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ABSTRACT

Several methods of phase retrieval for in line phase tomogra-

phy have already been investigated based on the linearization

of the relation between the phase shift induced by the object

and the diffracted intensity. They use the Transport Inten-

sity Equation (TIE) or the Contrast Transfer Function (CTF),

or mixed approaches. In this work, we present a non linear

iterative approach using the Frechet derivative of the inten-

sity recorded at a few number of propagation distances. The

inverse problem is regularized with the smoothing L2 norm

of the phase gradient. The evaluation of the method was

performed using a simple phase map, both with and with-

out noise. Our approach outerperforms the linear methods

on simulated noisy data up to high noise levels.

Index terms – X-ray Imaging, Coherent Imaging, Phase

Contrast, Phase Retrieval, Nonlinear Optimization

1. INTRODUCTION

Phase contrast imaging is a new X-ray imaging modality en-

hancing the visibility of low absorption objects and weakly

contrasted structures. Phase contrast can be achieved by prop-

agation when using coherent X-ray beams, for example ex-

tracted from synchroton radiation. The relationship between

the phase shift induced by a sample and the intensity recorded

at some sample-to-detector distance can be modeled by the

Fresnel diffraction theory. This quantitative relationship can

be used to calculate the phase shift induced by the object from

intensity radiographs recorded at different propagation dis-

tances, a process called phase retrieval. When coupled to X-

ray tomography, it is possible to recover a three dimensional

map of the refractive index decrement.

Several phase retrieval methods have been proposed, us-

ing the Transport Intensity Equation [1, 2, 3], the Contrast

Transfer Function (CTF) [4], the mixed approach between the

two former methods [5], and a TIE-based approach that com-

bine the phase retrival step with the inverse Randon trans-

form [6]. A common problem in phase retrieval is low fre-

quency artifacts. To minimize this problem, regularization

techniques based on a homogeneous prior on the object have

previously been proposed [7]. However, this method is only

appropriate for some classes of objects. Further, all previous

approaches are based on linearized relationships between the

phase and the intensity, thus involving some approximations

in the direct problem I(ϕ) where ϕ is the phase shift map.

In this work, we investigate the resolution of the non lin-

ear inverse problem, which has so far not been considered.

We propose a new iterative method based on the Frechet

derivative of the I(ϕ) relationship. Further, the phase re-

trieval problem considered in this work is an ill-posed prob-

lem since the inverse operator I−1(ϕ) is not a bounded. Thus

some regularization is required. As detailed in the follow-

ing, we search for a smooth solution and a continuous phase

map. Failure of convergence and were observed when this

a priori information on the smoothness of the solution was

not included. First results are presented from simulations of

noise-free and noisy data.

2. THE DIRECT PROBLEM OF IMAGE

FORMATION

We consider an object illuminated with partially coherent X-

rays of wavelength λ. Neglecting the diffraction within the

object, the interaction of X-rays with matter can be described

by a transmittance function T of the coordinates x = (x, y)
in a plane perpendicular to the propagation direction z.

T (x) = exp[−B(x) + iϕ(x)] = a(x) exp[iϕ(x)] (1)

The absorption, a(x), and phase shift ϕ(x) induced by the

object can be considered as projections of the absorption and

refraction index respectively. The Fresnel diffracted intensity

at a distance D is given by the squared modulus of the exit

wave:

ID(x) = |T (x) ∗ PD(x)|2 (2)

where ∗ denotes the convolution of the transmitance with the

Fresnel propagator

PD(x) =
1

iλD
exp

(

i
π

λD
|x|2

)

(3)

D being the propagation distance along z. The convolution

can be efficiently calculated in the Fourier domain. The real
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and imaginary part of the complex refractive index can be re-

constructed by recording the intensity at different angles and

with tomographic reconstruction algorithms. In this work, we

consider a single projection. An attenuation image can be ob-

tained by moving the detector to D = 0.

