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Stochastic Modeling of Impulse Responses in
Reverberating Environments

Andrea Cozza

Abstract—Propagation of waves within media supporting re- to propagation paths subject to a few specular reflections,
verberation is usually regarded as a direct extension of the gbserved in the early-time response and b) random con-
case of multi-path propagation, where a set of independent i tions resulting from recursive multiple reflectionada

paths, equivalent to plane-wave contributions, can be draw . . . .
between a transmitter and a receiver. This paper adopts an scattering events, usually referred to as a diffuse fieldaiyr t

alternative approach, based on modal theory, in order to deive appearing later in time. These two groups require different
models of the stochastic behavior of impulse responses (IRs modeling approaches, as highlighted in [3] and references
measured within such media. IRs can be represented as statiary  therein. This paper will not address deterministic contitms,
Gaussian random processes whose amplitude is modulated byrather focusing on diffuse multi-path contributions, wlos

a decay function that converges to an exponential only if the ic feat I tured b f sh
time constants of each mode are similar, otherwise displayg Macroscopic features are usually captured by means of shape

a decay rate slowing with time as the modal time constants factors, such as their power-delay profile (PDP), i.e., the
become more diverse. The asymptotic convergence to a Gaumsi time-dependent average instantaneous power of IRs olaserve
process is controlled by the number of available modes, whiic  through a medium.

modal theory predicts to increase linearly with the bandwidh, A large variety of PDP models is available in the litera-
but quadratically with the frequency. Modal theory implies that . . .

groups of typically more than eight propagation paths must ke ture. A classmgl example is _Saleh—VaIenzueIa multiplester
coherently related in order to give rise to reverberation. As Model [4], which can describe the general case of clusters
a result, far less degrees of freedom may be available than of delayed contributions, each decaying in time according
expected from the number of propagation paths involved, ths to an exponential function. PDPs can then be thought of
leading to a slower convergence to Gaussian propagation mets. 55 modulating random processes that describe the noese-lik
The stochastic model introduced is further applied in order . N

to understand how far IRs can locally fluctuate away from behavior of individual IRs. Thes&_e fa”‘_jo'f” pr_oce_sses have bee
their root-mean-square profiles. All theoretical predictions are found to broadly follow a Gaussian distribution in many ase

supported by experimental results. [5]-8]-

Index Terms—Multipath propagation, modal theory, reverber- The main handicap of this kind of macroscopic models is
ation, indoor propagation, statistical electromagnetics random their inability to provide physical insight into the condits

processes, time-domain analysis, impulse responses. that ensure their validity. But the fact that exponentiatales
be systematically observed in certain practical settimggn
. INTRODUCTION involving time constants larger than the time-of-flight ael

Partially or fully closed environments often provide th&'€eded to cross the environment, is a direct hint at thelityabi
setting where waves evolve, in particular for wireless camm{© support reverberation [9], [10]. A reverberant response
nications. Examples are indoor and dense urban envirosmeffiables the use of modal descriptions, as the one proposed
hangars, industrial plants, mines, in-vehicle commuiveat " this paper, which is here shown to formally prove that an
etc. All of them share a common feature, namely the fagkponential decay can, under certain conditions, be a good
that waves undergo a large number of scattering events o@@pProximation for PDPs. _ _
reflective boundaries (e.g., walls), leading to radiatedrgyn ~ Moreover, the approximate Gaussian behavior of IRs has
being distributed along multiple directions, thus geriagat Mostly been based on empirical data or by adopting asyneptoti
multiple propagation paths between a transmitter and a F@SC”F’“O_”S such as Raylelgh or Rice diffusion. These two
ceiver. Depending on the geometry of the environment, af§ymptotic models are often invoked as soon as a propagation
the relative positions of transmitters and receivers, e+ Medium is expected to support a large number of propagation
of-flight of each separate path may vary significantly, givinPaths which, once as;umed to be s_tat|st|.cally independent,
rise to time-spread versions of originally transmittednsig naturally lead to diffusive conditions, implying that IRarc
[1, 2. be described as Gaussian random processes. The problem is,

Impulse responses (IRs) in reverberant media display tke conditions under which these approximations hold are

separate contributions: a) deterministic contributioatated Seldom discussed, with no quantitative approach to stdichas
convergence, apart assuming the availability of a largelrarm
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results are further developed in Secs. IV to VI, where local
or instantaneous fluctuations in random realizations ofdies
studied. Sec. VII presents a thorough experimental vadidat

of these models and the related predictions, in partictiar t

the number of modes appear to be the dominant factor behind
the convergence to a Gaussian random process. Most graphs
issued from theoretical models are only shown in Sec. VI, in
order to serve as a reference for experimental results.

240 MHz
—— 15 MHz

Il. PROPAGATION MODELS AND EXPECTEDDOF

0 05 1 15 5 25 3 Transfer functions in complex media can be described by
t/7 means of tap delay-line models [4], [7], [19], [20]
N
Figure 1: Two IRs measured at 2 GHz in a reverberation cham- H(w) = Z ane (1)
ber (see Sec. VII), for two different bandwidths. Notice the 1

marked difference in the fluctuations dynamics even thou%/h

the two IRs share the same root-mean-square (rms) envelgété].l 7n the delay associated to theh contribution,a,, its
(marked as dashed lines). plex amplitude and> the angular frequency. Depending

on the way these parameters are chosen [21], in particular
their eventual frequency dependence, (1) can represenea se

b : | . lis phvsicati . of distinct echoes, a continuous spread, i.e., reverloerati
reverberant environments. Its main appeal is physicaghsi or a series of clustered contributions. In all of these cases

and the ability to yield quantitative predictions from a tar each contribution in (1) is interpreted as a distinct patingl

parameters, such as the volume of the propagation med'Wﬂich a portion of the transmitted energy propagates. le cas

and the frgqugncy range over which it is usgd. these multiple paths were different enough to be regarded as
Our derivations focus on the case of a single-cluster PDRqiistically independent, asymptotic models such asetfias
which comes with a mathematical description simple enougfice and Rayleigh channels could be invoked. More realistic
as to yield insightful understanding of the physical pheeoen qqels can be considered, where groups of paths are partiall
behind their complex behavior. The description introduted g related together, while intergroup correlation is reigd as

this paper can be extended to more general cases, in ordefdgjigible, but in practice are not used due to impossjbiit
account for multiple clusters, but would make physical Mt predicting or measuring partial correlation.

