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Stochastic Modeling of Impulse Responses in
Reverberating Environments

Andrea Cozza

Abstract—Propagation of waves within media supporting re-
verberation is usually regarded as a direct extension of the
case of multi-path propagation, where a set of independent
paths, equivalent to plane-wave contributions, can be drawn
between a transmitter and a receiver. This paper adopts an
alternative approach, based on modal theory, in order to derive
models of the stochastic behavior of impulse responses (IRs)
measured within such media. IRs can be represented as stationary
Gaussian random processes whose amplitude is modulated by
a decay function that converges to an exponential only if the
time constants of each mode are similar, otherwise displaying
a decay rate slowing with time as the modal time constants
become more diverse. The asymptotic convergence to a Gaussian
process is controlled by the number of available modes, which
modal theory predicts to increase linearly with the bandwidth,
but quadratically with the frequency. Modal theory implies that
groups of typically more than eight propagation paths must be
coherently related in order to give rise to reverberation. As
a result, far less degrees of freedom may be available than
expected from the number of propagation paths involved, thus
leading to a slower convergence to Gaussian propagation models.
The stochastic model introduced is further applied in order
to understand how far IRs can locally fluctuate away from
their root-mean-square profiles. All theoretical predictions are
supported by experimental results.

Index Terms—Multipath propagation, modal theory, reverber-
ation, indoor propagation, statistical electromagnetics, random
processes, time-domain analysis, impulse responses.

I. I NTRODUCTION

Partially or fully closed environments often provide the
setting where waves evolve, in particular for wireless commu-
nications. Examples are indoor and dense urban environments,
hangars, industrial plants, mines, in-vehicle communications,
etc. All of them share a common feature, namely the fact
that waves undergo a large number of scattering events over
reflective boundaries (e.g., walls), leading to radiated energy
being distributed along multiple directions, thus generating
multiple propagation paths between a transmitter and a re-
ceiver. Depending on the geometry of the environment, and
the relative positions of transmitters and receivers, the time-
of-flight of each separate path may vary significantly, giving
rise to time-spread versions of originally transmitted signals
[1], [2].

Impulse responses (IRs) in reverberant media display two
separate contributions: a) deterministic contributions related
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to propagation paths subject to a few specular reflections,
observed in the early-time response and b) random con-
tributions resulting from recursive multiple reflections and
scattering events, usually referred to as a diffuse field or tail,
appearing later in time. These two groups require different
modeling approaches, as highlighted in [3] and references
therein. This paper will not address deterministic contributions,
rather focusing on diffuse multi-path contributions, whose
macroscopic features are usually captured by means of shape
factors, such as their power-delay profile (PDP), i.e., the
time-dependent average instantaneous power of IRs observed
through a medium.

A large variety of PDP models is available in the litera-
ture. A classical example is Saleh-Valenzuela multiple-cluster
model [4], which can describe the general case of clusters
of delayed contributions, each decaying in time according
to an exponential function. PDPs can then be thought of
as modulating random processes that describe the noise-like
behavior of individual IRs. These random processes have been
found to broadly follow a Gaussian distribution in many cases
[5]–[8].

The main handicap of this kind of macroscopic models is
their inability to provide physical insight into the conditions
that ensure their validity. But the fact that exponential decays
be systematically observed in certain practical settings,when
involving time constants larger than the time-of-flight delay
needed to cross the environment, is a direct hint at their ability
to support reverberation [9], [10]. A reverberant response
enables the use of modal descriptions, as the one proposed
in this paper, which is here shown to formally prove that an
exponential decay can, under certain conditions, be a good
approximation for PDPs.

Moreover, the approximate Gaussian behavior of IRs has
mostly been based on empirical data or by adopting asymptotic
descriptions such as Rayleigh or Rice diffusion. These two
asymptotic models are often invoked as soon as a propagation
medium is expected to support a large number of propagation
paths which, once assumed to be statistically independent,
naturally lead to diffusive conditions, implying that IRs can
be described as Gaussian random processes. The problem is,
the conditions under which these approximations hold are
seldom discussed, with no quantitative approach to stochastic
convergence, apart assuming the availability of a large number
of degrees of freedom (DoF).

The first aim of this paper is to provide a formal framework
to model the stochastic behavior of IRs based on physical
grounds, acknowledging from the beginning the peculiarities
of reverberant environments. The proposed models are derived
using modal theory, which fits practical observations in case of
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Figure 1: Two IRs measured at 2 GHz in a reverberation cham-
ber (see Sec. VII), for two different bandwidths. Notice the
marked difference in the fluctuations dynamics even though
the two IRs share the same root-mean-square (rms) envelope
(marked as dashed lines).

reverberant environments. Its main appeal is physical insight
and the ability to yield quantitative predictions from a handful
parameters, such as the volume of the propagation medium
and the frequency range over which it is used.

Our derivations focus on the case of a single-cluster PDP,
which comes with a mathematical description simple enough
as to yield insightful understanding of the physical phenomena
behind their complex behavior. The description introducedin
this paper can be extended to more general cases, in order to
account for multiple clusters, but would make physical inter-
pretation less straightforward. Moreover, multiple references
suggest that PDPs observed in reverberating environments
are mostly characterized by a single decaying exponential
in indoor environments [5], [10], urban settings [7], [11],
commercial airplanes [12], at the interior of vehicles [13]–[16],
industrial sites [8], [17], as well in metallic ducts [18]. Finally,
laboratory facilities emulating wireless communicationsin
realistic media are based on the use of reverberation chambers
[16], which typically display only a single cluster of delayed
power contributions.

The proposed model of IRs as non-stationary random pro-
cesses is subsequently used in order to predict how strongly
individual IRs sharing the same PDP can differ on a local
scale; Fig. 1 illustrates this issue for two IRs measured within
the same medium. Several statistical metrics are used to
this effect, such as their peak instantaneous power and the
probability of occurrence of undetectable contributions.All
theoretical predictions are fully supported by experimental
data measured in a reverberation chamber.

