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ABSTRACT 

Bone fragility involved in diseases such as osteoporosis implicates 

many mechanisms at the cellular level. It was recently shown that 

the lacunar-canalicular network interconnecting osteocytes has a 

major role in mechanosensitivity. So far, this system has only been 

studied from 2D microscopic images. In a previous work, we 

demonstrated the feasibility of synchrotron radiation micro-CT 

with a voxel size of 0.28μm, to image the lacunar-canalicular 

porosity in 3D. Nevertheless, the segmentation of this dense 

network of slender channels with average diameters of ~300-600 

nanometers, at the limit of the spatial resolution, is difficult. In this 

work we propose a level set based method to automatically 

segment this complex system. To this aim, we designed an 

automatic initialization process and we apply a post-processing 

filter. Quantitative results on a ground truth prepared image are 

presented. On real data sets, expert evaluation showed good 

results.

Index Terms — 3D image segmentation, level sets, bone,

lacunar-canalicular network, X-ray -μCT. 

1. INTRODUCTION

In appearance rigid and inactive, bone is actually a dynamic tissue 

with remarkable properties of self repairing and permanent 

remodeling throughout the life. The mechanisms managing these 

processes are complex and despite the numerous research studies 

and advances realized during the last century, bone remodeling and 

failure is not completely elucidated. Understanding how to control 

bone resorption and formation at cellular level opens the way 

towards a new stage in therapy and diagnosis of bone diseases. 

One of the most stringent maladies of our times is osteoporosis, 

currently causing fractures in 1 of 3 women and 1 of 5 men over 50 

years old, while in the next 40 years the incidence of hip fracture is 

expected to increase by 310% in men and 240% in women [IOF].  

First considered a passive cell embedded in the bone matrix, 

osteocyte is today largely accepted like being the key element in 

bone remodeling [1]. By sensing the external mechanical stimuli, 

osteocytes trigger bone renewal. These bone cells are hosted in 

spaces called lacunae which are regularly spread throughout the 

bone matrix. Osteocytes are interconnected via a dense network of 

processes hosted in slender (100-600nm in diameter) channels 

called canaliculi. Canaliculi enable signal transmission and 

recently it was reported [2] that mechanosensitivity is significantly 

higher at the level of osteocyte processes comparing to the cell 

body, hence the quantity of canaliculi could be correlated with the  

Figure 1: a) A slice in the reconstructed volume from SR- CT 

showing Haversian canals, osteocyte lacunae and canaliculi in 

cortical human bone. b) Detail in the slice from (a); c) Maximum 

intensity projection over 100 slices, in the region from (b). 

tissue capacity to sense mechanical stimuli. Therefore, quantitative 

investigation of the lacunar-canalicular network is necessary for 

bone quality assessment and for both development and evaluation 

of new therapy methods. 

Achievement of quantitative results relies on appropriate 

imaging techniques and on accurate and robust segmentation 

methods. Imaging bone tissue at a sub-micrometric scale keeping 

in the same time a sufficiently large field of view to allow a 

consistent evaluation is the first difficulty to surmount. Very few 

quantitative studies on lacunar-canalicular structure exist in 

literature and they were obtained by manual histomorphometry 

from optical or confocal microscopy. These imaging methods are 

limited to very thin sample slices (~3-30 m), covering only one 

layer of cells in depth. In addition, the resolution is not 

homogeneous, preventing a valid 3D evaluation.

Haversian canal 

Lacunae 

Canaliculi 
a
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c

~30μm 
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We demonstrated recently the feasibility of imaging the 

lacunar-canalicular network with Synchrotron Radiation micro-

tomography (SR- CT) [3][4] at ESRF (ID19) which enables 3D 

imaging of bone tissue with a homogenous resolution of 0.28 m 

with a FOV of (573 m)3. 

Segmentation of this network is particularly delicate due to 

the structure complexity and density (Fig.1c), with objects of 

different geometrical shapes. Contrast and signal to noise ratio are 

limited by the detector and dose effects on the sample and the 

slenderness of canaliculi determines partial volume effect as they 

are only one to two voxels thick. Furthermore the inhomogeneous 

texture of the bone matrix increases the difficulty to separate the 

cellular network. 

Here we propose a level sets based segmentation method 

adapted for cellular networks in bone. To surmount the difficulties 

raised by the segmentation of highly dense, one voxel thick, faintly 

contrasted, curvilinear structures, we use a shape orientated 

enhancement filter. Residual noise is removed from the segmented 

image by filtering of small size connected components. The 

method is tested on a ground truth phantom constructed from 

experimental images. 

