CGMY and variance-gamma models (see e.g.
Section 4.5 p.119 in [§]). We will show that if \; > 2, then fr = A;.
Note that, using Proposition 2 and the change of variables y = —z, we
see that E(Jr(a)) < oo, for v > 0, is equivalent to

c, / e el gy 4 / TN S S Y P
1 1

But, the first integral converges if @ < A; and diverges if a > \; and
second integral always converges. Now, if a > 2, it is easy to show that
E(Jr(a)) < oo implies E(J;/Q) < 00 (see Lemma [ below). Thus, if
A1 > 2, we have By = .

We now give an example when R is not a Lévy process.

Example 3. Suppose that L = (L;);>0 is a Lévy process with triplet
(ar, 0%, vy) where v, is assumed to be absolutely continuous w.r.t. the
Lebesgue measure with density f;. Suppose that g is a deterministic,
positive, measurable and square-integrable function on R. Let R, =
f(fg(s—)dLs, for all t > 0. Then, in general, R is a process with
independent but non-homogeneous increments. From Proposition 1
and Example 3 in [34], we see that, if « > 2 and

T
(8) / / ey, (dx)ds < 400
0 z<—1

then E(Jr(a)) < +o0o and, by Lemma [ below, E(J3/?) < +oc0. Thus,
a < fBr.
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Proposition 3. Suppose that the Lévy process R admits a Laplace
transform, for allt >0, i.e. for a >0

E(exp(—afty)) = exp(tyg(a))
and that its Laplace exponent vy has a strictly positive root 5. Then
the following conditions are equivalent:

(i) E(IY) < o0
(i) E(J?) < oo,
(iii) E(Jx(a)) < o0,
(iv) a < 5.
Therefore, Bs = .

Proof. Note that, for any a > 0 and k > 0,
~ o o~
exp(tp(a)) = E(exp(—aR;)) = E (exp <_Eth>>

o (a ()

Therefore, V5(a) = Uy p ( ) for all @« > 0 and k£ > 0. Then, Lemma 3
in [33] yields the desired result. O

Remark 1. Note that the root of the Laplace exponent was already
identified as the relevant quantity for the tails of P(7(y) < oo) in [30].

Using Proposition[Blwe can compute (3., in two important examples.

Example 4. Suppose that R; = agrt + ogW,, for all t > 0, where
ap € R, op > 0 and W = (W})>0 is a standard Brownian motion,

then R, = (aR - i) t+ogWy, for all t > 0. Thus, we obtain () =

(aR — lUR) a+ 2 a and, by Proposition B, S, = % — 1. We
remark that this com(ndes with the results in e.g. [13] and [1.

Example 5. Suppose that R, = apt + o Wi + Zn;O Y,, where ap €
R, 05 > 0 and W = (W,)i>0 is a standard Brownian motion and
N = (Ny)i>0 is a Poisson process with rate v > 0, and (Y},)nen is a
sequence of iid random variables with E(e™1) < oo, for all a > 0.
Suppose, in addition, that all processes involved are independent. It is
easy to see that, for all a > 0,

2

Ypla) = —apa + %cﬂ +7 (E(e™) —1).
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Now, it is possible to show (see e.g. [37]) that the equation ¢4(a) =0

has an unique non-zero solution if, and only if, R is not a subordinator
and ¢’(0+) < 0 which, under some additional conditions to invert the
differentiation and expectation operators, is equivalent to az > YE(Y;)
(and which corresponds, in actuarial theory, to the ”safety loading
condition”). In that case, S is the unique non-zero real solution of
this equation.

3. UPPER BOUND

In this section, we prove Theorem [Il. We start with some preliminary
results.

Lemma 1. For all T > 0, we have the following.

(a) If 0 < a < 2, then E(JY?) < oo implies B(I%) < oo and
E(Jr(a)) < co.

(b) If a > 2, E(Jr(a)) < oo implies B(I%) < 0o and E(J2?) < co.

Proof. First note that by the Cauchy-Schwarz inequality we obtain, for
all T > 0,

- | L e(R)ds < VT ( / T6<R>;2ds) " ViV

So, E(I2) < T*/2E(J5"), for all @ > 0.