3. THE NON LINEAR INVERSE PROBLEM

3.1. Initialization

In order to save computing time, the algorithm is initialized

with the Mixed approach [5]. The derivation of this relation-

ship relies on the hypothesis that the absorption and phase are

slowly varying. In the fourier domain, the linearized problem

may be expressed as:

ĨD(f) = Ĩϕ=0
D (f) + 2 sin(πλD|f |2)F(I0ϕ)(f)

+
λD

2π
cos(πλD|f |2)F [∇(ϕ∇I0)](f) (4)

where Iϕ=0
D (f) is the intensity at distance D if the phase

was zero. To include several distances, a least squares min-

imization procedure is used. Assuming that the absorption

is given, the phase retrieval problem can be stated with the

phase-attenuation product ψ(x) = I0(x)ϕ(x) as

˜ψ(f) = argmin
ψ̃

∑

D

|AD(f)ψ̃(f)−ĨD(f)−Ĩϕ=0
D (f)−∆D(f)]|2

(5)

with

AD(f) = 2 sin(πλD|f |2) (6)

and

∆D(f) =
λD

2π
cos(πλD|f |2)F{∇[ψ∇ln(I0)]}(f) (7)

Several regularization scheme have been tested to solve

this linear inverse problem, like classical quadratic Tikhonov

regularization and wavelet shrinkage [5, 8, 7]. In this work,

we used a regularization method based on the L2 norm of the

phase gradient.

3.2. Frechet derivative of the intensity

We assume that the operator ID(ϕ) is a non linear Frechet

differentiable operator in its domain. In the following,we will

consider the phase has a bounded support Ω and that its do-

main is the functional space [9]:

W 2,2
♦ (Ω) = {ϕ ∈ W 2,2(Ω),

∂ϕ

∂�n
= 0} (8)

where ∂ϕ
∂�n

is the normal derivative of the phase. In the case of

the intensity-phase relationship, the Frechet derivative of the

operator ID(ϕ) at the point ϕk is the linear operator defined

by the relationship:

ID(ϕk + ε) = ID(ϕk) +Gk(ε) +O(ε2) (9)

The linear operator I ′

D(ϕk)(ε) = Gk(ε) can be given explic-

itly as:

Gk(ε) = {−[iaε exp(−iϕ)] ∗ PD}{[(a exp(iϕ)] ∗ PD}

+ {[a exp(−iϕ)] ∗ PD}{[iaε exp(iϕ)] ∗ PD} (10)

where ∗ denotes the convolution operator.

3.3. A Landeweber type iterative method

As a first approach to retrieve the phase from the intensity

measurements and to obtain a rather smooth solution, we con-

sider the problem of minimizing a simple Tikhonov’s func-

tional of the following form:

Jα(ϕ) =
1

2
‖ID(ϕ)− ID‖2L2(Ω) +

α

2
‖∇ϕ‖2L2(Ω) (11)

where α is a regularizing parameter.The optimality condition

is then:

I ′

D(ϕ)∗[ID(ϕ)− ID]− α△ϕ = 0 (12)

where I ′(ϕ)∗ is the adjoint of the Frechet derivative of the

intensity. This optimality condition defines the descent di-

rection of our steepest descent iterative method and the next

iterate is obtained with:

ϕk+1 = ϕk − τk∇Jαk
(ϕk). (13)

Starting from the current phase estimate ϕk at the itera-

tion k, a linear search procedure is introduced with a variable

step τk yielding the following modification of the standard

Landweber method:

ϕk+1 = ϕk − τk{I
′

D(ϕk)
∗[ID(ϕk)− ID]− αk△ϕk} (14)

The step length parameter τk is chosen in order to mini-

mize the Tikhonov’s functionnal along the descent direction:

τk = argmin Jαk
(ϕk − τδk), (15)

where δk = I ′

D(ϕk)
∗(ID(ϕk) − ID) − αk△ϕk is the de-

scent direction. An approximate value is obtained with a di-

chotomy strategy. We have chosen a geometricaly decreasing

sequence of regularization parameters αk. The initial value of

the regularizing parameter is chosen such that the two terms

of the Tikhonov’s functionnal are of the same order of mag-

nitude. The regularization parameter αk is decreased when

the Tikhonov’s functionnal J stagnates. The next iterate is

accepted if both the L2 norm of the gradient and the discrep-

ancy term decrease.

The described algorithm involves a single distance. In or-

der to include the intensity maps obtained for the different dis-

tances, we consider a cyclic iteration over several distances,

one iteration being performed for each distance. The use of

several distances should improve the reconstruction since it

allows a better coverage of the frequency domain and it im-

proves the statistics.
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Fig. 1. Original phase map to be retrieved.

4. SIMULATIONS

The diffracted intensity was simulated as described in [5].