2. SEGMENTATION METHOD

2.1. Level sets  

Let )(xf  with ),,( zyx=x  be a 3D image. Level set methods 

are based on the evolution of a level set function φ  initialized by 

),,()0,,,( 0 zyxzyx φφ = :

V
t

⋅∇=
∂

∂
φ

φ
   (1) 

where V is the speed factor controlling the propagation. Several 

formulations of the speed factor have been proposed and different 

implementations of the level set methods [5] [6]. In this work we 

chose the standard approach where the speed factor contains a 

propagation term accelerating the evolution in homogeneous 

regions, a regularization term based on the mean curvature and an 

advection term. The propagation equation can then be written as: 
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where s is a sigmoid function and ),,( zyxGσ is a Gaussian 

function of standard deviation σ , and k is the mean curvature

defined by: 

  
∇

∇
=

φ

φ
divk (6) 

and pca λλλ ,, are parameters controlling the balance between

the terms. In order to set the parameters values, we quantitatively 

evaluated (DICE coefficient, recall, connectivity) the results on the 

prepared phantom image (Table 1). 

Figure 2: Initialization details in a slice. Arrows indicate points of 

interest: a) Original image; b) Max entropy threshold on original 

image; c) Max entropy threshold on filtered image d) Final 

initialization image  

2.2 Initialization 
Initialization showed to be a crucial part of the segmentation in this 

case and we designed it as a simple and fast automatic pre-

segmentation. Initializing the algorithm with a germs map as 

starting point for level sets propagation proved to be the only 

solution to attain good results.  

First step consists in finding an optimal threshold to create a 

base image for propagation. Different methods have been 

evaluated and we obtained significantly better results by 

maximizing the inter-class entropy to find the threshold [7]. 

However, the thresholded image conserves some background noise 

and small parts from the bone matrix (Fig. 2b, Fig. 3b). In order to 

remove these residues we erode the image using a cross structuring 

element of radius 1. 

To maximize the likelihood to segment all the canaliculi we 

seek to put a germ in each of them, especially in the sections where 

contrast is very weak, thus not appearing in the thresholded image. 

For this aim we apply a shape orientated filter to enhance 

curvilinear structures. This filter is based on eigenvalue analysis of 

the local Hessian matrix and several formulations have been 

proposed [8] [9]. We applied the criterion proposed in [8] which 

amplifies the gray level in tubular structures, especially in regions 

with faint contrast, enabling to reconnect parts of disrupted 

canaliculi after thresholding (Fig. 2c). On the other hand, the filter 

removes the lacunae. To obtain the final initialization map we 

combine the two thresholded images by logical disjunction 

operation. 

2.3 Connected component analysis 
Ideally, the lacunar-canalicular network is highly connected, so 

analysis of structure connectivity is an important factor in the 

evaluation of the segmentation quality. Furthermore, this analysis 

enables filtering of individual components of chosen sizes, 

allowing removal of residues in the segmented image, without 

affecting the size and shape of the other components.  

We implemented the technique proposed in [10] providing the 

number and size of connected components. Isolated elements 

smaller than 30 voxels (0.6 m3) were removed. Below we outline 

the proposed segmentation method in a flowchart diagram and 

specify the chosen parameters for different steps: 

a b 

c d 
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where 

i – Input 3D image 

ft – Image after thresholding on shape oriented filter result

it – Image resulted after erosion of threshold(i) 

g – Initialization image for level sets 

s – Segmented image after level sets 

sc – Final segmentation result, after elimination of small connected 

components 

Operators:  

F – Shape orientated filter ( =1, 1=0.5, 2=2) 

T – Maximum entropy thresholding 

E – Binary morphological erosion with a cross element of radius 1 

OR – logical operator OR 

LS – level sets algorithm based on [6] with 

0, 40, 70, 1, 20a c pλ λ λ α β= = = = − =  

CC – connected component analysis, filtering individual 

components smaller than 30 voxels. 

3. SEGMANTATION EVALUATION 

3.1. Construction of a realistic phantom 
For evaluation we prepared a phantom based on a volume 

extracted from a real image (2563 voxels) in order to conserve the 

structure characteristics. The binary reference image was created 

by manual thresholding followed by removal of residues not 

belonging to the structure and filling up of gaps in canaliculi. 

Subsequently we set the background gray level at 100, the 

structure level at 160 and added a Gaussian noise ( =25), the 

chosen values being estimated from real images.  

3.2. Figures of merit 
In order to evaluate the segmentation we made use of the DICE 

coefficient, the recall metric and connectivity error defined as 

below. 

2 R S
DICE

R S

∩
=

+

tp
recall

tp fn
=

+
S R

cc
R

cc cc
Err

cc

−
=   (7)

where R, S are the sets of white voxels in respectively ground truth 

volume and segmented volume; tp stands for true positive 

detections, fn is false negative detections; ccR  

and ccS are the No. of connected components in the reference 

image and respectively in the segmented image.  