Now, if 0 < a < 2, we have % > 1 and by Holder’s inequality

T T /2
Jr(a) = / E(R);%ds < TR~/ ( / 5(3);%13) = T2 g0,
0 0

These inequalities yield (a).

Now, if a > 2, we have either a = 2 which yields the desired result or

a > 2. In that case, we have § > 1 and, by Holder’s inequality, we
obtain

T T 2/
Jr = / E(R);%ds < T2/ < / S(R)s‘ads)
0 0
_ T(a—2)/o¢JT(a)2/a.

So, E(J2/%) < T@=2/2E(Jp(«)), which yields (b). O
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Denote by M? = (M, d)t>0 the local martingale defined as:

vi=[ | ~(jux(ds, dr) — vx(dr)ds)
|z|<1 g
and by U = (U;)>0 the process given by

t
U, :/ / _r ds,dzx).
' 0 Jlz|>1 g(R)s— IUX( )

If flxl>1 |z|vx (dr) < +00, we can also define the local martingale N4 =

(N)izo as
w= [ fem

Proposition 4. We have the followmg identity in law:

(/t &> = (axIy+oxWy, + M + Ut) 0
0 E(R)s >0 -

Moreover, if f|m|>1 |z|vx (dz) < +o00, then,

(o).,

where dx = ax + f|x|>1 xvx(dr).

,LLX (ds,dz) — vx(dz)ds).

I~

(5)(It + O'ijt + Ntd)

t>0"

Proof. We show first that

([ ). Jemmwe=o) = (([5),.)

To prove this equality in law we consider the representation of the
stochastic integrals by Riemann sums (see [15], Proposition 1.4.44, p.
51). We recall that for any increasing sequence of stopping times 7 =
(T})nen with Ty = 0 such that sup,, T,, = oo and T, < T, ;1 on the set
{T}, < oo}, Riemann approximation of the stochastic integral fo ngS
will be

[e.e]

The sequence 7, = (T'(n, m))men of the adapted subdivisions is called
Riemann sequence if sup,,.n(T'(n,m + 1) At —T(n,m) At) = 0 as
n — oo for all t > 0. For our purposes we will take a deterministic



ON THE RUIN PROBLEM 13

Riemann sequences. Then, Proposition 1.4.44, p.51 of [15] says that for
allt >0

© ~ ([ sm) = L

and

t t
dX, dX,
(10) T ( / ) = /

0 4s— 0 4s—
where —— denotes the convergence in probability. According to the
Kolmogorov theorem, the law of the process is entirely defined by
its finite-dimensional distributions. Let us take for & > 0 a subdi-

vision tg = 0 < t; < ty--- < t,, and a continuous bounded function
F: RF — R, to prove by standard arguments that

e ( (] =) om ([ efmm)) 2oz
- (e ([ 5) = (5)

Taking into account (@) and (I0), we pass to the limit as n — oo and
we obtain

o[ ([ st [ s v

t1 tr
:E[F(/ dXS,.../ dXs)]
0 9s— 0 4s—

and this proves the claim.

Using the decomposition (2) we get that

/ths tds /tdWS
= ax ——I—O'X
0 9s— 0o 4s 0 4s—

+/(f/|m|Sl " (ux(ds, dz) — vy (ds, dz))

ds—

i x
+/ / wx(ds,dx).
0 Jz|>1 Is—

We denote the last two terms in the r.h.s. of the equality above by
M(q) and Uy(q) respectively. Recall that since X is Lévy process the
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four processes appearing in the right-hand side of the above equality
are independent. We use the well-known identity in law

L AW,
(72, (o)
0 95— />0 04 ) 1>0
to write

tds Eaw,
(CLX —, ax/ —,Mf(q),Ut(q))
0 t>0

0 QS S—

o | " ME(a).Udo))

tds,
qs 0 q3 >0

Then, we take the sum of these processes and we integrate w.r.t. the
law of £(R). This yields the first result.

