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ABSTRACT 

In zoom-in tomography, the aim is to image a region of interest 

lying partially or fully within the imaged object, using a high 

resolution tomographic scan covering only the ROI, and a low 

resolution scan covering the whole object. We analyze the problem 

from a multiresolution point of view and propose an algorithm for 

combining the two data sets using the discrete wavelet transform 

and the Haar wavelet. We compare the proposed algorithm to a 

previously reported method that involves padding of the high 

resolution data with a supersampled version of the low resolution 

data, to zero padding and edge extension, using synthetic data sets.

We show that the proposed algorithm is insensitive to offsets 

between the two data sets, but that it is slightly more sensitive to 

noise.  

Index Terms— Computed tomography, reconstruction, 

multiresolution, wavelets, quantitative imaging 

1. INTRODUCTION 

There has recently been a surge in interest in local tomography 

reconstruction techniques. This problem is variously known as 

local tomography, region of interest (ROI) tomography, interior 

problem, and truncated projections and all refer to the case when 

the imaged object does not fit in the field of view of a tomographic 

imaging system (Fig. 1). This problem can arise in the clinical 

setting, e.g. due to obesity in a full body CT scan, but the recent 

increase in interest in this problem is mainly motivated by X-ray 

microscopy. As resolutions are pushed further and further toward 

the nanoscale, the available field-of-view (FOV) also decreases. 

Current Synchrotron Radiation (SR) µCT imaging setups, using 

high flux X-ray beam extracted from synchrotron sources, achieve 

pixel sizes down to ~0.3 µm. With a typical detector size of 

2048×2048, this gives a FOV of ~0.6 mm. This makes it 

increasingly hard to manufacture samples that can be imaged in 

their entirety. 

It is known that standard reconstruction from truncated 

projection yield different types of artifacts, usually visible as a 

discontinuity at the ROI periphery and cupping effect (shown in 

Fig. 3 & 6). This problem is especially important in quantitative 

imaging techniques such as SR-µCT. In this technique, the use of a 

monochromatic X-ray beam ensures that reconstructed gray-level 

values correspond to the local linear absorption coefficient (µ)

distribution in the sample. The artifacts introduced by truncation,

however, mainly affect the low frequency range of the

reconstructed function, and the absolute value of the linear 

absorption coefficient is lost. Thus, truncation clearly destroys the

quantitative aspect of SR-µCT.

Different cases of truncated projections problem can be 

discerned. The interior problem corresponds to the case where data 

acquisition is strictly limited to straight lines passing through the 

ROI (Fig. 1). In this case there is no unique solution to the 

problem [1]. However if some measurements in the external region 

are possible, different solutions have been proposed in literature, 

ranging from introduction of a priori knowledge [2], use of 

iterative algorithms [3], or wavelets [4-6]. In this paper, we focus 

on the problem of the reconstruction of a ROI from high resolution 

(HR) truncated projections knowing a set of low resolution (LR) 

non truncated projections. This case, sometimes called zoom-in 

tomography, appears to be less studied. This procedure was 

proposed already three decades ago [7,8], but was only recently 

applied to synchrotron imaging [9]. The algorithm essentially 

consists in recording two data sets at different magnifications, one 

global, LR acquisition where the object completely fits in the FOV, 

and one local, HR acquisition restricted to the desired ROI (Fig. 

1). Such an acquisition can be achieved relatively easily in X-ray -

µCT by acquiring data at different magnifications. In cone-beam 

CT, this can be obtained by changing the source to detector 

distance and in a 3D parallel beam CT setting by the use of 

interchangeable objective lenses with different magnification 

factors.  

In the previous works, the LR sinogram was supersampled to 

the same resolution as the HR sinogram. The data sets were 

registered and the corresponding part of the LR scan was then 

substituted for the HR data. This extended data set was then used 

as input to a tomographic reconstruction algorithm. The algorithm 

can be seen as an informed way of padding the HR acquisition data.

In this work, we propose a wavelet algorithm for 

reconstruction of zoom-in tomography data. Wavelets approaches 

have already been proposed in tomographic reconstruction and

especially in the context of local tomography [4-6]. Knowledge of 

two data sets respectively at LR and HR fits well in the framework 

Fig. 1. Geometry of the parallel beam zoom-in tomography 

problem. It is desired to image a region of interest (ROI) partially 

or fully inside the imaged object at high resolution. However, a 

scan at lower resolution (keeping the same numbers of elements

of the detector) where the object fits fully in the field of view is

available. 
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of wavelets. We assume that the data magnifications are separated 

by a factor of power of two, to fit a dyadic wavelet transform. This

is not necessary to enforce on the experimental level as this can be 

ensured by resampling the LR data.