4. RESULTS

In Figure 2 is illustrated a detail in the experimental image and the 

different initialization steps, showing that by using the shape 

orientated filter, gaps in canaliculi are filled up and some low 

contrasted canaliculi are detected after the structure enhancement.  

Table 1 contains quantitative evaluation results of the 

initialization and the segmentation for different values of the  

parameter in sigmoid function (expression (5)). The same 

quantitative evaluation was applied to set all the level sets 

parameters presented in the caption of the flowchart diagram. We 

can observe that after maximum entropy thresholding we keep too  

Figure 3: Results on the phantom (MIP over 10 slices): a) Input 

image; b) Max entropy threshold on (a); c) Max entropy threshold 

on (a) filtered image; d) Segmentation result ( =20) overlaid on 

the input image.  

many voxels comparing to the reference ground truth image and 

there are too many unconnected components  

(633% error). The results improve considerably in the final 

initialization image (22% error) and after optimal the level sets 

segmentation we reduce the error to 3.76%.  

The recall metric shows very good results, indicating that we 

detect almost the integral structure. The slightly lower values of the 

DICE coefficient reflect the fact that level sets tends to thicken 

with one voxel on each side the canaliculi, introducing a relative 

important error in the number of voxels, considering the actual 

thickness of canaliculi which corresponds to one or two voxels. 

Computation time for the entire pipeline of the method applied on 

a (256)3 volume is about 20 minutes. Segmentation result over 10 

projected slices in the phantom image are shown in Figure 3d. 

4.2. Application to experimental data 
The method was applied to experimental data obtained with high 

resolution SR- CT at ESRF, representing 3D images of the 

lacunar-canalicular structure in human femur bone tissue. For the 

sample presented in this paper, the acquisition resolution was  

TABLE I 

SEGMENTATION EVALUATION 

Image No. 

CC

No. Vox Err (%)  

No. CC  

DICE 

(%) 

Recall 

(%) 

Reference 2634 287490 

MaxEntrT 19310 366307 633.11 85.15 96.83 

Initialization 3231 207467 22.67 80.75 69.51 

Segmentation

=1 2774 448867 5.32 74.55 95.48

 =5 2780 447852 5.54 74.64 95.46 

 =10 2809 444137 6.64 74.96 95.39 

 =15 2778 437441 5.47 75.48 95.17 

 =20 2535 429529 -3.76 75.96 94.72 

 =50 1986 1117321 -24.60 38.51 94.09 

T 

T 

OR 
F 

LS CC

E 

a b 

c d 
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Figure 4: Volume of interest showing the lacunar-canalicular 

network around Haversian canals, in a human femur cortical bone 

sample (image width ~ 448 μm). Isosurface of the segmentation 

achieved with the proposed method.

0.28μm, the energy was set at 20.5keV and 2000 projections were 

taken with a counting time of 0.8 seconds.

We show below the results obtained for a 1600x1000x256

sub-volume extracted from a (2048)3 image. Figure 3 illustrates the 

segmentation result of the lacunar-canalicular system, from 3D SR-

CT. For this volume, the initialization image contained 71255

connected components while the segmented image contained only 

37225 individual components, showing that the level sets 

propagation filled gaps between canaliculi. In the result image we 

could calculate the ratio between the volume occupied by the

lacunar-canalicular network and the bone matrix volume, 

excluding the Haversian canals. We estimated this value at 2.65%. 

5. CONCLUSION  

SR-micro-CT enables now imaging of bone tissue at sub-cellular

scale, making possible to visualize and evaluate in 3D the lacunar-

canalicular network. The interest to study this structure is

increasing rapidly, given the recent results on the importance of 

osteocytes in bone remodeling and bone diseases. Considering the 

number of lacunae and canaliculi, the density and complexity of 

this network, an automatic method of segmentation and 

quantification is necessary. Previous studies have been done 

manually, therefore they were highly time consuming and applied 

on very small regions of tissue, limiting the consistency of the 

results.  

Here we propose an automatic 3D segmentation method 

adapted for cellular networks. The correctness of the method was 

evaluated with several metrics and proved good results, allowing 

some immediate simple quantification. One of the key points of the 

method stands in the initialization part based on maximum entropy 

threshold selection and geometry orientated filtering. Level sets 

propagation increases the connectivity of the network, reducing the 

number of individual components by a factor 2. Finally, connected 

component analysis permits filtering of small residual components 

belonging to the bone matrix texture. Isosurfaces of the 

segmentation results are presented and some preliminary 

quantification values are reported.
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