pretation less straightforward. Moreover, multiple refees — \yhen each individual contribution to (1) is interpreted as a
suggest that PDPs observed in reverberating enwronme(rp(g%a"y) plane wave propagating along a given path [228, th

are mostly characterized by a single decaying exponentigisiion - of the receiver/observer can be introduced in (1)
in indoor environments [5], [10], urban settings [7], [11],

commercial airplanes [12], at the interior of vehicles H[3P], R N R ik

industrial sites [8], [17], as well in metallic ducts [18]in&lly, H(wsr) = pr - anb”(w)e Jn @
laboratory facilities emulating wireless communicatioims n=1

realistic media are based on the use of reverberation Chamb,eherefor is the polarization of the receivek,, = kok,, gives
[16], which typically display only a single cluster of de&y the direction along which theth plane wave approaches the
power contributions. receiver, with a complex weight, (w), and a polarizatiom,,;

The proposed model of IRs as non-stationary random pre; = w/c, is the wave-number for a speed of lighf. The
cesses is subsequently used in order to predict how stronglgeiver is assumed to be isotropic, for the sake of sinplici
individual IRs sharing the same PDP can differ on a local Although this family of models is completely general, it
scale; Fig. 1 illustrates this issue for two IRs measuretiiwit comes with an unanswered question: shobldoe regarded
the same medium. Several statistical metrics are useda®a measure of the number of DoF available for transmitting
this effect, such as their peak instantaneous power and #fignals? In order to answer this question, one should assess
probability of occurrence of undetectable contributioA. how independent are thes® contributions, but they are
theoretical predictions are fully supported by experiraéntusually regarded as independent, to the best of our knowledg
data measured in a reverberation chamber. e.g., [23] considers a ray-tracing propagation model assyim

The paper starts by arguing on the fundamental differencesch path to be independent.
between multi-path and modal descriptions in Sec. Il, and in Such an assumption is reasonable for configurations where
particular the number of DoF that could be expected in the tvgcatterers such as walls and buildings act as guiding stest
cases. A modal description is then adopted in Sec. I, pigvii.e., where energy propagates about a main direction. Bseth
that IRs in reverberating media behave as non-stationagsumptions break down when dealing with closed environ-
random processes that can be asymptotically factorizedeas ents, where waves may propagate back and forth several
product of a Gaussian stationary process and the IRs emjeldjpnes, giving rise to standing-wave patterns that undeifly d
which can be approximated by a decaying exponential. Théssion and reverberation. In this case subgroups of pattst mu



(b) where v is the modal weight for the&th mode resonating
at wy with a quality factor@y, according to the frequency
response

Yi(w) = [w? — Wil —j/Qu)] ()

The {~;} are a function of the source of radiation, but are
given once its nature and position are fixed. In fact, theinac

Figure 2: Modal versus plane-wave representations in @dlos\/aIue is not important when adopting a stochastic framework

environment: (a) plane-wave contributions in a periodicto as discussed later. . . L
mode (standing wave), generated and self-sustained sequer?qs' (1) a_md (.4) are mutually compapbl_e SINce, as intuyive
tially leading to a global coherent pattern and (b) the stthje ziggﬁztee(;jilnr]cdliflg. iiﬁ)e’ vevg\(iZsmiosal distributigr{r) can be
perception of an observer (gray spot), experiencing on al loc P kP T

level what appear to be four independently impinging plane M N _
waves. H(w;r) =p, - > yete(w) Y bgpe e, (6)
k=1 p=1

The main difference is that modal theory states that thegplan
be organized in closed coherent patterns [24, Ch. 3], eslheci wave coefficientsb, } only depend on the environment and
in presence of planar surfaces, a signature of integrable waot on the source/transmitter and the receiver charatiostis
billiards [25]. This physical fact is important since it ifigs  Therefore, even thougl_,—, N} plane waves are propagat-
that groups of waves impinging on the receiver are not actingy, only the{~;} can modify the way these plane waves are
as separate entities. These ideas are schematicallyalest excited, and this only through sub-groups pertaining tcheac
in Fig. 2. As a result, the number of propagation paths shoultbde.
not be regarded as a measure of the DoF available in thes&he perception of the number of available DoF is therefore
media; one should rather consider the number of patterns,satongly affected. In particular, from (3) is can be expddteat
modes, allowed by the geometry and materials involved in @fcreasingf. should lead to a faster convergence to Rayleigh
environment. diffusion than a comparable increase in the bandwigih a

There is no simple way of assessing beforehand the prediction that cannot be derived from a classical multhpa
lationship between the number of resonant modes and médel as (2). This prediction is put to test in Sec. VII.
propagation paths, apart for very simple geometries. Bliyic
the number of paths ranges one order of magnitude above [1l. M ODAL-BASED MODEL FORA(t)
the number of standing-wave patterns. It is thus clear that;, arse transforming (5), the time-domain response of a

regarding paths as DoF may lead to overestimate the proQgiyie mode resonating at the angular frequengycan be

bility of experiencing asymptotic conditions (e.g., d&fan) |, iten as

in reverberating media. De(t) = et ™ sin(wit)u(t), @)
The average number of modes supported by a closed struc- _ _

ture obeys a universal law requiring little prior informatj With 7 = 2Q/wy the time constant related to the quality

first derived by H. Weyl, which relates space to frequency, Bgctor Qi of the resonance and(t) Heaviside step function.

exploiting the fact that for a given volume only certain patts  Introducing the coefficient§ay, }