The proof of the second part is the same except we take the following
decomposition of X:

t
X =oxt+oxW; —I—/ /:E(ux(ds,dx) — vx(dz)ds).
o Jr

O

The last ingredient in the proof of Theorem [[l are the Novikov maximal
inequalities for compensated integrals with respect to random measures
(see [4], [24] and also [23]) which we will state below after introducing
some notations. Let f : (w,t,z) — f(w,t,z) be a left-continuous and
measurable random function on 2 x R, x R. Specializing the notations
of [24] to our case, we say that f € F; if, for almost all w € €,

/Ot/RfWa 5,2)%vx (dz)ds < 0.

If f € F3, we can define the compensated integral by

Cy(t) = /0 /Rf(w,s,:c) (ux(ds,dx) — vx(dz)ds)

for all £ > 0. For these compensated integrals, we then have the fol-
lowing inequalities.

Proposition 5 (c.f. Theorem 1 in [24]). Let f be a left-continuous
measurable random function with f € Fy. Let Cy = (Cy(t))i>0 be the
compensated integral of f as defined above.
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< /0 ' /R fzux(dx)ds)am].

(a) Forall0 < a <2,

E < sup \C'f(t)\o‘) < K\E

0<t<T

(b) For all o > 2,

: <°ig£T|Cf(t)|a) = b < /0 ) /R IfIZVX(dx)dSY/Q]
+ K,E (/OT/RMI%X(@)CZS)

where K1 >0, Ky >0, and K35 > 0 are constants depending only on «
n an explicit way.

Proof of Theorem [l Note that
sup —(axl; + oxWy, + M +U,)

0<t<T

<lax|Ir + sup ox|W,,|+ sup [M|+ sup |Ui],
0<t<T 0<t<T 0<t<T

and that for positive random variable 71, Z5, Z3, Z, we have

{Zl+ZQ+Zg+Z4>y}

> ofasPofnsPolas 1)

Therefore, using Proposition 4] we obtain

P(r(y) <T)=P ( sup —(axI; + oxWy, + M+ U;) > y)
0<t<T

<P (\aX\IT > %) +P ( sup ox|Wy,| > y)

0<t<T 4

+P ( sup | M| > Q) +P ( sup |Uy| > y).
0<t<T 4 0<t<T 4

For the first term, using Markov’s inequality, we obtain

4a‘aX‘a

ya

p <|aX|IT > %) <

E(I2).
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For the second term, since (J;)o<¢<r is increasing we can change the
time in the supremum and condition on (E(R))o<i<7 to obtain

P ( sup ox|Wy,| > Q) =P < sup ox|Wy| > %)

0<t<T 4 0<t<.Jp

=B [P( s ax Wl > 2| E(mcer )|
0<t<Jr
Since W and R are independent we obtain using the reflection princi-

ple, the fact that Wf:r —2, = ( f T _2dt> Wy and Markov’s inequal-
ity, that

P( sup ox|Wy| > y'é'(R)t =q,0<t< T)

0<t<.Jp 4

T 1/2
= 2P <</ qt_th) Ux|W1|>g)
0 4

a/2

4952 T B N
<2t ([Lgar) Bl
0

Then, since E(|W;]*) = 2;/;F (¢H), we obtain

(5ba+2)/2 a+1 @
Y 2 I ( ) Ix /2
P < sup O'X|WJt‘ > —) < \/7_Tyo¢2 E(JT/ )

0<t<T 4

Note that the inequalities for the first two terms work for all o > 0.

Suppose now that 0 < a < 1. We see that £(R); ' (w w)xliz<y € Fo.
Therefore, using Markov’s inequality and part (a) of Proposition Bl we
obtain

4(1
p < sup [M| > %) < y—aE < sup IMtdla)

0<t<T 0<t<T

(/ / 1{\w\<1}’/x(daf)d )a/2]

/2
4« o
= Kly_a (/ T 1{x<1}Vx(de’)> E(JT/2).
R

<K1—
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For the last term, note that since 0 < a < 1, we have (Zf\il :)32> <
SV 29, for 2; > 0 and N € N* and, for each ¢ > 0,

=1 z?

