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Performance of the Low-Rank Adaptive Normalized
Matched Filter Test Under a Large Dimension
Regime

Alice Combernoux, Frédéric Pascal, Senior Member, IEEE, Guillaume Ginolhac, Member, IEEE

Abstract—When a possible target is embedded in a Low Rank
(LR) Gaussian clutter (which is contained in a low dimensional
subspace) plus a white Gaussian noise, the detection process can
be performed by applying the Low-Rank Adaptive Normalized
Matched Filter (LR-ANMF) which is a function of the estimated
projector. In a recent work, we derived an approximate distri-
bution of the LR-ANMF under the 7{, hypothesis by using a
restrictive hypothesis (the target has to be orthogonal to the
clutter subspace). In this paper, we propose to determine new
approximations of the Pfa and the Pd of the LR-ANMF by
relaxing this restrictive hypothesis. This new derivation is based
on results concerning the convergence in a large dimension
regime of quadratic forms. Simulations validate our result, in
particular when the tested signal is close to the clutter subspace.

Index Terms—Adaptive detection, Low-Rank Covariance
Matrix, Approximate Detector Distribution, Random Matrix
Theory, RADAR

I. INTRODUCTION

In order to detect a known signal coming from a target
embedded in a Gaussian noise characterized by its unknown
covariance matrix, the Generalized Likelihood Ratio Test
(GLRT) is derived which leads to the well-known Kelly’s
detector [1]. This detector allows to choose between two
hypothesis H; (target present) and H, (target absent). The
theoretical Probability of False Alarm (Pfa) and Probability
of Detection (Pd) are derived in order to set a detection
threshold for a chosen Pfa. Another approach is to derive
the GLRT by assuming to know the covariance matrix and
by replacing it in the detector by the Maximum Likelihood
Estimator (MLE) of the theoretical covariance matrix [2] (in
Gaussian, the MLE is the Sample Covariance Matrix - SCM).
The theoretical performance of this detector are also provided
even for subspace detectors [3], [4].

Unfortunately, an accurate estimation of the covariance
matrix needs a large number of data (denoted secondary data
and assumed to be iid and free signal) K ~ 2m (where
m is the data size) [5], [6]. To reduce this number K, it is
possible to regularize the SCM [7] when any information on
the system is available. In array processing applications, the
received antenna is often symmetric which allows to take the
persymmetry property of the data into account in order to
divide by 2 the number of secondary data needed [8]-[10].
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It is also possible to handle with symmetry properties of the
disturbance [11], [12] to reduce this number of secondary data.
In the case where the disturbance can be decomposed by a
sum of two contributions, a White Gaussian Noise (WGN)
and a Low-Rank (LR) Gaussian contribution (called clutter in
RADAR or SONAR), the LR Adaptive Normalized Matched
Filter (LR-ANMF) has been proposed [10], [13]. In this
detector, the estimation of the covariance matrix is replaced
by the estimation of the projector onto the clutter subspace
which is obtained by the Eigenvalue Decomposition (EVD)
of the SCM. When the LR subspace r is small compared
to the data size m, the numerator of the LR-ANMF has
interesting properties: only K = 2r secondary data are needed
to obtain equivalent performance compared to the numerator
of the ANMF built with the SCM and K = 2m [14], [15].
This theoretical result is difficult to obtain with the LR-
ANMF or even for other LR adaptive detectors [16]-[18].
When the LR-ANMF is built with the theoretical projector,
its theoretical performance are available in [13]. But to our
knowledge, the theoretical performance of the LR-ANMF at
fixed dimension does not exist in the literature. Therefore,
we have to resort to asymptotic methods to approximate its
performance. In [19], we have proposed a result approximating
the LR-ANMEF distribution under the #( hypothesis. To derive
this result, several hypotheses have been used. The two first
are mostly common: the norm of the steering vector d is
assumed to be equal to 1 and the Clutter to Noise Ratio
(CNR) is assumed to be large. This last assumption is real-
istic in many applications such as Spatio-Temporal Adaptive
Processing (STAP) Radar. For the mathematical derivations, a
last hypothesis is needed: the projection of the steering vector
onto the theoretical interference subspace is negligible which
means that the tested steering vector is not fully embedded in
the clutter subspace. This hypothesis is often needed when we
derive theoretical performance with a projector [10], [14], [15],
[20], [21]. The result derived in [19] is interesting because it
first shows the CFAR behavior of the LR-ANMEF for a tested
vector far from the clutter subspace and allows to quickly
evaluate an approximate Pfa for a chosen threshold. But in
general, the LR-ANMEF is more useful when the tested steering
vectors are close to the clutter subspace (such as STAP to
detect slow moving targets): it will be more suitable to derive
its theoretical performance in these particular conditions. We
propose in this paper a new approximation of the LR-ANMF
distribution under H( and H; (and not only H, as in [19]) by
relaxing the last hypothesis about the orthogonality between