(or modes) can self-sustain, and only around a few selected P — el 8

frequencies. As reported in [26], ar = Py - ex(r) = ®

(4) can be written as

8 B
M ~ =2V 2By = Skaf—T, ©) A
€ ¢ h(t) = u(t) Z ey sin(wrt + @r), 9)
where M is the average number of modes resonating within a k=1

bandwidthBr centered at the frequendy, for a structure of where the observer’s position has been dropped for the sake
volume V; \ is the wavelength associated fp, for a speed of brevity.
of light ¢, while V stands for the volume expressed in cubic The {v;} can typically be assumed to be independent and
wavelengths. Eq. (3) holds as long Bg is greater than the identically distributed [31], in particular for the case evk
coherence bandwidtB. of the medium, otherwis@/ should no line-of-sight (LoS) contribution is present, as assurimed
rather be estimated as the number of modes overlappirfig atall results and discussions reported in the rest of this pape
[27], [28], a case not considered in this paper. This same property is inherited by tHe,}. More general
The modal-theory alternative to (2) is a discrete sum &tenarios can be reinstated by adding a LoS contribution to a
modesex(r) [29, Sec. 13.1] [30, Ch. 10], proper to thepurely non-LoS case, as done, e.g., in [7], a case not treated
medium’s geometry and boundary conditions in this paper.
" As a result of these assumptions, all the sir:;ﬁ?nctions
N s display independent random phase-shift angles, Wih} ~
H{wir)=p, ;%ek(ﬂm(w)’ @ Z (0,2m), i.e., uniformly distributed over all possible angles.



Moreover, the random nature of the frequendies} also act | \ Ng
as sources of randomness in the phase terms [25]. It canthel  gg}\ & \ v N
fore be shown that under these assumpti¢ng)) = 0,V ¢, S o
0.5}
where(-) stands for the ensemble average of a random proce. \
or variable. 5 0.4f \
The IR model here sought is given by the product of the I 03} \
square root of the PDP, i.e., the IR enveldpét), and a zero- 02l \
average random proceas(t), o1 -
h(t) = ho(t)w(t)v (10) 0 . . . . . )
) 0 1 2 3 4 5 6 7
where the IR envelopg,(t) is expected to take the shape t/7
ho(t) = Ave ™" u(t), (11)

Figure 3: Contour plot of the drift function(¢, ¢).

where 7 is a time constant typically associated to dissipa-

tion/leakage phenomena within a propagation environment.

An exponential-decay law can be derived on the basis oféth Ei(-) the exponential integrah(t, c) measures how much
first-order dissipation model, for very narrow-band coiatis the IR envelopé,(t) differs from the pure exponential decay
under Rayleigh diffusion [32], [33]. This property is hereappearing on the right-hand side of (16). Bpf > 1, n(t, c)
demonstrated to be just a special case of our model, deri&&h be approximated as

under more general conditions.

2 2
From (9), the PDP ofy(t) is found as 2 _ (et D) 2c t] (c—1) 2 t
@) . ) wte) = o SR ST E | T gy O c—1(% )
19
ho(t) = (h*(1)) = <Ze_2t/7’“a% sin® (wxt + <Pk)> proving an exponential drift of the late-time PDP from the
k=1

purely exponential decagxp(—2t/7), as soon ag > 0. For
this reasom(¢, ¢) will be referred to as the drift function.

—2t/Tp n—2t/T : :
+ <Z o™ e M agag sin(wpt + ¢p) sin(wqt + ‘pq)> Summarizing the above results, (13) yields

PF#q

(12) ho(t) = Age™"/T(t, Ju), (20)
Because of the assumptions on the modal weifhts, the
second average in (12) is vanishing with respect to the fingtth
one. Assuming a weak dependence between the {3gts Ay =mar/M/2, (22)
{wr} and {7} and invariant probability laws with respect to
k andm?2 = (7). Eq. (20) confirms the validity of an exponen-
h2(t) = <e—2t/rk> <ai> M/2. (13) tial envelope, as postulated in (11), onlyrjift,c) ~ 1,V ¢, c.

] ) ) The drift function is mapped in Fig. 3, where it appears that
The first average only involves the modal time constants ¢ ¢ is not necessarily close to one. Forx 7 a shallow
B B region findsn(¢,¢) ~ 1, but for later instants: should not
e 2t/ — [ dr (x) 2t/ (14) - . .

p be larger than 20 % for this condition to hold. Stated in other
terms, an exponential envelope should not be taken for ggant
and is in itself an indirect proof of weak dispersion in the
Wistribution of the random{r;}. The prediction of a drift
functionn(t,c) > 1 is confirmed in Sec. VII.
<e‘2t/7’c> — (20)°! /c ds e~ 2t/7(1+5) (15) The squared envelope?(t) .is meant to describe the way

’ energy evolves (on average) in the response of a revenhgrati

(ﬁwdlum when driven by an excitation pulse. While this kind
of model is useful in order to characterize the power-delay

spread of a channel, it does not provide detailed informatio
about the potential differences in the IRs sharing the same

wherep,(z) is the probability density function of;, which
are here assumed to be uniformly distributed around th
averager, covering a total spafAr, thus

—C
with ¢ = A7/7. Relevant discussions about the behavior

{Q}, and thereforgr} can be found in [34].
Solving (15) yields

<e—2t/7> — e 2/T2(1, ¢), (16) Ppower-delay profile.
o More insight can be obtained by analyzing the statistical
wheren(t, c) is given by properties ofw(t) = h(t)/h,(t). From (9), (13) and (21)
772 (t7 C) = g(ta C) - g(t7 —C) (17) M
and w(t) = /2/M Y Bisin(wit + ¢n) (22)
k=1

1+s 2t s LT 27 2t/7
9(t,s) = os] “P\F14s) T s Ei “1+s where B, = ai./m,. The statistical properties ab(t) can
(18) be derived by noticing that the summation in (22) can be



interpreted as a 2D random walk, since discussed later in this section. The samplés = h(nT.)}

M are required to be independent; being modeled as Gaussian
ng sin(wit + or) = Im {s(t)}, (23) random variables, this condition is equivalent to requgjrin
1 uncorrelated data. The probability law @ff;, can now be

where expressed as

o(6) = iﬂkejgk (24) Fap, (z) = P(My, < z) = P(Jhn| < 2,Y n),  (27)
k=1

which, for independen{h,, }, translates into
having setf, = wit + @i. Since {pr} ~ % (0,27), i.e., s
uniformly distributed, also{¢.} ~ % (0,27), V t,wy. The P(M), <z) = H P(|hn| < ), (28)
summation in (23) can now be recognized as a random n=0
walk in the complex plane, with random steps along randogy each|h,| < z at the same time, ie., representing
directions {¢,.}. This class of random processes is knowp(ys, < ;) as a joint probability. This kind of probability
to present a probability distribution with circular symmet |5, is reminiscent of an extreme-value law [37], where the
i.e., only dependent on the norm eft). The central-limit ayimum value observed in a set df iid random variables
theorem involves thai(t) can be approximated as a Gaussiag considered. The fundamental difference here is that the

process; hences(t) is fully characterized by its first two sampjes are not identically distributed, because of thayleg
moments. In practice, only the varianeé of s(t) needs to envelopeh,(t).