The paper starts by arguing on the fundamental differences
between multi-path and modal descriptions in Sec. II, and in
particular the number of DoF that could be expected in the two
cases. A modal description is then adopted in Sec. III, proving
that IRs in reverberating media behave as non-stationary
random processes that can be asymptotically factorized as the
product of a Gaussian stationary process and the IRs envelope,
which can be approximated by a decaying exponential. These

results are further developed in Secs. IV to VI, where local
or instantaneous fluctuations in random realizations of IRsare
studied. Sec. VII presents a thorough experimental validation
of these models and the related predictions, in particular that
the number of modes appear to be the dominant factor behind
the convergence to a Gaussian random process. Most graphs
issued from theoretical models are only shown in Sec. VII, in
order to serve as a reference for experimental results.

II. PROPAGATION MODELS AND EXPECTEDDOF

Transfer functions in complex media can be described by
means of tap delay-line models [4], [7], [19], [20]

H(ω) =

N
∑

n=1

ane−jωτn , (1)

with τn the delay associated to thenth contribution,an its
complex amplitude andω the angular frequency. Depending
on the way these parameters are chosen [21], in particular
their eventual frequency dependence, (1) can represent a series
of distinct echoes, a continuous spread, i.e., reverberation,
or a series of clustered contributions. In all of these cases,
each contribution in (1) is interpreted as a distinct path along
which a portion of the transmitted energy propagates. In case
these multiple paths were different enough to be regarded as
statistically independent, asymptotic models such as those for
Rice and Rayleigh channels could be invoked. More realistic
models can be considered, where groups of paths are partially
correlated together, while intergroup correlation is regarded as
negligible, but in practice are not used due to impossibility of
predicting or measuring partial correlation.

When each individual contribution to (1) is interpreted as a
(locally) plane wave propagating along a given path [22], the
positionr of the receiver/observer can be introduced in (1)

H(ω; r) = p̂r ·
N
∑

n=1

p̂nbn(ω)e−jkn·r (2)

wherep̂r is the polarization of the receiver,kn = kok̂n gives
the direction along which thenth plane wave approaches the
receiver, with a complex weightbn(ω), and a polarization̂pn;
ko = ω/co is the wave-number for a speed of lightco. The
receiver is assumed to be isotropic, for the sake of simplicity.

Although this family of models is completely general, it
comes with an unanswered question: shouldN be regarded
as a measure of the number of DoF available for transmitting
signals? In order to answer this question, one should assess
how independent are theseN contributions, but they are
usually regarded as independent, to the best of our knowledge;
e.g., [23] considers a ray-tracing propagation model assuming
each path to be independent.

Such an assumption is reasonable for configurations where
scatterers such as walls and buildings act as guiding structures,
i.e., where energy propagates about a main direction. But these
assumptions break down when dealing with closed environ-
ments, where waves may propagate back and forth several
times, giving rise to standing-wave patterns that underly dif-
fusion and reverberation. In this case subgroups of paths must
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Figure 2: Modal versus plane-wave representations in a closed
environment: (a) plane-wave contributions in a periodic-orbit
mode (standing wave), generated and self-sustained sequen-
tially leading to a global coherent pattern and (b) the subjective
perception of an observer (gray spot), experiencing on a local
level what appear to be four independently impinging plane
waves.

be organized in closed coherent patterns [24, Ch. 3], especially
in presence of planar surfaces, a signature of integrable wave
billiards [25]. This physical fact is important since it implies
that groups of waves impinging on the receiver are not acting
as separate entities. These ideas are schematically illustrated
in Fig. 2. As a result, the number of propagation paths should
not be regarded as a measure of the DoF available in these
media; one should rather consider the number of patterns, or
modes, allowed by the geometry and materials involved in an
environment.

There is no simple way of assessing beforehand the re-
lationship between the number of resonant modes and of
propagation paths, apart for very simple geometries. Typically,
the number of paths ranges one order of magnitude above
the number of standing-wave patterns. It is thus clear that
regarding paths as DoF may lead to overestimate the proba-
bility of experiencing asymptotic conditions (e.g., diffusion)
in reverberating media.

The average number of modes supported by a closed struc-
ture obeys a universal law requiring little prior information,
first derived by H. Weyl, which relates space to frequency, by
exploiting the fact that for a given volume only certain patterns
(or modes) can self-sustain, and only around a few selected
frequencies. As reported in [26],

M ≃ 8π

c3
o

V f2
cBT = 8πVλ

BT

fc
, (3)

whereM is the average number of modes resonating within a
bandwidthBT centered at the frequencyfc, for a structure of
volumeV ; λ is the wavelength associated tofc, for a speed
of light co, while Vλ stands for the volume expressed in cubic
wavelengths. Eq. (3) holds as long asBT is greater than the
coherence bandwidthBc of the medium, otherwiseM should
rather be estimated as the number of modes overlapping atfc

[27], [28], a case not considered in this paper.
The modal-theory alternative to (2) is a discrete sum of

modes ek(r) [29, Sec. 13.1] [30, Ch. 10], proper to the
medium’s geometry and boundary conditions

H(ω; r) = p̂r ·
M
∑

k=1

γkek(r)ψk(ω), (4)

whereγk is the modal weight for thekth mode resonating
at ωk with a quality factorQk, according to the frequency
response

ψk(ω) =
[

ω2 − ω2
k(1 − j/Qk)

]−1
. (5)

The {γk} are a function of the source of radiation, but are
given once its nature and position are fixed. In fact, their actual
value is not important when adopting a stochastic framework,
as discussed later.

Eqs. (1) and (4) are mutually compatible since, as intuitively
suggested in Fig. 2(a), each modal distributionek(r) can be
expanded intoNk plane waves, i.e.,

H(ω; r) = p̂r ·
M
∑

k=1

γkψk(ω)

Nk
∑

p=1

bkpe−jkkp·r. (6)

The main difference is that modal theory states that the plane-
wave coefficients{bkp} only depend on the environment and
not on the source/transmitter and the receiver characteristics.
Therefore, even though

∑M
k=1 Nk plane waves are propagat-

ing, only the{γk} can modify the way these plane waves are
excited, and this only through sub-groups pertaining to each
mode.

The perception of the number of available DoF is therefore
strongly affected. In particular, from (3) is can be expected that
increasingfc should lead to a faster convergence to Rayleigh
diffusion than a comparable increase in the bandwidthBT , a
prediction that cannot be derived from a classical multi-path
model as (2). This prediction is put to test in Sec. VII.