Two phantoms were defined, one for the absorption coeffi-

cient and one for the phase shift based on experimental val-

ues of the absorption coefficient and refractive index of a test

material at 24 keV X-ray energy. Propagation in free space

was simulated in the Fourier domain using Eq. 2 for the eight

propagation distances 0.2 m, 0.4 m, 0.6 m, 0.8 m, 1.2 m, 1.4

m and 1.6 m. The images obtained were downsampled to

N = 74 × 74 pixels. The original phase map to be retrieved

is displayed in Figure 1. The phase contrast images were cor-

rupted with additive Gaussian white noise with peak to peak

signal to noise ratios (PPSNR) of 20 dB, 0 dB and no noise.

As a first approach, in order to calculate the gradient of

the potentially noisy intensity function, we have applied the

implicit filtering method described by Kelley et al. [10]. In its

simplest form, implicit filtering is the steepest descent algo-

rithm with finite difference gradients, where the difference in-

crement varies as the iteration progresses. Because the gradi-

ent is only an approximation, the computed descent direction

may fail to be a descent direction, and the line search may fail.

In this case the difference increment is reduced. The deriva-

tives in the gradient I ′

D are thus approximated by centered

differences formulae. This finite difference method requires

many evaluations of the Tikhonov’s functional. The Frechet
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Fig. 2. Fresnel diffraction pattern at propagation distance

D=1.4 m.
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Fig. 3. Reconstructed phase for our Landweber type method

and noise free simulations.

derivative Gk calculated with the finite difference method at

the point ϕk is a thus matrix of RN×N .

The mixed approximation of the forward problem (Eq. 4)

is used as the starting point of our reconstructions. This initial

guess is close enough to the ideal result to ensure convergence

of our algorithm. The decrease of the phase error reflects the

improvements over traditional linear methods. In the itera-

tion, we have chosen to not introduce any a priori information

on the phase values. The iteration was stopped when the data

term ‖ID(ϕk)− ID‖ was equal to the noise level.

5. RESULTS

A noise-free Fresnel diffration pattern for D = 1.4 m is

shown in Figure 2. The phase maps obtained with our method

are displayed in Figure 3 and Figure 4, without noise and with

noise at 20dB. The cyclic finite difference Landweber type

method has been tested on noise free and noisy data. If ϕ∗ is

the phase to be recovered, the normalized least square error of

L2(Ω) norm ‖ϕk − ϕ∗‖/‖ϕ∗‖ is used to measure the quality

of the phase recovery. The results obtained with noise free

and noisy data are displayed in Figure 5 as a function of the

number of iterations. Our iterative phase retrieval algorithm

retrieves the phase better than the linear Mixed approach. The

errors on the phase have been significantly reduced for the

noise free simulations.

6. DISCUSSION AND CONCLUSION

In this work we have presented a new non linear iterative

method of phase retrieval for in line phase tomography based

on the Frechet derivative of the phase intensity relationship.

As a first approach to obtain a smooth solution, a regular-

ization term with the norm L2 of the gradient is introduced.

This method uses the intensity radiographs obtained for dif-

ferent propagation distances in a cyclic iteration. The Frechet

derivative is evaluated with a finite difference method with a

phase increment adapted to the noise level.

The evaluation was performed using a numerical phan-
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Fig. 4. Reconstructed phase for our Landweber type method

and 20 dB PPSNR.
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Fig. 5. Evolution of the mean square error for the phase for

the noise free (i) and the noisy data with PPSNR=20 dB (ii).

tom, used to simulate phase contrast tomography data, both

with and without noise. For the simulated data, the normal-

ized mean square error was measured Our approach outer-

performs the mixed approach and it performs well on simu-

lated noisy data. Thus, if the accuracy of the reconstruction

is the primary goal, especially in a quantitative analysis, this

method could be very interesting.

There are many perspectives to this work. A particu-

lar difficulty of this problem is to take into account several

propagation distances. We applied a cyclic iteration over the

distances, whereas other iteration schemes could be utilized.

Since the long computing time could limit the applicability of

the present method, further improvements will be proposed

to speed up the algorithm. In addition, a quadratic regulariza-

tion term has been used. The drawbacks of the regularization

functionnal ‖∇ϕ‖2 are well-known. An isotropic smoothing

effect is obtained and the boundaries are not well preserved.

The noise is suppressed but the high values of the gradient are

too penalized on the edge. The gradient ∇ϕ may be replaced

by a non linear functionnal of ϕ corresponding to non linear

or anisotropic diffusion [9] and other norms will be inves-

tigated. This type of regularization will also be considered

in future works. Finally, it is expected to test the method on

experimental data acquired at the ESRF.
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