be computed, as the isotropy &ft) leads straightforwardly to Sincew(t) is asymptotically a Gaussian process, (10) has
an average equal to zero. It can be shown #fat= M,V ¢, he {h,} also behaving as Gaussian random variables, with
i.e., s(t) is stationary, while the isotropy of(¢) results into ¢tandard deviations,, ~ exp(—nT./7). The drift function
<Im {S(t)}2> = (Js(t)]*) /2. Convergence to this kind of y(¢, ¢) is here neglected since the peak-valugit)| is likely
process is consistent with observations in real-life sieagas to occur fort/tau < 2, wheren(t, ¢) ~ 1.

presented, e.g., in [8], [12], [20] and indirectly in [11]here For a Gaussiam,,, its modulus|h,| follows by defini-

a zero excess kurtosis was observed. A uniform phase-shifh a half-normal distribution. Therefor®(|h,| < z) =

angle distribution was confirmed in [6], [35]. erflexp(nT,./7)/v/2)], so that (27) results into
Taking into account these properties in (22), the first two oo
moments ofw(t) become Fu, (z) = H orf (xenTc/'F/\/i) 7 (29)
(w(t) = 0 (25) | .
<w2(t)> _— (26) whereerf is the error function.

As the standard deviation of late-time samples decreases
vt > 0, i.e.,w(t) is a stationary process and follows a standarkponentially, it is clear that their contribution to theage
normal probability law. Since these conclusions are based value M; can be expected to be negligible. It is therefore
the central-limit theorem, they can be expected to hold psssible to truncate the product in (29) & samples, where
long asM > 1, while the individual contributions for each K can be chosen such that the probability of haying > A,
mode/resonance needs to be weakly correlated. is negligiblevn > K, e.g., lower than 5 %. This condition

The modal description from which (22) was derived imis met when the standard deviation/of /A, is smaller than
plies that thed/ modes available act as independent degregg?, i.e., exp(—KT,./7) < 1/2, hence
of freedom that will eventually havev(t) converging to a _
Gaussian process\ should therefore (b)e expected to drive K < (7/Tc)In2. (30)
this convergence. Experiments presented in Sec. VII-Catippas a result, the only < KT, is considered, i.e£/7 < In2,
this prediction and prove that even fbf >> 1 local deviations which falls in the region wherg(t, ¢) ~ 1, thus justifying the

from Gaussianity are observed. use of an exponential decay in the present derivation.
Fig. 4 shows a few examples of probability distribution for
IV. PEAK-VALUE ATTAINED BY AN IR the overshoot factoM;,, obtained by numerically computing

The factorization ofh(t) as in (10) makes it possible tothe derivative of (29) with respect to. These results indicate
assess how strongly single realizations/dt) can deviate that an IR can exceed by non-negligible margin its rms
from their envelopé, (t), on a local scale. Several metrics ar€nvelopeh,(t) as7/T. increases.
considered in the following sections, starting with thelqail- A few quantiles of (29) are shown in Fig. 5 versiis/7.
ity distribution of the peak valué/;, = max; |h(t)|/A,. This The mode of (29) as a function @f./7, truncated according
is of practical importance, e.g., in assessing the proialit to (30), can be approximated, within an error of less than a
observing overshooting events, leading to increased feakpercent point, as

average power ratios, but alsp for e_Iectromagnetlc dosy_mat m(T,)7) ~ alnb(%/Tc) (31)
cavities [36] and assess the intensity of electromagnetss
in EMC tests. with ¢ = 0.626 andb = 0.741 obtained by least-square fitting.

The IR h(t) is first approximated as a discrete time-seriefy the same way, (31) approximates the average when
by sampling it att = nT., with 7. the coherence time 0.749 andb = 0.678.



over the excitation bandwidtB+ and zero outside it, from

Al which

O T, =1/4Br. (38)

= 05r V. DYNAMIC RANGE OF FLUCTUATIONS
0 The fact that the peak value &ft) can significantly stray
0 away from the IR envelopk,(t) does not come as a surprise,

since typical IRs in closed media are characterized by wide

fluctuations. While their Gaussian nature explains thegrin

ity, it is interesting to understand the dynamical rangsspd

y |h(t)], i.e., to measure how strongly the amplitudehdf)

can swing between two close observations. This information

would allow to understand whether IR locally exceedingrthei

envelope should be expected to rapidly fluctuate to muchrdowe

amplitudes in a short time span, thus appearing as a sequence

of rapid pulsed bursts rather than a continuous decayihg tai
We therefore focus on the ratid = |h(t + At)/h(t)| =

lw(t + At)/w(t)|exp(—At/7) and compute how it is dis-

tributed, assuming that the two random variables involved i

it are weakly correlated, i.eAt > T.. The probability density

function of the ratioR = |w(t + At)/w(t)| can be obtained

as

Figure 4: Probability density functions ofM;, =
max; |h(t)|/A,, as predicted by (29). Three values oﬁ
T./7 are considered, as displayed on top of each curve.

4.