III. M ODAL-BASED MODEL FORh(t)

Inverse transforming (5), the time-domain response of a
single mode resonating at the angular frequencyωk can be
written as

ψk(t) = e−t/τk sin(ωkt)u(t), (7)

with τk = 2Qk/ωk the time constant related to the quality
factorQk of the resonance andu(t) Heaviside step function.
Introducing the coefficients{ak}

ak = γkp̂r · ek(r) = αkejϕk (8)

(4) can be written as

h(t) = u(t)

M
∑

k=1

e−t/τkαk sin(ωkt+ ϕk), (9)

where the observer’s position has been dropped for the sake
of brevity.

The {γk} can typically be assumed to be independent and
identically distributed [31], in particular for the case where
no line-of-sight (LoS) contribution is present, as assumedin
all results and discussions reported in the rest of this paper.
This same property is inherited by the{ak}. More general
scenarios can be reinstated by adding a LoS contribution to a
purely non-LoS case, as done, e.g., in [7], a case not treated
in this paper.

As a result of these assumptions, all the sine functions
display independent random phase-shift angles, with{ϕk} ∼
U (0, 2π), i.e., uniformly distributed over all possible angles.
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Moreover, the random nature of the frequencies{ωk} also act
as sources of randomness in the phase terms [25]. It can there-
fore be shown that under these assumptions〈h(t)〉 = 0, ∀ t,
where〈·〉 stands for the ensemble average of a random process
or variable.

The IR model here sought is given by the product of the
square root of the PDP, i.e., the IR envelopeho(t), and a zero-
average random process,w(t),

h(t) = ho(t)w(t), (10)

where the IR envelopeho(t) is expected to take the shape

ho(t) = Aoe−t/τu(t), (11)

where τ is a time constant typically associated to dissipa-
tion/leakage phenomena within a propagation environment.
An exponential-decay law can be derived on the basis of a
first-order dissipation model, for very narrow-band conditions
under Rayleigh diffusion [32], [33]. This property is here
demonstrated to be just a special case of our model, derived
under more general conditions.

From (9), the PDP ofh(t) is found as

h2
o(t) =

〈

h2(t)
〉

=

〈

M
∑

k=1

e−2t/τkα2
k sin2(ωkt+ ϕk)

〉

+

〈

∑

p6=q

e−2t/τpe−2t/τqαpαq sin(ωpt+ ϕp) sin(ωqt+ ϕq)

〉

.

(12)

Because of the assumptions on the modal weights{γk}, the
second average in (12) is vanishing with respect to the first
one. Assuming a weak dependence between the sets{γk},
{ωk} and{τk} and invariant probability laws with respect to
k

h2
o(t) =

〈

e−2t/τk

〉

〈

α2
k

〉

M/2. (13)

The first average only involves the modal time constants
〈

e−2t/τk

〉

=

∫

dτ pτ (x)e−2t/x, (14)

wherepτ (x) is the probability density function ofτk, which
are here assumed to be uniformly distributed around their
averagēτ , covering a total span2∆τ , thus

〈

e−2t/τk

〉

= (2c)−1

∫ c

−c

ds e−2t/τ̄(1+s), (15)

with c = ∆τ/τ̄ . Relevant discussions about the behavior of
{Qk}, and therefore{τk} can be found in [34].

Solving (15) yields
〈

e−2t/τ
〉

= e−2t/τ̄η2(t, c), (16)

whereη(t, c) is given by

η2(t, c) = g(t, c) − g(t,−c) (17)

and

g(t, s) =
1 + s

2|s| exp

(

2t

τ̄

s

1 + s

)

+
t/τ̄

|s| e2t/τ̄ Ei

(

− 2t/τ̄

1 + s

)

(18)

t/τ̄

c
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∆
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Figure 3: Contour plot of the drift functionη(t, c).

with Ei(·) the exponential integral.η(t, c) measures how much
the IR envelopeho(t) differs from the pure exponential decay
appearing on the right-hand side of (16). Fort/τ̄ ≫ 1, η(t, c)
can be approximated as

η2(t, c) =
(c+ 1)2

4ct/τ̄
exp

[

2c

c+ 1

t

τ̄

]

− (c− 1)2

4ct/τ̄
exp

[

2c

c− 1

t

τ̄

]

,

(19)
proving an exponential drift of the late-time PDP from the
purely exponential decayexp(−2t/τ̄), as soon asc > 0. For
this reasonη(t, c) will be referred to as the drift function.

Summarizing the above results, (13) yields

ho(t) = Aoe−t/τ̄η(t, c)u(t), (20)

with

Ao = mα

√

M/2, (21)

andm2
α =

〈

α2
k

〉

. Eq. (20) confirms the validity of an exponen-
tial envelope, as postulated in (11), only ifη(t, c) ≃ 1, ∀ t, c.
The drift function is mapped in Fig. 3, where it appears that
η(t, c) is not necessarily close to one. Fort < τ̄ a shallow
region findsη(t, c) ≃ 1, but for later instantsc should not
be larger than 20 % for this condition to hold. Stated in other
terms, an exponential envelope should not be taken for granted
and is in itself an indirect proof of weak dispersion in the
distribution of the random{τk}. The prediction of a drift
function η(t, c) ≥ 1 is confirmed in Sec. VII.

The squared envelopeh2
o(t) is meant to describe the way

energy evolves (on average) in the response of a reverberating
medium when driven by an excitation pulse. While this kind
of model is useful in order to characterize the power-delay
spread of a channel, it does not provide detailed information
about the potential differences in the IRs sharing the same
power-delay profile.