Our approach is based on the observation that, ideally, if the 

HR data is acquired at twice the resolution of the LR data, the HR

data should be identical to the LR data in the ROI, except that it 

contains wavelet coefficients at one higher scale. The algorithm 

then consists in performing a one level wavelet decomposition of 

the HR data, zero-padding the details to the same size as the LR 

data, and substituting the LR data for the approximation 

coefficients. If the LR and HR data are consistent on all other 

decomposition levels, the wavelet algorithm is actually identical to 

the substitution algorithm. The advantage of the wavelet algorithm 

is that if the lower scales are not consistent between the LR and 

HR data, it permits the use of the complete LR scan, which is

always self-consistent. We apply the two algorithms to simulated 

data and show that they perform equally on noise-free and noisy 

data. We further demonstrate the improved robustness to 

inconsistencies between the two data sets by introducing a small

offset in the HR data.

2. MULTIRESOLUTION ANALYSIS OF

ZOOM-IN TOMOGRAPHY

Let f(x,y,z) be the 3D target function to be reconstructed. Its 2D 

parallel projection of angle θ when the object is rotated around the 

z-axis can be written as 
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For a given z level, ( , )p r zθ , [0, [θ π∈ is the Radon transform of 

f(x,y,z). The image can then be reconstructed with the filtered 

backprojection algorithm (FBP): 
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where *r denotes convolution with respect to r and
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where 1ℑ denotes the 1D Fourier transform. 

Zoom-in tomography is characterized by the acquisition of 

two distinct data sets: one HR scan strictly inside the ROI at the 

desired spatial resolution, and one LR scan where the imaged 

object fits completely in the FOV. If we suppose that the two data 

sets are separated by a magnification factor 2, we can write the LR 

data set as
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Fig. 3. Slices through the reconstructed volumes using noise free 

data, reconstructed with (a) x2 and (b) x4 magnification data with 

zero padding. Typical artifacts are visible: cupping and 

discontinuity at border (c) x2 and (d) x4 magnification data with 

edge extension [0 0.4]. Discontinuities seem better reconstructed 

but the quantitative aspect in reconstructed gray level is lost. (e) 

x2 and (e) x4 magnification data padded with x1 data [0.99 1.04] 

(f) x1 data enriched with details from x2 data using the proposed 

wavelet algorithm (g) x1 magnification data enriched with details 

from x4 data using the proposed wavelet algorithm [0.99 1.04].

Both methods yield qualitatively good reconstructions 

Fig. 2. Slices through direct digitizations of the 3D Shepp-Logan

phantom (grayscale values in 32 bit float, [0 2], used in 

simulations, windowed to [0.99 1.04]. (a) Ideal reconstruction, 1x 

magnification (b) Ideal reconstruction, 2x magnification (c) Ideal 

reconstruction, 4x magnification.

(a) (a)(b) (c) (b)

(c) (d)

(e) (f)

(g) (h)
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To extend this relationship over the whole domain we introduce 

the approximate detail 
( ) ( , )n md r zθ
∆
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where w is an interpolation filter. The image at higher resolution 

can then be reconstructed using FBP. Combining (2) and (10) 

yields 
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3. WAVELET ALGORITHM FOR ZOOM-IN

TOMOGRAPHY

The above analysis assumes that the lower resolutions of p and are

consistent. Should this not be the case, it is desired to use the lower 

resolutions from the LR data set on all the image, not just outside 

[-L/2,L/2]×[-L/2,L/2]. For this purpose we propose a wavelet 

algorithm for zoom-in tomography. It is based on the Haar wavelet 

due to its downsampling property, which seems an appropriate 

analogy to the multiresolution imaging setup. 

One step of the 2D separable discrete wavelet transform of an 

image ( , )p n mθ consist in decomposing the image in one 

approximation ( , )jA p n mθ and three details ( , )jD p n mθ that can be 

written as 
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Where h(k) and g(l) are the respective low and high pass filters

used in the decomposition. For a suitable choice of these filters,

the decomposition may be inverted as: 
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We begin by observing that, ideally, the HR data only differs from 

the LR data in that, apart from being truncated, it contains 

information at one higher scale. The HR projection is transformed

to the first level using (14). The approximation coefficients AjP

are then swapped for the recorded LR image and the details zero-

padded so that they are kept at the same size as the LR imqge. This 

composite transform is then inverse transformed using (15) to 

achieve a non-truncated projection that contains the low 

frequencies from the LR scan across the whole image and the high 

frequencies from the HR scan in the ROI.