Quantiles

pr(x) = /000 ds p‘W|(s)%F|W‘(:vs), (39)

) ) ) o . Where Fjyy(z) is the cumulative distribution of the modulus
Figure 5: Quantiles of\f;, as functions of7../7, with their of 4(¢), v ¢. Since Jw(t)| follows a half-normal distribution
associated probabilities superimposed over each curve. Ty, with unitary standard deviation,
red dashed curve represents the modé/fpf

pula) = | " ds(=5) pyw(S)pyw (23)

The condition needed for independefit, }, i.e., uncorre- 2 °°d _)el+aNs?/2 (40)
lated{w, }, can be inferred from the auto-correlation function ), s (=se
of w(t) 2 1 -
Ry(1) = (wt)w(t + 7)), (32) T Tl 0"
which, following (22), can be shown to be from which
Ruy(7) = (cos(wnT)) (33) pz(e) = A pp (weAt7). (41)

Approximating the resonant frequenci¢g,} = {w,/27} The distributions (40) and (41) correspond to Cauchy distri
as uniformly distributed over the excitation bandwidy butions, whose average and standard deviation are not define
centered onf. known to model random variables with large stochastic dis-
. . persion. For the sake of simplicity we will hereafter assume
R, (1) = cos(2n f.7) sine(nBrT), (34) At < 7, leading toZ ~ R.
which is consistent with the results presented in [11]. Because of the strong stochastic dispersio# pfonfidence
The coherence time can then be assessed as the equiv@rvals are more useful metrics to quantify its dynamige
lent time support of the time-coherence functipp(7) = The cumulative distribution associatedyig(x) is
Ru(7)/R(0), )
o F = Ztan! 42
T, = / dr 2 (1), (35) z(z) = 7 tan (@) “42)
0 . - .
and the quantil for a probabilityp is
which, thanks to Parseval and Wiener theorems, can be ex- a %) P ypﬂ
pressed as q(p) = F;'(p) = tan 2P (43)

-2
_ 2 so that the confidence interval for a significance leuel
Te= [2 /Bwa S”(”)} /Bwa Sw@) B8 i 0/2). 41 — a/2)]. It can be shown that (43) yields
q(a/2)q(1 — a/2) = 1, V «, as illustrated in Fig. 12, in
Sec. VII-C. This result means that the probability of obgagv
ratios smaller than /C is equal to that of having them higher
Sw(w) =1/2Br (37) than C, whereC > 0. In other words, small observations

where S, (w) is the power spectral density af(t). Fourier
transforming (34),



can be followed by very large ones in the IR, and viceversa,lt could therefore be expected that the total detectable
vV ¢t > T., while the envelope:,(t) represents the medianenergy be significantly smaller than what the PDP indicates.
of the IRs. These considerations are important in the caBkis point can be clarified by computing the instantaneous
of receivers with finite sensitivity, as discussed in the tnepower detected on average

section.

(Pa(®) = (IR | 10O > s04,)  (@7)
VI. UNDETECTABLE CONTRIBUTIONS conditioned to detectable contributions, which can beiobth
Let a receiver/probe have a finite sensitivity, defined as
as a fraction of4,. This value could be set, e.g., by the 2 oo 2 _h?/2m2(1)
level of background noise below which contributions are (Pa(t)) =/ —ho (’5)/ Adh h%e ° (48)

regarded as lost. Therefore, only those contributions shah
|h(t)] > soA, will be regarded as detected. Taking the PDP as  _ \/Zsoho(t)e—sﬁ/zhg(t) + 12 (t)erfe S0 _
an estimate of the received instantaneous power, this tondi ™ ¢ V2h,(t)

is typically translated into a condition for the receivectidlect The fraction of energy detected on average with respectdo th

information only over a time interval up t6, = —T71Ins,. . . '

. . O o ted to the PDP is then defined
E.g., in [2] a 30 dB dynamic is reported, i.€,/7 = 3.45. energy assoclated fo the IS then defined as
But because of the strong dynamic of random fluctuations 1

T,
Lp(s0) = g / at (Pa(t), (49

discussed in Sec. V, there is a risk of experiencing sigmifica Eppp

reduction in instantaneous power with respect to what coqmth
be expected from the PDP. T, o
On the other hand, the existence of overshooting events, as Eppp(se) = / dt h2(t) = M(l —s2), (50)
discussed in Sec. 1V, would lead to think that the total nesei 0
energy could be a strongly fluctuating function and couldhevgielding
be higher than expected from the PDP. _s22 o
In order to elucidate these questions, we compute the f (5 ) = \/250e o7 — s,/ Ve L erfe <S_o> . (51
™

probability of receiving undetectable contributions, riiey 15, V2
from (10), which can be approximated as
Pot) =P(RE) < Aoso) = Plt)] <exp(t/s) Lo(s) =1 —s2/2me , so<1.  (52)
= erf (eXp(t/?)So/\/i) ) Fig. 14 in Sec. VII-C proves thatg(s,) stays remarkably

close to one, even wheq increases to relatively high values.
This outcome implies that even thougl¥) is substantially af-
fected by undetectable contributions, its overall enesgyery
weakly affected on average, which makes sense only if the
etected contributions compensate for the missing eneogy f
hose gone undetected, i.e., by means of frequent oveinlgoot
events. This explanation is indeed consistent with theltesu
Sec. V, where it was shown that very weak contributions can
be followed by large ones that have the potential to comgensa
Sor missing contributions.

having assumeg(¢, ¢) ~ 1 in order to obtain closed-form re-
sults. The probability of not receiving significant contrilons
at T, is Po(T,,) = erf (1/v2) ~ 0.68, and is independent
from s,. The results presented in Fig. 13 in Sec. VII-C sho
that there is a non-negligible probability of not receivinq
any detectable contribution even in early-time observatio
depending on the value taken by.

Eq. (44) allows estimating the fraction of tindey (s, ), over
the intervalt < T,, during which no detectable contribution
are received on average

1 (T VII. EXPERIMENTAL VALIDATION
Ln(so) = —/ dtP,(t) i : i _
To Jo Previous theoretical results were validated against exper
1 T Vs 13 45 imental data measured in a reverberation chamber (RC),
= ?0/0 dt ert (e So/ 2) (45) according to the setup and protocol described in Sec. VII-A.
1 —1Ins, This choice is motivated by their wide-spread use as standar
= / dy erf (eyso/\/i) ) test facilities capable of emulating a large number of digna
S Jo transmission settings for strongly multi-path environtsen
which is well approximated by [15], [16], [38]. The fact that they present a similar stiatil
3 behavior even when taking different implementations (ghap
17— 18s, + s, .
Ln(so) =~ —\/_— , S < 1, (46) factors, volume, etc.) enables reproducible results.
9v2rmins, Sec. VII-B first proceeds to the validation of the non-

obtained using the third-order Taylor expansioredf(z) for stationary random model introduced in Sec. Ill. Convergenc
x ~ 0, before computing the integral. Results in Fig. 14 implyo asymptotic results is shown to improve with the number of
that even for small values af, there is a high probability of modes available, as argued in Sec. Il. Substantial driétsfr
receiving no contribution, and that IRs should be expeated @an exponential decay are found to be accurately described by
be highly fragmented. the proposed model. Local deviationswft) from a Gaussian
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Figure 6: The hemispherical positioner (a) and the electra 4
optical probe (b) used in the experimental validation.

distribution are highlighted. In spite of these deviatioesults

in Sec. VII-C prove that the asymptotic models derived in
Secs. IV to VI for random fluctuations in IRs are remarkably
accurate and can therefore be used as predictive tools.