More insight can be obtained by analyzing the statistical
properties ofw(t) = h(t)/ho(t). From (9), (13) and (21)

w(t) =
√

2/M

M
∑

k=1

βk sin(ωkt+ ϕn) (22)

whereβk = αk/mα. The statistical properties ofw(t) can
be derived by noticing that the summation in (22) can be
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interpreted as a 2D random walk, since

M
∑

k=1

βk sin(ωkt+ ϕk) = Im {s(t)} , (23)

where

s(t) =

M
∑

k=1

βkejξk (24)

having setξk = ωkt + ϕk. Since {ϕk} ∼ U (0, 2π), i.e.,
uniformly distributed, also{ξk} ∼ U (0, 2π), ∀ t, ωk. The
summation in (23) can now be recognized as a random
walk in the complex plane, with random steps along random
directions {ξk}. This class of random processes is known
to present a probability distribution with circular symmetry,
i.e., only dependent on the norm ofs(t). The central-limit
theorem involves thats(t) can be approximated as a Gaussian
process; hence,s(t) is fully characterized by its first two
moments. In practice, only the varianceσ2

s of s(t) needs to
be computed, as the isotropy ofs(t) leads straightforwardly to
an average equal to zero. It can be shown thatσ2

s = M, ∀ t,
i.e., s(t) is stationary, while the isotropy ofs(t) results into
〈

Im {s(t)}2
〉

=
〈

|s(t)|2
〉

/2. Convergence to this kind of
process is consistent with observations in real-life scenarios, as
presented, e.g., in [8], [12], [20] and indirectly in [11], where
a zero excess kurtosis was observed. A uniform phase-shift
angle distribution was confirmed in [6], [35].

Taking into account these properties in (22), the first two
moments ofw(t) become

〈w(t)〉 = 0 (25)
〈

w2(t)
〉

= 1, (26)

∀t ≥ 0, i.e.,w(t) is a stationary process and follows a standard
normal probability law. Since these conclusions are based on
the central-limit theorem, they can be expected to hold as
long asM ≫ 1, while the individual contributions for each
mode/resonance needs to be weakly correlated.

The modal description from which (22) was derived im-
plies that theM modes available act as independent degrees
of freedom that will eventually havew(t) converging to a
Gaussian process.M should therefore be expected to drive
this convergence. Experiments presented in Sec. VII-C support
this prediction and prove that even forM ≫ 1 local deviations
from Gaussianity are observed.

IV. PEAK-VALUE ATTAINED BY AN IR

The factorization ofh(t) as in (10) makes it possible to
assess how strongly single realizations ofh(t) can deviate
from their envelopeho(t), on a local scale. Several metrics are
considered in the following sections, starting with the probabil-
ity distribution of the peak valueMh = maxt |h(t)|/Ao. This
is of practical importance, e.g., in assessing the probability of
observing overshooting events, leading to increased peak-to-
average power ratios, but also for electromagnetic dosimetry in
cavities [36] and assess the intensity of electromagnetic stress
in EMC tests.

The IR h(t) is first approximated as a discrete time-series,
by sampling it at t = nTc, with Tc the coherence time

discussed later in this section. The samples{hn = h(nTc)}
are required to be independent; being modeled as Gaussian
random variables, this condition is equivalent to requiring
uncorrelated data. The probability law ofMh can now be
expressed as

FMh
(x) = P(Mh < x) = P(|hn| < x, ∀ n), (27)

which, for independent{hn}, translates into

P(Mh < x) =

∞
∏

n=0

P(|hn| < x), (28)

as each |hn| < x at the same time, i.e., representing
P(Mh < x) as a joint probability. This kind of probability
law is reminiscent of an extreme-value law [37], where the
maximum value observed in a set ofN iid random variables
is considered. The fundamental difference here is that the
samples are not identically distributed, because of the decaying
envelopeho(t).

Sincew(t) is asymptotically a Gaussian process, (10) has
the {hn} also behaving as Gaussian random variables, with
standard deviationsσn ≃ exp(−nTc/τ̄). The drift function
η(t, c) is here neglected since the peak-value of|h(t)| is likely
to occur fort/ ¯tau < 2, whereη(t, c) ≃ 1.

For a Gaussianhn, its modulus|hn| follows by defini-
tion a half-normal distribution. Therefore,P(|hn| < x) =
erf[exp(nTc/τ̄)/

√
2)], so that (27) results into

FMh
(x) =

∞
∏

n=0

erf
(

xenTc/τ̄/
√

2
)

, (29)

whereerf is the error function.
As the standard deviation of late-time samples decreases

exponentially, it is clear that their contribution to the peak
value Mh can be expected to be negligible. It is therefore
possible to truncate the product in (29) toK samples, where
K can be chosen such that the probability of having|hn| > Ao

is negligible∀n > K, e.g., lower than 5 %. This condition
is met when the standard deviation ofhK/Ao is smaller than
1/2, i.e., exp(−KTc/τ̄) < 1/2, hence

K ≤ (τ̄ /Tc) ln 2. (30)

As a result, the onlyt ≤ KTc is considered, i.e.,t/τ̄ ≤ ln 2,
which falls in the region whereη(t, c) ≃ 1, thus justifying the
use of an exponential decay in the present derivation.

Fig. 4 shows a few examples of probability distribution for
the overshoot factorMh, obtained by numerically computing
the derivative of (29) with respect tox. These results indicate
that an IR can exceed by non-negligible margin its rms
envelopeho(t) as τ̄/Tc increases.

A few quantiles of (29) are shown in Fig. 5 versusTc/τ̄ .
The mode of (29) as a function ofTc/τ̄ , truncated according
to (30), can be approximated, within an error of less than a
percent point, as

m(Tc/τ̄) ≃ a lnb(τ̄ /Tc) (31)

with a = 0.626 andb = 0.741 obtained by least-square fitting.
In the same way, (31) approximates the average whena =
0.749 andb = 0.678.
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The condition needed for independent{hn}, i.e., uncorre-
lated{wn}, can be inferred from the auto-correlation function
of w(t)

Rw(τ) = 〈w(t)w(t + τ)〉 , (32)

which, following (22), can be shown to be

Rw(τ) = 〈cos(ωnτ)〉 . (33)

Approximating the resonant frequencies{fn} = {ωn/2π}
as uniformly distributed over the excitation bandwidthBT

centered onfc

Rw(τ) = cos(2πfcτ) sinc(πBT τ), (34)

which is consistent with the results presented in [11].
The coherence time can then be assessed as the equiva-

lent time support of the time-coherence functionµw(τ) =
Rw(τ)/R(0),

Tc =

∫ ∞

0

dτ µ2
w(τ), (35)

which, thanks to Parseval and Wiener theorems, can be ex-
pressed as

Tc =

[

2

∫

BT

dω Sw(ω)

]−2 ∫

BT

dω S2
w(ω), (36)

whereSw(ω) is the power spectral density ofw(t). Fourier
transforming (34),

Sw(ω) = 1/2BT (37)

over the excitation bandwidthBT and zero outside it, from
which

Tc = 1/4BT . (38)

V. DYNAMIC RANGE OF FLUCTUATIONS

The fact that the peak value ofh(t) can significantly stray
away from the IR envelopeho(t) does not come as a surprise,
since typical IRs in closed media are characterized by wide
fluctuations. While their Gaussian nature explains their inten-
sity, it is interesting to understand the dynamical range spanned
by |h(t)|, i.e., to measure how strongly the amplitude ofh(t)
can swing between two close observations. This information
would allow to understand whether IR locally exceeding their
envelope should be expected to rapidly fluctuate to much lower
amplitudes in a short time span, thus appearing as a sequence
of rapid pulsed bursts rather than a continuous decaying tail.