U™ < <Z E(R)I|AX, |1{|Axs>1}>

0<s<t

IN

Z E(R)AX " 1yax. 51y

0<s<t

t
= [ [ e lel 1 ppxlds, o)
0 R

Therefore, using Markov’s inequality and the compensation formula
(see e.g. Theorem I1.1.8 p.66-67 in [I5]), we obtain

4a
P ( sup |Uy] > ) < E ( sup \Utla)

0<t<T 0<t<T

(()iltlET/ /5 Sl 1 gapsaypx (ds, dx))
_ y—aE </0 /RE(R);_a\xla1{|x|>1}Vx(dx>d3>
_ 4_2 </R|g;|0‘1{|x|>1}yx(dx)> E(Jr(a)).

This finishes the proof when 0 < o < 1.

Suppose now that 1 < o < 2. The bound for P (supg<,<p |M{| > ¥)
can be obtained in the same way as in the previous case. Applying
Holder’s inequality we obtain

i< ([ [ e e e st o)
([ ] E(R)s__l|$\a1{w>1}ﬂx(d8,dx))
0 R
t a—1
x </ /5(R)§fl{|x|>1}ux(d87d$))
0 R
t @
< ([ [emiarrpnnstasan)
0 R
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Then, using Markov’s inequality and the compensation formula, we

obtain
40{
P ( sup |Uy] > %) <—FE ( sup |Ut|°")
ya

0<t<T 0<t<T

= ([ a1t ) Bz,
This finishes the proof in the case 1 < a < 2.

Finally, suppose that a > 2. The estimation for P (SupOStST |U;| > %)
still works in this case. Moreover, since £(R); ! (w)x1l{z<1y € Fo, we
obtain, applying part (b) of Proposition [ that

T /2
(/ /5(R)8__2I21{|m|S1}I/X(d:L')dS) ]
0 R
T
v ([ [ erlaf (s
0 R
a/2
=K (/ x21{|m|s1}'/x(dx)) E(J;%)
R

16 ([ b1 ae(d) ) BUR @)

Note that the right-hand side is finite since |z|*1g<1y < [2[*Lq<1y
when o > 2. This finishes the proof. U

P ( sup |M?| > Q) <K,E

0<t<T 4

4. ASYMPTOTIC LOWER BOUND

In this section, we prove Theorem 2 and, therefore, show that the upper
bound obtained in Theorem [Ilis asymptotically optimal for a large class
of Lévy processes X. We start with some preliminary results. Denote
PP = (max(z,0))?, for all z € R and p > 0.

Lemma 2. Suppose that a random variable Z > 0 (P — a.s.) satisfies
E(ZP) = oo, for some p > 0. Then, for all § > 0, there exists a positive
numerical sequence (Yn)nen increasing to +oo such that, for all C' > 0,
there exists ng € N such that for all n > nyg,

P(Z>y)>——
( _y)_yﬁhﬂ(yn)”‘S

Proof. 1f Z > 0 (P — a.s.) is a random variable and g : R, — R,
is a function of class C'' with positive derivative, then, using Fubini’s
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theorem, we obtain

90+ [ Pz 2 tu= g0+ B ( [ gan) = Eo(2))

Applying this to the function g(z) = 2P with p > 0 we obtain, for all
y=e,

/ uP'P(Z > u)du = .
y

Moreover, for all 6 > 0,
o du 0
1+46 -1

u>y

So, since fyoo % < 00, we obtain, for all y > e,

sup[u® In(u) PP (Z > u)] = co.
uzy

Therefore, there exists a numerical sequence (¥, ),en increasing to +o0o
such that,

lim y? In(y,) PP (Z > y,) = +oo0.
n—oo
O

Lemma 3. Assume that X and Y are independent random variables
with E(Y') = 0. Assume that p > 1. Then, E[XTP] < E[(X +Y)"?].