A. Test setup

The experiments were carried out in a metallic RC, a cubogggure 7: Validation results for the evolution of the IR eloge
of about6 x 3.5 x 2.5 ng. The RC was equipped with a Z-(i.e_, the square root of the PDP) fﬂ'r =920 MHZ, andf'C —
folded metallic stirrer WhiCh, thOUgh not Operated dUrlhg t 0.5 and 2 GHZ, Comparing experimenta| results (gray Curves)
experiments, was fundamental for breaking symmetriesiwvitrand theory introduced in Sec. Il (black curves), for : (a th
the RC. envelope and (b) the deviation functigf, ¢). Optimal fitting

A monocone antenna, impedance matched to ensuresfaheoretical results to experimental data yield an egtnod
return loss higher than 15 dB between 0.4 and 3 GHz acted- (.34 (for f. = 0.5 GHz) andc¢ = 0.060 (for f, = 2
as transmitter. It was placed behind the stirrer, in order t9Hz), corresponding to a relative standard deviation 0%8.9
minimize line-of-sight contributions in received signalfiese and 1.7 % in the modal time constar{ts, }.
were measured over a large number of positions, thanks to the
hemispherical scanner shown in Fig. 6(a). This robot has the
ability to ensure a very low level of perturbation at freqcies  |Rs were then retrieved by means of inverse discrete Fourier
below 3 GHz, with a level of coherence better than 70 %ansforms, by having first applied a tapering function te th
when one of its arms moves [39]. The received signals weff@quency-domain data. Tchebychev window is an effective
obtained by means of an EFS-105 probe manufactured &hoice to reduce the level of side lobes, with a time-domain
Enprobe, a linearly polarized electro-optical probe witdt fl counterparp(t), whose sampled representation is [41]
wide-band receiving characteristics, shown in Fig. 6(kgteD
were collected around two frequencies, at 0.5 and 2 GHz, for )= cos (N cos™ (Bcosmk/N)) (53)
which (3) predicts a 16-fold increase in the number of DoF, o cosh (N cosh™?! ﬂ) ’
for a given bandwidthB.

For each position of the receiving probe the transfer fimcti with 3 = cosh (N~ cosh™' 10%), and N' the number of
between the monocone antenna and the probe was measiregliency samples spanning the bandwiéh of the IR of
using a vector network analyzer from Rohde & Schwariterest. In order for the late-time region of the IRs to be
model ZVB8, acquiring 5000 frequency samples uniformlyntainted byp(t) over at least 60 dB of dynamics, we set
distributed over a 250 MHz bandwidth, around 0.5 and 2 GHaz. = 4, in order to ensure a side-lobe level below -80 dB.
The frequency step was chosen in order to limit the inevitabMoreover, forp(t) to have a support way smaller than
effects of time-domain aliasing, since the time constarthef Br 2 10 MHz, in order not to alter the early-time region
RC was expected in the range of microseconds. of the IRs.

To make sure that the transfer functions were independent,
the probe positions were chosen to be at least a quarter
of wavelength away from each other [40], and uniformly"
distributed over the hemispherical surface allowed by theThe rms envelopé,(t) was first estimated from experi-
scanner. This resulted in a total of 244 positions at 0.5 GHizental data, as defined in (12), andt) = h(t)/h.(t) was
and 888 at 2 GHz. then tested for Gaussianity and stationarity.

Modal description and convergence
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Figure 8: Empirical probability distributions of the prasav(t) for By = 20 MHz and: (a) f. = 0.5 GHz and (b)f. = 2
GHz. Broad stationarity is observed even for late-time ditebe compared with local deviations highlighted in Fig.The
results forf. = 0.5 GHz are more ragged because of the more limited number dagzatiahs available.
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Figure 9: Deviation between empirical and theoretical gjilesg, for the normalized IRw(t), for By = 20 MHz and: (a)
fe =0.5 GHz and (b)f. = 2 GHz. The deviationy(t) — ¢, is color-coded and represents local departures from Ganigsi

According to Fig. 3,h,(t) can be expected to be welllower frequency, where modal distributions may presentemor
approximated by an exponential decay only f¢f < 2, an diverse dissipation patterns [34]. It can be concluded #mat
interval covering the first 17 dB ih,(t), wheren(t,c) ~ 1 exponential PDP should not be taken for granted, and a non-
even for large dispersions of the moda), }. The two parame- trivial result in its own right, since it provides insight the
ters A, andT can then be retrieved by means of a least-squastatistics of modal time constants.
regression on this portion of data, leading to the dashexitin ~ The realizations of the process(t) were then computed
Fig. 7(a), obtained fo3r = 20 MHz. The samé = 2.17 us according to (10), expected from theory to be stationary and
was found for 0.5 and 2 GHz. Higher fluctuations for 0.5 GHibllowing a standard Gaussian probability law. The staiity
are due to the more limited number of IRs available at thgan be qualitatively assessed in Fig. 8, where empiricdlgro
frequency. bility distributions, shown as functions of time, do not oge