We therefore focus on the ratioZ = |h(t + ∆t)/h(t)| =
|w(t + ∆t)/w(t)| exp(−∆t/τ̄) and compute how it is dis-
tributed, assuming that the two random variables involved in
it are weakly correlated, i.e.,∆t > Tc. The probability density
function of the ratioR = |w(t + ∆t)/w(t)| can be obtained
as

pR(x) =

∫ ∞

0

ds p|W |(s)
∂

∂x
F|W |(xs), (39)

whereF|W |(x) is the cumulative distribution of the modulus
of w(t), ∀ t. Since |w(t)| follows a half-normal distribution
law, with unitary standard deviation,

pR(x) =

∫ ∞

0

ds(−s) p|W |(s)p|W |(xs)

=
2

π

∫ ∞

o

ds (−s)e(1+x2)s2/2

=
2

π

1

1 + x2 , x > 0

(40)

from which

pZ(x) = e∆t/τ̄pR

(

xe∆t/τ̄
)

. (41)

The distributions (40) and (41) correspond to Cauchy distri-
butions, whose average and standard deviation are not defined,
known to model random variables with large stochastic dis-
persion. For the sake of simplicity we will hereafter assume
∆t ≪ τ̄ , leading toZ ≃ R.

Because of the strong stochastic dispersion ofZ, confidence
intervals are more useful metrics to quantify its dynamic range.
The cumulative distribution associated topZ(x) is

FZ(x) =
2

π
tan−1(x) (42)

and the quantileq(p) for a probabilityp is

q(p) = F−1
Z (p) = tan

π

2
p, (43)

so that the confidence interval for a significance levelα
is [q(α/2), q(1 − α/2)]. It can be shown that (43) yields
q(α/2)q(1 − α/2) = 1, ∀ α, as illustrated in Fig. 12, in
Sec. VII-C. This result means that the probability of observing
ratios smaller than1/C is equal to that of having them higher
than C, whereC > 0. In other words, small observations
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can be followed by very large ones in the IR, and viceversa,
∀ t > Tc, while the envelopeho(t) represents the median
of the IRs. These considerations are important in the case
of receivers with finite sensitivity, as discussed in the next
section.

VI. U NDETECTABLE CONTRIBUTIONS

Let a receiver/probe have a finite sensitivityso, defined
as a fraction ofAo. This value could be set, e.g., by the
level of background noise below which contributions are
regarded as lost. Therefore, only those contributions suchthat
|h(t)| > soAo will be regarded as detected. Taking the PDP as
an estimate of the received instantaneous power, this condition
is typically translated into a condition for the receiver tocollect
information only over a time interval up toTo = −τ̄ ln so.
E.g., in [2] a 30 dB dynamic is reported, i.e.,To/τ̄ = 3.45.
But because of the strong dynamic of random fluctuations
discussed in Sec. V, there is a risk of experiencing significant
reduction in instantaneous power with respect to what could
be expected from the PDP.

On the other hand, the existence of overshooting events, as
discussed in Sec. IV, would lead to think that the total received
energy could be a strongly fluctuating function and could even
be higher than expected from the PDP.

In order to elucidate these questions, we compute the
probability of receiving undetectable contributions, starting
from (10),

Po(t) =P(|h(t)| < Aoso) = P(|w(t)| < exp(t/τ̄ )so)

= erf
(

exp(t/τ̄)so/
√

2
)

,
(44)

having assumedη(t, c) ≃ 1 in order to obtain closed-form re-
sults. The probability of not receiving significant contributions
at To is Po(To) = erf

(

1/
√

2
)

≃ 0.68, and is independent
from so. The results presented in Fig. 13 in Sec. VII-C show
that there is a non-negligible probability of not receiving
any detectable contribution even in early-time observations,
depending on the value taken byso.

Eq. (44) allows estimating the fraction of timeLN(so), over
the intervalt < To, during which no detectable contributions
are received on average

LN (so) =
1

To

∫ To

0

dtPo(t)

=
1

To

∫ To

0

dt erf
(

et/τ̄so/
√

2
)

=
1

− ln so

∫ − ln so

0

dy erf
(

eyso/
√

2
)

,

(45)

which is well approximated by

LN(so) ≃ −17 − 18so + s3
o

9
√

2π ln so

, so < 1, (46)

obtained using the third-order Taylor expansion oferf (x) for
x ≃ 0, before computing the integral. Results in Fig. 14 imply
that even for small values ofso there is a high probability of
receiving no contribution, and that IRs should be expected to
be highly fragmented.

It could therefore be expected that the total detectable
energy be significantly smaller than what the PDP indicates.
This point can be clarified by computing the instantaneous
power detected on average

〈Pd(t)〉 =
〈

|h(t)|2
∣

∣

∣
|h(t)| > soAo

〉

(47)

conditioned to detectable contributions, which can be obtained
as

〈Pd(t)〉 =

√

2

π
h−1

o (t)

∫ ∞

soAo

dh h2e−h2/2h2

o(t) (48)

=

√

2

π
soho(t)e−s2

o/2h2

o(t) + h2
o(t)erfc

(

so√
2ho(t)

)

.