4. COMPUTER SIMULATION 

We evaluate four methods for zoom-in tomography on the 3D 

Shepp-Logan phantom: zero padding of the projections, edge 

extension, padding with a supersampled version of the LR data 

using Fourier interpolation and finally the proposed method. Three 

different data sets were used. A complete data set is generated 

Fig. 5. Slices through the reconstructed volumes using data where 

a random offset has been introduced to the high resolution data,

reconstructed with (a) x2 magnification data padded with x1 data 

(b) x1 data enriched with details from x2 data using the proposed 

wavelet algorithm (c) x4 magnification data padded with x1 data 

(d) x1 magnification data enriched with details from x4 data using 

the proposed wavelet algorithm. 

Fig. 4. Slices through the reconstructed volumes using noisy data,

(0.1 % NSR) reconstructed with (a) x2 magnification data, edge 

extension (b) x2 magnification data padded with x1 data (c) x1 

data enriched with details from x2 data using the proposed 

wavelet algorithm (d) x4 magnification data, edge extension (e)

x4 magnification data padded with x1 data (f) x1 magnification 

data enriched with details from x4 data using the proposed 

wavelet algorithm. 

(a) (a)(b) (b)

(c) (c)(d) (d)
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through analytical projections; at an image size of 2048×2048 over 

768 projections. A complete data set (corresponding to 1x 

magnification) was generated by downsampling the initial data set

to 512×512. The x2 magnification data set was generated by 

downsampling the initial data set to 1024×1024 and truncating 

from both sides to 512×512, and the x4 magnification data was 

created by truncating the initial data set to 512×512 (Fig. 2). Data 

was also generated with additive noise at different noise levels, as 

well as data where different offsets where added to the HR scan. 

5. RESULTS

In Fig. 3, reconstructions using noise-free data is shown. Note the 

strong cupping artifacts in the zero padded data. This is slightly 

better in the edge extended reconstruction, but it is still far from 

quantitative. The reconstructions using two resolutions directly by 

padding and the proposed method however yields reconstructions 

seemingly very close to the ideal. These observations are verified 

in profile plots (Fig. 6) and on measurements of the NRMSE 

shown in Tab. 1.

Looking at results from noisy data (Fig. 4), the quantitative 

aspect seems preserved, but the noise structure appears different. 

Considering the error at different noise levels (Fig. 7a), the wavelet

method seems more sensitive to noise. This could possibly be 

alleviated, however, by the possibility of including denoising in the 

algorithm by shrinkage of the detail coefficients.  

Finally, reconstruction of data with an introduced offset seems 

to induce a cupping artifact in the padding algorithm, whereas 

reconstruction with the wavelet algorithm seems insensitive to the 

offset  (Fig. 5). This is verified by looking at the reconstruction

over different offset levels; where the wavelet reconstruction; as 

conjectured; remains unaffected (Fig. 7b). 

5. DISCUSSION AND CONCLUSIONS

In this work; we addressed the problem of quantitative 

reconstruction from truncated projections when a supplementary 

low resolution; non-truncated data set is available. We formalized 

the problem of 3D parallel beam zoom-in reconstruction in the 

multiresolution framework and proposed a wavelet based

algorithm for reconstruction. The algorithm is tractable to process 

very large data set such as provided by recent µCT systems.  The 

proposed algorithm showed slightly better reconstruction for noise-

free data, slightly worse noise performance than Fourier 

interpolation, and is insensitive to offsets between the two data 

sets. Further studies are necessary to study the best choice of 

wavelet filters, the optimal acquisition conditions in terms of 

number of projections and signal to noise ratio. In future work the 

proposed method will be applied to experimental data acquired on 

a parallel beam 3D SR µCT setup. This will also raise the problem 

of registrating the two data sets acquired at different 

magnifications.
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Fig. 7: Error plots from reconstructions using the different 

methods and data sets. (a) Additive, Gaussian white noise. The 

wavelet method seems slightly more sensitive. (b) A small offset 

introduced between the two acquisitions. As conjectured, the 

wavelet method is insensitive to this type of errors. 

TABLE I 

RECONSTRUCTION ERROR USING NOISE-FREE DATA 

Reconstruction NRMSE (%)

Edge extension, x2 

Padding, x1 & x2 

Wavelet, x1 & x2 

Edge extension, x4 

Padding, x1 & x4 

Wavelet, x1 & x4 

67.7

1.62

1.61

80.7

1.57

1.56

Fig. 6, Profile plots of the center line of each reconstruction at the

x4 magnification level with noise-free data. Note the strong 

cupping artifact in the reconstructions with zero padding and edge 

extension. The wavelet and padding reconstructions give very 

similar results

(a)

(b)
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