Fig. 7(a) confirms thak, (¢) drifts away from an exponential significantly in range and amplitude, over the entire timarsp
function fort/7 > 2. This trend is better observed in Fig. 7(b)considered. A steadier behavior was found at 2 GHz, whereas
where 7(t) estimated from experimental data is shown. A8t 0.5 GHz the results are less uniform in time. Although
explained in Sec. Il this drift is expected in case of disgen the reduced number of samples at 0.5 GHz could be invoked,
in the modal time constan{s;, }. Once the exponential param-local variations are more likely due to a limited number of
etersA, and7 are known, it is possible to infer the value ofDOF, as discussed below. It should be stressed thattif
c = A7/7 by fitting (17) to the experimental data. The resultg/ere not taken into account at 0.5 GHz, stationarity would
in Fig. 7(b) support the explanation of dispersion in the alodnot be observed, as the drift from an exponential IR envelope
{7}, as the time evolution of(¢) is accurately predicted from is higher than a factor 2 far/7 > 5.

a single parameter, i.ec, The fact that a weaker dispersion Local drifts from Gaussianity can be assessed quantitative
is observed at higher frequency makes physical sense, sibgecomputing the quantileg(t) of the empirical distributions

at 2 GHz a wavelength of 15 cm is likelier to generatand comparing them with those expected for a standard
more uniform losses over the RC metallic surface than @aussian random variable, here namgdThe results in Fig.
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9 show the absolute error between the two, coded in color, &
a function ofg, and time. E.g.g¢(t) — ¢, = 1 means that the 10°
portion of distribution associated witf, occur further away,

i.e., the distribution has heavier tails, while negativeidgons

imply a contraction. This representation is intrinsicaliss
sensitive to differences in the number of samples, as it i
based on cumulative empirical distributions. These result 10"
confirm thatw(t) at 2 GHz follows more closely a Gaussian .
distribution for the central quantiles, roughly covering 7
% of all results (central white region), whereas at 0.5 GH:z
deviations occur systematically even for the central partf

S

101

uantile deviat

the distribution. 10 N M = 44680
The hypothesis, formulated in Sec. Il, that these deviation = )

are due to a limited number of modes, can be tested efﬁ —— /.=0.5 GHz, By=15 MHz

perimentally by considering the rms error on the quantiles® - == =0.5 GHz, By=240 MHz

computed across time, and correlating it with the numbe 10 -
of modes expected for a given frequency and bandwidtt
Recalling (3), passing from 0.5 to 2 GHz should lead to &
16-fold increase in the number of DoF, for a fixét}, here

—— f.=2.0 GHz, By=15 MHz
- == f.=2.0 GHz, By=240 MHz
— 244-sample Gaussian pop.

= 888-sample Gaussian pop.

set to 15 MHz. The same outcome should be observé}-if 107L

were increased by a factor 16 while keepifig= 0.5 GHz.

Fig. 10 confirms that very similar results are obtained amnsoo  _g4 s 0 5 4
as the same number of DoF are expected, be itffor 0.5 o

GHz andBy = 240 MHz, or for f. = 2.0 GHz andBr = 15

MHz. At the same time, a clear trend is visible in Fig. 10gjqre 10: Comparison of the rms deviation between empirica

where the_rms guantile error stegdﬂy_decregses as the mu% theoretical quantiles faw(t), as a function ofg,, for

of modes increases, well approximating an inverse profrti yittarent choices of the excitation bandwidth and freqyenc

as required by the central-limit theorem. The number of modes available for each configuration is
Two reference curves, in thicker solid lines, represent theoyn close to each curve. The two thicker curves represent

rms error in the empirical quantiles obtained from Montge ms quantile deviation expected for ideally Gaussian-

Carlo simulations involving ideal Gaussian samples, fo0 Wyistribyted populations, of sizes identical to those of &
populations sizes corresponding to the 0.5 and 2 GHz datasgly; and 2 GHz datasets.

respectively. These allow to assess whether the finite (and

different) size in the 0.5 and 2 GHz datasets could explain

the deviations from theoretical Gaussian quantiles. Fi@. Would hardly be suspected if the number of paths were taken as
shows that for the case where a very large number of modemeasure of the available DoF: at approximatively eighigpat

is expected, the quantile rms error is similar to the one douper mode, about 1400 paths would be regarded as certain to
for Gaussian samples, thus indicating convergence. Tlsis céead to Rayleigh conditions fof, = 0.5 GHz andBr = 15
occurs forf. = 2 GHz andBr = 240 MHz, for a population MHz. Moreover, there is no obvious way of predicting the
of 888 samples. On the other hand, as soonBas= 15 stronger influence of frequency ovéd from a multi-path
MHz, a significant deviation in the empirical quantiles agse presentation, as opposed to Weyl's formula (3).

even though the same population size is unchanged. Thid tren

worsens forf. = 0.5 GHz, where an even smaller number o€. Fluctuations from the PDP

modes is expected. These results unequivocally prove that itpg first fluctuation metric tested dealt with the probagilit
is not the size of the datasets that explain the deviatiofisein yisyrinution of the overshoot factdiy, introduced in Sec. IV,

guantiles, _but rather the changing number of DoF availablghich measures how strongly an IR can exceed the peak of
here considered to be the resonant modes. the IR envelope, i.e.A,. In case the excitation pulse has a
It can be concluded that the predictions of the modglyqyency-dependent Fourier spectrifttw), its effects on the

descri_ption discussed in Sec. Il are robustly supported RYherence timel,, must be taken into account by switching
experimental data on several grounds. The rms envelope dagg, 5 definition based on the autocorrelation function of

indeed drift away from the exponential profile usually eXpeC 1he |R, to one using the cross-correlation function between

for rich multi-path propagation. The random proces/) he received signal and the test pulse. In this way (38) is
displays a statistical behavior close to a stationary pece- generalized as

derlain by a standard Gaussian distribution. The total remb _ 2

, T. = 1/4k*Br, (54)
M of DoF expected from (3) appear to drive the convergence
rate, even when arriving at the samié by choosing two With

different combinations of frequency and bandwidth. As a 2 )
matter of fact, imperfect convergence to a Gaussian process K= [Q/dw P(W)] /BT/dw |[P(w)[",  (55)
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Figure 11: Empirical probability distributions of the pealue
observed in IR realizations, for two values of the excitatio
bandwidth and frequency. Theoretical results predicte(R@y
are superposed for validation. Onlyr has an impact on the gigyre 13: Empirical probability of receiving undetectabbn-
probability distribution, as expected from theory. tributions, for four relative detection thresholds, observed

at 0.5 GHz, for : (a)Byr = 15 MHz and (b) By = 240 MHz.
Local deviations in (a) are due to the limited number of DoF

=
o
~

Theory ; . . P
o o 0.5 GHz available and are consistent with those presented in Fig. 9.
2 = 2GHz Theoretical predictions for a purely exponential IR enpelo

Juny
o

are shown as thin dashed curves, while solid thick curves tak
into account the correction(t, ¢) introduced in (17).