The fraction of energy detected on average with respect to the
energy associated to the PDP is then defined as

LE(so) =
1

EP DP (so)

∫ To

0

dt 〈Pd(t)〉 , (49)

with

EP DP (so) =

∫ To

0

dt h2
o(t) =

A2
oτ̄

2
(1 − s2

o), (50)

yielding

LE(so) =

√

2

π

soe−s2

o/2 − s2
o/

√
e

1 − s2
o

+ erfc

(

so√
2

)

, (51)

which can be approximated as

LE(so) ≃ 1 − s2
o

√

2/πe , so . 1. (52)

Fig. 14 in Sec. VII-C proves thatLE(so) stays remarkably
close to one, even whenso increases to relatively high values.
This outcome implies that even thoughh(t) is substantially af-
fected by undetectable contributions, its overall energy is very
weakly affected on average, which makes sense only if the
detected contributions compensate for the missing energy from
those gone undetected, i.e., by means of frequent overshooting
events. This explanation is indeed consistent with the results in
Sec. V, where it was shown that very weak contributions can
be followed by large ones that have the potential to compensate
for missing contributions.

VII. E XPERIMENTAL VALIDATION

Previous theoretical results were validated against exper-
imental data measured in a reverberation chamber (RC),
according to the setup and protocol described in Sec. VII-A.
This choice is motivated by their wide-spread use as standard
test facilities capable of emulating a large number of signal-
transmission settings for strongly multi-path environments
[15], [16], [38]. The fact that they present a similar statistical
behavior even when taking different implementations (shape
factors, volume, etc.) enables reproducible results.

Sec. VII-B first proceeds to the validation of the non-
stationary random model introduced in Sec. III. Convergence
to asymptotic results is shown to improve with the number of
modes available, as argued in Sec. II. Substantial drifts from
an exponential decay are found to be accurately described by
the proposed model. Local deviations ofw(t) from a Gaussian
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Figure 6: The hemispherical positioner (a) and the electro-
optical probe (b) used in the experimental validation.

distribution are highlighted. In spite of these deviations, results
in Sec. VII-C prove that the asymptotic models derived in
Secs. IV to VI for random fluctuations in IRs are remarkably
accurate and can therefore be used as predictive tools.

A. Test setup

The experiments were carried out in a metallic RC, a cuboid
of about6 × 3.5 × 2.5 m3. The RC was equipped with a Z-
folded metallic stirrer which, though not operated during the
experiments, was fundamental for breaking symmetries within
the RC.

A monocone antenna, impedance matched to ensure a
return loss higher than 15 dB between 0.4 and 3 GHz acted
as transmitter. It was placed behind the stirrer, in order to
minimize line-of-sight contributions in received signals. These
were measured over a large number of positions, thanks to the
hemispherical scanner shown in Fig. 6(a). This robot has the
ability to ensure a very low level of perturbation at frequencies
below 3 GHz, with a level of coherence better than 70 %
when one of its arms moves [39]. The received signals were
obtained by means of an EFS-105 probe manufactured by
Enprobe, a linearly polarized electro-optical probe with flat
wide-band receiving characteristics, shown in Fig. 6(b). Data
were collected around two frequencies, at 0.5 and 2 GHz, for
which (3) predicts a 16-fold increase in the number of DoF,
for a given bandwidthBT .

For each position of the receiving probe the transfer function
between the monocone antenna and the probe was measured
using a vector network analyzer from Rohde & Schwarz,
model ZVB8, acquiring 5000 frequency samples uniformly
distributed over a 250 MHz bandwidth, around 0.5 and 2 GHz.
The frequency step was chosen in order to limit the inevitable
effects of time-domain aliasing, since the time constant ofthe
RC was expected in the range of microseconds.

To make sure that the transfer functions were independent,
the probe positions were chosen to be at least a quarter
of wavelength away from each other [40], and uniformly
distributed over the hemispherical surface allowed by the
scanner. This resulted in a total of 244 positions at 0.5 GHz
and 888 at 2 GHz.
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Figure 7: Validation results for the evolution of the IR envelope
(i.e., the square root of the PDP) forBT = 20 MHz, andfc =
0.5 and 2 GHz, comparing experimental results (gray curves)
and theory introduced in Sec. III (black curves), for : (a) the
envelope and (b) the deviation functionη(t, c). Optimal fitting
of theoretical results to experimental data yield an estimate of
c = 0.34 (for fc = 0.5 GHz) andc = 0.060 (for fc = 2
GHz), corresponding to a relative standard deviation of 9.9%
and 1.7 % in the modal time constants{τk}.

IRs were then retrieved by means of inverse discrete Fourier
transforms, by having first applied a tapering function to the
frequency-domain data. Tchebychev window is an effective
choice to reduce the level of side lobes, with a time-domain
counterpartp(t), whose sampled representation is [41]

p(k) =
cos
(

N cos−1 (β cosπk/N)
)

cosh
(

N cosh−1 β
) , (53)

with β = cosh
(

N−1 cosh−1 10α
)

, and N the number of
frequency samples spanning the bandwidthBT of the IR of
interest. In order for the late-time region of the IRs to be
untainted byp(t) over at least 60 dB of dynamics, we set
α = 4, in order to ensure a side-lobe level below -80 dB.
Moreover, for p(t) to have a support way smaller than̄τ ,
BT & 10 MHz, in order not to alter the early-time region
of the IRs.

B. Modal description and convergence

The rms envelopeho(t) was first estimated from experi-
mental data, as defined in (12), andw(t) = h(t)/ho(t) was
then tested for Gaussianity and stationarity.
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Figure 8: Empirical probability distributions of the processw(t) for BT = 20 MHz and: (a)fc = 0.5 GHz and (b)fc = 2
GHz. Broad stationarity is observed even for late-time data, to be compared with local deviations highlighted in Fig. 9.The
results forfc = 0.5 GHz are more ragged because of the more limited number of realizations available.

Figure 9: Deviation between empirical and theoretical quantiles qo for the normalized IRw(t), for BT = 20 MHz and: (a)
fc = 0.5 GHz and (b)fc = 2 GHz. The deviationq(t) − qo is color-coded and represents local departures from Gaussianity.

According to Fig. 3,ho(t) can be expected to be well
approximated by an exponential decay only fort/τ̄ < 2, an
interval covering the first 17 dB inho(t), whereη(t, c) ≃ 1
even for large dispersions of the modal{τk}. The two parame-
tersAo andτ̄ can then be retrieved by means of a least-square
regression on this portion of data, leading to the dashed line in
Fig. 7(a), obtained forBT = 20 MHz. The samēτ = 2.17 µs
was found for 0.5 and 2 GHz. Higher fluctuations for 0.5 GHz
are due to the more limited number of IRs available at that
frequency.