Proof. For each x € R, we define the function h, : y — (z +y)*™? on
R. Since p > 1, h, is a convex function and we obtain, using Jensen’s
inequality, that for each x € R,

E[(z 4+ Y)"?] = E[h,(Y)] > h(E(Y)) = h(0) = 2P,
We obtain the desired result by integrating w.r.t. the law of X. U
Lemma 4. Let T > 0. Assume that a < 0 or ¢ > 0 and that there
exists 3 > 0 such that E(Lﬁ) = oco. Then, E[(—aly — oW, ) TP = .
Proof. Suppose first that a < 0 and ¢ = 0. Then,
E((—alp — oWy,) "] = |a|"E(I}) = co.

Next, suppose that a < 0 and o > 0. In that case, using the identities
in law W £ - and Wy, £ vV JpW1, the Cauchy-Schwarz inequality
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and the conditional independence between W; and Jr given E(R), we
obtain

E[(—alr — aW;,) "] > E[(0/JrWi) P = P B(W,H)E(17)
> c“B(W,"\TP?E(1)) = co.

Finally, if a > 0 and ¢ > 0, using the fact that W £ —W, that
Wy, £ v JrW1 and choosing C' > 1, we obtain that

E[(—a[T — O'WJT)+’B] = E[(—|a|[T + o/ JTW1)+’B]
> E[(—|a|llr + oy JTWl)JF’Bl{o\/ﬁlec\auT}]
> E[((C - 1)|a‘IT)61{omW120\a|IT}]'

Since \/I—% < /T, by Cauchy-Schwarz’s inequality, we obtain using the

conditional independence between W; and I given £(R)

E[(—alr — oW, )™’ > E [((C - 1)|a\IT)61{lecaﬁ}}

Cla|vT

g

P (Wl > ) (C = 1)P|al’B(I}) = 0.

O

Proof of Theorem[2. The assumptions imply f\x\>1 |z|lvx(dx) < +o0
and so, by Proposition d, we obtain

P(mm(—A;@i)Zy)?ﬂ&&h—mWh—NWQw%

0<t<T
where dx and N¢ = (N{),cj0.1) are defined as in Proposition [
Then, by independence, we obtain

E[( — dxIr — oxWy, — Nf)"o7]

:Lmv&h@—mmedwwwmmaMe@x

where D is the Skorokhod space of cadlag functions on [0,7], the
measure P(E(R) € dq) is the law of (£(R)¢)wcpor), Ir(q) = T ds

0 g¢s’
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Jr(q) Tds and

o[

- (ux(ds,dx) — vx(dx)ds)

N /0 /x>1 (s, dr) = vx(dr)ds)

Denote by N/4(q) and N/ (q) the two terms on the r.h.s. of the equation
above. Fixing ¢ € D, we now prove that E(N}(q)) = 0 and E(N/(q)) =
0. First, note that by Theorem 1 p.176 in [22] and Theorem I1.1.8 p.66-
67 in [15], we find that

E([N'(¢9), N (/ /m<1 qg_“x (ds d:):))
e ([ /lzlqa”x ()0
- ([ %) ([ 7evtam),

Then, since q a strictly positive cadlag function on a compact interval,
it is bounded with fT f]ls < 400 and since fx\<1 2?vx(dz) < 400 by def-

inition of the Lévy measure, we have E([N'(q), N'(¢)]r) < +oo. This
shows that N'(q) is a (square integrable) martingale and so E(N/.(¢)) =
0. For the second term, similarly we have

[ Bt ([ ) ([ et < 1o

Therefore, by Proposition I1.1.28 p.72 in [15] and Theorem I1.1.8 p.66-
67 in [I5], we have

wres([ [, i)
B ( /0 /M = I/X(dzc)ds) —0.

Now, since the random variables —dx I7(q) —ox W, () and —Ni(q) are
independent and E(N$(q)) = 0, for all ¢ € D, we can apply Lemma
to obtain

E[(—(SXIT — O'XwJT — dew)—i—’ﬁT] > E[(—éx]T — O'XWJT)+’BT].
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Then, using Lemma ] and Lemma (4] with a = dx and 0 = ox, we can
conclude that for all 6 > 0, there exists a strictly positive sequence
(Yn)nen increasing to +oo such that, for all C' > 0, there exists ng € N
such that, for all n > ny,

C
P n) 1) > ————.
((yn) <T) T In(g )