Confidence-interval bounds

bility «, which represents the probability of observing samples
‘ falling outside the confidence interval. A close agreement
10 10 10 between experimental data and (42) is founddars 2%, with
larger errors as decreases, i.e., in the tails of the probability
flistribution. As expected from (3), at 0.5 GHz Fig. 12 digisla
larger errors, as the number of DoF hits a minimum. The

Figure 12: Bounds of the interval of confidence of the dynam

range spanned biy(t +T¢) /w(t)|, for a varying significance _ » ; . .
level o. Empirical results were obtained fd; — 15 MHz expectation that the probability of observing a given rétiof

and two central frequencies, spanning all time samples upS@TP!es is equal to that fayC'is confirmed in these results,
e justifying the strong fluctuations observed in Fig. 1.

The likelihood of recording weak contributions at a time
was assessed in Fig. 13, only for data around 0.5 GHz, where
yielding x = 1.74 for a Tchebychev window with -80 dB deviation from Gaussianity is more likely. The probability
side-lobe level, as in (53). of not detecting contributions is a function of the relative
According to theory presented in Sec. IV, only the bandgensitivity s,, introduced in Sec. VI, here taking four different
width should have an impact of,. Fig. 11 shows the values, from—40 to —10 dB. Fig. 13 compares the empirical
empirical distributions obtained from experimental data, Probabilities obtained from experimental results and ¢hos
gether with the theoretical distribution (29). The resaltssely predicted by (44) which agree over a wide time range. The
match, even though the processes are not perfectly Gausépgal deviations observed in Fig. 13(a) 6y = 15 MHz are
(see Sec. VII-B). More ragged results fér = 0.5 GHz and reminiscent of those found in Fig. 9; passing Ble- = 240
Br = 15 MHz are observed because of a limited amount &Hz reduces these phenomena, as convergence to asymptotic
DoF and samples, as already pointed out in Sec. VII-B.  behavior is more robust. It can be noticed how taking into
The dynamic range of fluctuations was studied for adjace®gcount the existence of a drift from a purely exponential
samples, forAt = T,, as given in (54). Results are showrflecay leads to much more accurate resultssfox —20 dB.
in Fig. 12, for By = 15 MHz, under the shape of bounds of Another measure of the fact that IRs can be highly frag-
confidence intervals associated to a given significanceggromented is offered by the metrif 5 (s,), defined in (45) as
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The prediction that the IR envelopes (and their PDPs) are
only approximatively exponential was also confirmed. Tgkin
these deviations into account, envelope-normalized IR we
confirmed to behave as stationary random processes, even in
their late-time response. Local discrepancies from Gaunssi
processes have been highlighted, and confirmed to reduce as
the number of resonant modes increases.

Metrics have been introduced to model the fluctuations of
IRs from their envelope. Models derived showed that IRs can
locally exceed their rms envelope by a factor easily largant
three, whose evolution is roughly bound byB,7, with 7 the
average time constant of the medium response. The dynamic
range, probability of missing contributions for finite-séivity
dgceivers and average detected energy were also studied and

100

99

(%]

98

Ln(s0)

lO L L L
-40 -35 -30 -25
S0 (dB)

-20 -15

Figure 14: Comparison between empirical and theoreti ; ) ;
results for the average fraction of undetected contrilmstio /!y validated against experimental results.

Lx(s,) and the average fraction of detected enefgy(s,), These results provide insights into the way IRs are con-
for By — 15 MHz. Results for 0.5 and 2 GHz are showrjfm”ed by a few physical parameters in a reverberant medium
and are expected to increase awareness about the extents of

using the same symbols as in Fig. 12. X : T
randomness in IRs. Future work will test these predictioitis w
data collected in real-life reverberant environmentshsas

the average fraction of time during whidh(¢)|/A, < s,. indoor structures. Ideally, it would be interesting to ussults

Empirical results in Fig. 14 derived from data at 2 GHz arfom datasets described in published papers and compared

indistinguishable from those predicted by (46), while & 0them in a meta-analysis approach.

GHz a systematic drift is due to having assumgd) ~ 1.

Ly (s,) takes values typically well above 20 %, getting close

to 50 % ass, — —10dB. This large variation suggests that
0 ° . 9 . gg. . [1] R. Vaughan and J. B. Anderse@hannels, propagation and antennas
on a local level |RS have a high probability of displaying™" o mobile communications Institution of Electrical Engineers, 2003.
undetectable contributions, a phenomenon that averages @& T. K. Sarkar, Z. Ji, K. Kim, A. Medouri, and M. Salazar-Rs,
when observed over time on a Iarger scale “A survey of various propagation models for mobile commatimn,”
. ’ . Antennas and Propagation Magazine, IEBBI. 45, no. 3, pp. 51-82,
The fragmentation of IRs leaves room for expecting an g3
average energy recorded over time that could differ fronm] G. Steinbéck, M. Gan, P. Meissner, E. Leitinger, K. \\igi, T. Zemen,
what expected from their PDP. The metI‘I@(s ) which and T. Pedersen, “Hybrid model for reverberant indoor radiannels
ial diff is sh o = . using rays and graphslEEE Trans. Antennas Propagvol. 64, no. 9,
measures a potential average difference, is shown in Fig. 14, 40364048, Sept 2016.
Lg(s,) appears to be remarkably stable even whers —10  [4] A. A. M. Saleh and R. Valenzuela, “A statistical model fadoor multi-
dB, i.e., when the receiver is only able to reliably record
contributions from the early-time response/gf). In the worst 5,

path propagation,TEEE Journal on Selected Areas in Communicatjons
vol. 5, no. 2, pp. 128-137, February 1987.

case considered,g(s,) is reduced by 4 % with respect to the

case of infinite sensitivity.
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