Fig. 7(a) confirms thatho(t) drifts away from an exponential
function fort/τ̄ & 2. This trend is better observed in Fig. 7(b),
where η(t) estimated from experimental data is shown. As
explained in Sec. III this drift is expected in case of dispersion
in the modal time constants{τk}. Once the exponential param-
etersAo and τ̄ are known, it is possible to infer the value of
c = ∆τ/τ̄ by fitting (17) to the experimental data. The results
in Fig. 7(b) support the explanation of dispersion in the modal
{τk}, as the time evolution ofη(t) is accurately predicted from
a single parameter, i.e.,c. The fact that a weaker dispersion
is observed at higher frequency makes physical sense, since
at 2 GHz a wavelength of 15 cm is likelier to generate
more uniform losses over the RC metallic surface than at

lower frequency, where modal distributions may present more
diverse dissipation patterns [34]. It can be concluded thatan
exponential PDP should not be taken for granted, and a non-
trivial result in its own right, since it provides insight inthe
statistics of modal time constants.

The realizations of the processw(t) were then computed
according to (10), expected from theory to be stationary and
following a standard Gaussian probability law. The stationarity
can be qualitatively assessed in Fig. 8, where empirical proba-
bility distributions, shown as functions of time, do not change
significantly in range and amplitude, over the entire time span
considered. A steadier behavior was found at 2 GHz, whereas
at 0.5 GHz the results are less uniform in time. Although
the reduced number of samples at 0.5 GHz could be invoked,
local variations are more likely due to a limited number of
DoF, as discussed below. It should be stressed that ifη(t)
were not taken into account at 0.5 GHz, stationarity would
not be observed, as the drift from an exponential IR envelope
is higher than a factor 2 fort/τ̄ > 5.

Local drifts from Gaussianity can be assessed quantitatively
by computing the quantilesq(t) of the empirical distributions
and comparing them with those expected for a standard
Gaussian random variable, here namedqo. The results in Fig.



10

9 show the absolute error between the two, coded in color, as
a function ofqo and time. E.g.,q(t) − qo = 1 means that the
portion of distribution associated withqo occur further away,
i.e., the distribution has heavier tails, while negative deviations
imply a contraction. This representation is intrinsicallyless
sensitive to differences in the number of samples, as it is
based on cumulative empirical distributions. These results
confirm thatw(t) at 2 GHz follows more closely a Gaussian
distribution for the central quantiles, roughly covering 70
% of all results (central white region), whereas at 0.5 GHz
deviations occur systematically even for the central portion of
the distribution.

The hypothesis, formulated in Sec. II, that these deviations
are due to a limited number of modes, can be tested ex-
perimentally by considering the rms error on the quantiles,
computed across time, and correlating it with the number
of modes expected for a given frequency and bandwidth.
Recalling (3), passing from 0.5 to 2 GHz should lead to a
16-fold increase in the number of DoF, for a fixedBT , here
set to 15 MHz. The same outcome should be observed ifBT

were increased by a factor 16 while keepingfc = 0.5 GHz.
Fig. 10 confirms that very similar results are obtained as soon
as the same number of DoF are expected, be it forfc = 0.5
GHz andBT = 240 MHz, or for fc = 2.0 GHz andBT = 15
MHz. At the same time, a clear trend is visible in Fig. 10,
where the rms quantile error steadily decreases as the number
of modes increases, well approximating an inverse proportion,
as required by the central-limit theorem.

Two reference curves, in thicker solid lines, represent the
rms error in the empirical quantiles obtained from Monte
Carlo simulations involving ideal Gaussian samples, for two
populations sizes corresponding to the 0.5 and 2 GHz datasets,
respectively. These allow to assess whether the finite (and
different) size in the 0.5 and 2 GHz datasets could explain
the deviations from theoretical Gaussian quantiles. Fig. 10
shows that for the case where a very large number of modes
is expected, the quantile rms error is similar to the one found
for Gaussian samples, thus indicating convergence. This case
occurs forfc = 2 GHz andBT = 240 MHz, for a population
of 888 samples. On the other hand, as soon asBT = 15
MHz, a significant deviation in the empirical quantiles appears,
even though the same population size is unchanged. This trend
worsens forfc = 0.5 GHz, where an even smaller number of
modes is expected. These results unequivocally prove that it
is not the size of the datasets that explain the deviations inthe
quantiles, but rather the changing number of DoF available,
here considered to be the resonant modes.

It can be concluded that the predictions of the modal
description discussed in Sec. III are robustly supported by
experimental data on several grounds. The rms envelope does
indeed drift away from the exponential profile usually expected
for rich multi-path propagation. The random processw(t)
displays a statistical behavior close to a stationary process un-
derlain by a standard Gaussian distribution. The total number
M of DoF expected from (3) appear to drive the convergence
rate, even when arriving at the sameM by choosing two
different combinations of frequency and bandwidth. As a
matter of fact, imperfect convergence to a Gaussian process
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Figure 10: Comparison of the rms deviation between empirical
and theoretical quantiles forw(t), as a function ofqo, for
different choices of the excitation bandwidth and frequency.
The number of modes available for each configuration is
shown close to each curve. The two thicker curves represent
the rms quantile deviation expected for ideally Gaussian-
distributed populations, of sizes identical to those of the0.5
GHz and 2 GHz datasets.

would hardly be suspected if the number of paths were taken as
a measure of the available DoF: at approximatively eight paths
per mode, about 1400 paths would be regarded as certain to
lead to Rayleigh conditions forfc = 0.5 GHz andBT = 15
MHz. Moreover, there is no obvious way of predicting the
stronger influence of frequency overM from a multi-path
presentation, as opposed to Weyl’s formula (3).