For the second part, note that the above implies that
In(P(r(y) <T)) In(C) — In(ln(y.)'**)

lim su > —fr + lim = —fr.
ST ) o AT ) o
Now, using Theorem [I we obtain
In(P <T
lim sup n(P(rly) < 1)) < —a,
y—00 In(y)
for all o < 7, and letting o — B, we obtain
In (P <T
lim sup n(P(r(y) < 7)) < by,
y—00 In(y)
and, hence, the claimed equality. O

5. CONDITIONS FOR RUIN WITH PROBABILITY 1

In this section, after giving a simple result about the limits of the
exponential functionals, we prove Theorem [Il Then, we state explicit
condition on the characteristics of R for ruin with probability one and
apply it to the Lévy case.

Lemma 5. Assume that lim;_, % =pu<0(P—a.s.). Then,

lim I; = +o00 and lim J; = 400 (P —a.s.).
t—00 t—o00

Proof. Since lim;_,, % = pu < 0 (P-a.s.) implies that lim; ., R, =
—co (P-a.s.), we can show that I, = [ e Rads and J, = IN e=2Rs g
diverge (P-a.s.). In fact, denote by Qg a set of probability one such
that lim,_, fEt(w) = —o0, for each w € Q, i.e. for each C' > 0, there
exists to(w) > 0, such that, for all ¢ > ty(w), —R¢(w) > C. Then, for
each w € g and for each K > 0, we have, taking C' = In(K + 1) and
T(w) = to(w) + 1, that, for all ¢t > 7(w),

t T(w)
/ 6—Rs(w)d8 > / 6_Rs(w)d8 > ec=K+1 > K.
0 t,

o(w)
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The proof of the divergence for J; is similar. U

Proof of Proposition[1. Using Proposition [, we have, for all y > 0,

P(r(y) < o0) = P (sup<—axft o W) y)

t>0

>P (lim sup(—axl; —oxWy,) > y) )

t—o00

When ox = 0, we have by assumption that ax < 0, and therefore

P (hmsup(—axlt —oxWy,) > y) =P (limsup lax|1; > y) = 1.

t—o00 t—o00

When ox > 0, since W is a Brownian motion and lim;_.., J; = 00,
we have limsup,_, ., W, = 400 and thus

P <limsup(—aX[t —oxWy,) > y) =1.

t—o00

U

Under some integrability conditions, we can prove a more explicit con-
dition for ruin with probability one.

Proposition 6. Assume that X; = axt + oxW,, for all t > 0, with
ax <0,0x >0 and ag( +ox > 0. Assume that

() Ji=(1 4 5) 2d(Re). < oo,
(ii) there exists p € (1,2) such that

/oo /oo min(| In(1 + 2)[% | In(1 + 2)[?)

(14 s)P

vr(ds, dr) < oo,

(iii) there exists D < 0 such that (P —a.s.),
1 1
D = lim — (Bt - §<Rc>t

t—o00

t 0
+/ / (ln(l + :E) — xl{\ln(1+x)|§1}) VR(dS, d[l?))
0 J-1
where B = (By)i>o is the drift part of R.

Then, for all y > 0,
P(r(y) < o0) = 1.
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Proof. We are going to show that lim,_, % = D. Since, s +— (1+s)7?
is a continuous function, for each ¢t > 0, we have (1 + s)™? > d, for
some constant d; > 0 and for all s € [0,¢]. Thus, we have, for all t > 0,

t [ee]
/ / | ln(l + I)|1{|1n(1+x)|>1}l/R(d8, d:E)
0 —

> hl 1—|—x P
B dt/ / | (1+ s)» ) — - L{m@+a)>1yVr(ds, dx) < 00.

Thus, using the semimartingale decomposition of R for the truncation
function h(x) = 1{jma+e)>1} and Proposition I1.1.28 p.72 in [I5], we
obtain

R 1 t o]
R, =B, — §<Rc>t —|—/ / (ln(l -+ :L’) — 1’1{|1n(1+m)‘§1}) VR(dS, dl’)
0 1

t o]
+ R +/ / In(1 + 2)Lgma+a)<i) (ke(ds, dv) — ve(ds, dz))

/ / 0(L 4 2) Ly ey oy (r(ds, do) — v) r(ds, dz)).