C. Fluctuations from the PDP

The first fluctuation metric tested dealt with the probability
distribution of the overshoot factorMh, introduced in Sec. IV,
which measures how strongly an IR can exceed the peak of
the IR envelope, i.e.,Ao. In case the excitation pulse has a
frequency-dependent Fourier spectrumP (ω), its effects on the
coherence timeTc must be taken into account by switching
from a definition based on the autocorrelation function of
the IR, to one using the cross-correlation function between
the received signal and the test pulse. In this way (38) is
generalized as

Tc = 1/4κ2BT , (54)

with

κ =

[

2

∫

dω P (ω)

]2
/

BT

∫

dω |P (ω)|2, (55)
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Figure 11: Empirical probability distributions of the peakvalue
observed in IR realizations, for two values of the excitation
bandwidth and frequency. Theoretical results predicted by(27)
are superposed for validation. OnlyBT has an impact on the
probability distribution, as expected from theory.
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Figure 12: Bounds of the interval of confidence of the dynamic
range spanned by|w(t+Tc)/w(t)|, for a varying significance
level α. Empirical results were obtained forBT = 15 MHz
and two central frequencies, spanning all time samples up to
7τ̄ .

yielding κ = 1.74 for a Tchebychev window with -80 dB
side-lobe level, as in (53).

According to theory presented in Sec. IV, only the band-
width should have an impact onMh. Fig. 11 shows the
empirical distributions obtained from experimental data,to-
gether with the theoretical distribution (29). The resultsclosely
match, even though the processes are not perfectly Gaussian
(see Sec. VII-B). More ragged results forfc = 0.5 GHz and
BT = 15 MHz are observed because of a limited amount of
DoF and samples, as already pointed out in Sec. VII-B.

The dynamic range of fluctuations was studied for adjacent
samples, for∆t = Tc, as given in (54). Results are shown
in Fig. 12, forBT = 15 MHz, under the shape of bounds of
confidence intervals associated to a given significance proba-
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Figure 13: Empirical probability of receiving undetectable con-
tributions, for four relative detection thresholdsso, observed
at 0.5 GHz, for : (a)BT = 15 MHz and (b)BT = 240 MHz.
Local deviations in (a) are due to the limited number of DoF
available and are consistent with those presented in Fig. 9.
Theoretical predictions for a purely exponential IR envelope
are shown as thin dashed curves, while solid thick curves take
into account the correctionη(t, c) introduced in (17).

bility α, which represents the probability of observing samples
falling outside the confidence interval. A close agreement
between experimental data and (42) is found forα > 2%, with
larger errors asα decreases, i.e., in the tails of the probability
distribution. As expected from (3), at 0.5 GHz Fig. 12 displays
larger errors, as the number of DoF hits a minimum. The
expectation that the probability of observing a given ratioC of
samples is equal to that for1/C is confirmed in these results,
justifying the strong fluctuations observed in Fig. 1.

The likelihood of recording weak contributions at a timet
was assessed in Fig. 13, only for data around 0.5 GHz, where
deviation from Gaussianity is more likely. The probability
of not detecting contributions is a function of the relative
sensitivityso, introduced in Sec. VI, here taking four different
values, from−40 to −10 dB. Fig. 13 compares the empirical
probabilities obtained from experimental results and those
predicted by (44) which agree over a wide time range. The
local deviations observed in Fig. 13(a) forBT = 15 MHz are
reminiscent of those found in Fig. 9; passing toBT = 240
MHz reduces these phenomena, as convergence to asymptotic
behavior is more robust. It can be noticed how taking into
account the existence of a drift from a purely exponential
decay leads to much more accurate results forso < −20 dB.

Another measure of the fact that IRs can be highly frag-
mented is offered by the metricLN (so), defined in (45) as
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Figure 14: Comparison between empirical and theoretical
results for the average fraction of undetected contributions
LN (so) and the average fraction of detected energyLE(so),
for BT = 15 MHz. Results for 0.5 and 2 GHz are shown
using the same symbols as in Fig. 12.

the average fraction of time during which|h(t)|/Ao < so.
Empirical results in Fig. 14 derived from data at 2 GHz are
indistinguishable from those predicted by (46), while at 0.5
GHz a systematic drift is due to having assumedη(t) ≃ 1.
LN (so) takes values typically well above 20 %, getting close
to 50 % asso → −10dB. This large variation suggests that
on a local level IRs have a high probability of displaying
undetectable contributions, a phenomenon that averages out
when observed over time on a larger scale.

The fragmentation of IRs leaves room for expecting an
average energy recorded over time that could differ from
what expected from their PDP. The metricLE(so), which
measures a potential average difference, is shown in Fig. 14.
LE(so) appears to be remarkably stable even whenso → −10
dB, i.e., when the receiver is only able to reliably record
contributions from the early-time response ofh(t). In the worst
case considered,LE(so) is reduced by 4 % with respect to the
case of infinite sensitivity.

These results confirm that IRs must come as bursts of
energy spaced by very weak contributions, as dictated by non-
negligible values ofLN (so). Since these bursts compensate for
the energy that would be expected to be smoothly spread as
according to the PDP, their instantaneous power must exceed
the one expected for the PDP, consistently with the prediction
of an overshoot factorMh > 1, as well as with an expected
dynamical range where strong and weak contributions occur
with the same probability.

VIII. C ONCLUSIONS

IRs have been modeled as stochastic processes, starting
from a physical description, based on a modal expansion.
A modal approach suggests that the actual number of DoF
is given by the number of resonant modes available, which
is expected to be highly frequency dependent, a non-trivial
prediction when adopting multi-path models. Experimental
results confirmed that convergence to a Rayleigh propagation
model accelerates at higher frequencies, and is faster thanby
increasing the bandwidth involved.

The prediction that the IR envelopes (and their PDPs) are
only approximatively exponential was also confirmed. Taking
these deviations into account, envelope-normalized IRs were
confirmed to behave as stationary random processes, even in
their late-time response. Local discrepancies from Gaussian
processes have been highlighted, and confirmed to reduce as
the number of resonant modes increases.

Metrics have been introduced to model the fluctuations of
IRs from their envelope. Models derived showed that IRs can
locally exceed their rms envelope by a factor easily larger than
three, whose evolution is roughly bound bylnBT τ̄ , with τ̄ the
average time constant of the medium response. The dynamic
range, probability of missing contributions for finite-sensitivity
receivers and average detected energy were also studied and
fully validated against experimental results.

These results provide insights into the way IRs are con-
trolled by a few physical parameters in a reverberant medium,
and are expected to increase awareness about the extents of
randomness in IRs. Future work will test these predictions with
data collected in real-life reverberant environments, such as
indoor structures. Ideally, it would be interesting to use results
from datasets described in published papers and compared
them in a meta-analysis approach.
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