Denoting by H, and H;' the last two terms of the r.h.s. of the equation

"

above, we show that lim;_, Pi =0, lim;_, fg =0, and lim;_, o fi =0
(P —a.s.).

For H" and H” we apply Theorem 9 p.142-143 in [22]. Since H' is purely
discontinuous, this theorem tells us that lim;_, % =0 (P —as.),if

Qs < 400, where Q) is the compensator of the process Q = (Qt)t>0
given by

(AH{/(1 +5))?
Oggt L+ |AH /(1 +5)]

The same holds for H” when we replace AH] by AH]'.

Q=

Since AH] = In(1 + ARy)1{jm@a+ar,) <1y and p < 2, we have

(In(1 /(1 2
Qo = / /_1 n(l+2)/(1+5)) 1 <y Vr(ds, dx)

1+ | In( 1+:c)/(1+s)| {/n(l+=)

o ln 1+ :L'
/ / 1 1 5)2 1 n(142)<13VR(dS, dz)

°°1n1+x
a1+ ds,dr) < .
// i L{jin(1+2)<13VR(ds, dx) < 00
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Then, note that by Young’s inequality, ab < % + %, for a,b > 0, with
7}1 = 1, we obtain for all s > 0 and = € R,

1 1
< .
(14 8)+ |In(1+ )| = nt/rm/m(1+ s)p=11In(1 + z)|>P

_ 1
n—pl

Denoting K =
we have

(In(1+2)/(1+s))?
- L{n(1+2 ds, d
Q / /1 14+ |In(1+2)/(1+ s)| (| m(1+2)>13VR(ds, dx)

lnl—l—aj)
1{m(1+a ds,d
/ / (1+s)(14+s+|In(l+z)|) {IIn(1+2)|>1}VR(ds, dT)

o ln 1—|—x P
: K/ / Sl (14 s)P ) — 7 L{m@+a)>13vr(ds, dr) < +o0.

and since AH;" = In(1 + ARy)L{jm+aR,)[>1}5

1
nl/nml/m

Finally, to show that lim;_, % =0 (P —a.s.), we apply Theorem 9
p.142-143 in [22] again. Since R® is continuous, the theorem tells us
that it is enough that [;°(1 + s)72d(R), < oo. But, this holds by
assumption.
So limy_, % = D and by Theorem [ if D < 0, we obtain for all y > 0
that

P(r(y) < c0) = 1.

U

In the case when R is a Lévy process, the assumptions in the propo-
sition above simplify considerably and correspond to the conditions in
[29] (under slightly different integrability assumptions).

Corollary 2. Suppose that R is a Lévy process with triplet (ap, 0%, vg).
Assume that Xy = axt+oxWy, for allt > 0, withax <0, ox > 0 and
a% + ox > 0. Assume that there exists p € (1,2) such that

/ | hl(l + 1’)|p1{|1n(1+x)‘>1}1/R(d1’) < Q.

—1

In addition, assume that

1 o0
aRr — 50’% + / (ln(l + ZE) — $1{|1n(1+x)‘§1}) I/R(dI) < 0.
-1

Then, for all y > 0,
P(r(y) < 0) = 1.
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Proof. Since R is a Lévy process, its semimartingale characteristics are
given by B; = agt, (R°); = o4t and vg(ds,dz) = vgr(dr)ds (see e.g.
Corollary 11.4.19, p.107, in [I5]). Note that since R is a Lévy process,
R is also a Lévy process, and

/ | In(1 + 2) |’ in(14a) <13 VR(d2)
-1

1 00
= / / | ln(l + :L')|21{|1n(1+x)§1‘}1/R(dI)d$
0 —1

=k < > In(1+ ARs)\21{1n<1+ARs>|s1})

0<s<1

"R ( 3 (Ali’s)zl{mfmsu)

0<s<1

1
- / /x21{x<1}sz(d$)d8 < 00,
0 JR

so (ii) of Proposition[@holds. The conditions (i) and (iii) follow directly
from the assumptions. O
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