the steering vector and the theoretical interference subspace.
The approximations for Pfa and Pd for the LR-ANMF are also
deduced from this approximate distribution.

This new derivation is first based on Random Matrix
Theory (RMT) results. The LR-ANMEF is a function of three
Quadratic Forms (QFs), s/ IIts, (where IIL is a projector
estimate and s; and s, are two vectors which will be explicited
later) which have been broadly studied since ten years in the
signal processing community [22]-[25]. The principle is to
examine the spectral behavior of an estimate of the theoretical
covariance matrix, like the SCM, by RMT for obtaining its
convergence, performance and asymptotic distribution in the
desired convergence regime. The spectral behavior is generally
studied under two different regimes: when K tends to infinity,
for fixed m and when both the data size m and K tend
to infinity at the same rate (denoted as large dimensional
regime), i.e. ¢,, = m/K — c €]0, +00), for different models
of the observed data as in [22], [23], [26], [25] and [24].
These results show that the QFs of the form of s f[(J;SQ do
not converge to the theoretical one in the large dimensional
regime. The authors of [26]-[28] have proposed new MUSIC
algorithms which ensure the consistency property in this large
dimensional regime. In these new algorithms, the estimated
projector is replaced by a new one often called pseudo-
projector in the literature.

By using these convergence results, we have first proposed
in [29] to integrate the new QFs of [26]-[28] in the classical
detection framework and we have shown by Monte-Carlo
simulations that this new detector leads to better performance
in a STAP context in particular when the target is close to
the clutter. In [30], we derived a first approximation of the
LR-ANMF under the H, hypothesis but the result suffers
of a main drawback: the obtained approximate distribution is
not a known distribution and is a function of several random
variables. Therefore Monte Carlo simulations are still needed
to obtain the final result and it is impossible to have a Pfa-
threshold relation which easily sets the threshold for a chosen
Pfa. In this paper, we propose a new result for the approx-
imation of the LR-ANMF distribution which is related to a
known distribution and allows to improve the result of [30].
Moreover, this new derivation allows to have an approximation
of the LR-ANMF distribution under the H; hypothesis. This
new derivation is based on convergence results in a large
dimension regime and the approximate distribution of a ratio
of two random QFs proposed in [31]. We validate hereafter in
this paper our theoretical result by comparing it with Monte-
Carlo simulations in a jamming application which consists in
detecting a signal among different strong interferences. These
interferences are contained in a LR subspace and therefore
this application is well adapted to validate our result. But, our
result will remain valid in other applications such as STAP or
STAP-MIMO where the LR subspace is composed by different
contributions of the ground.

Paper is organized as follows: section II presents the
problem statement, section III contains the main result of the
paper which is the approximate distribution of the LR-ANMF
and section IV shows the results of numerical simulations.

The following convention is adopted: italic indicates a

scalar quantity, lower case boldface indicates a vector quantity
and upper case boldface a matrix. 7 denotes the transpose
operator and ¥ the transpose conjugate. E [ ] is the expected
value operator. CA/ (a, M) (resp. A'(a, M)) is a complex (resp.
real) Gaussian vector of mean a and of covariance matrix M.
I, is the m x m-identity matrix. x2(n) is a Chi-square random
variable with n degrees of freedom. .#.(a,0?) is complex
Gaussian random variable of mean a and variance 0. ~ means
"distributed as". R(a) and (a) designs the real and imaginary

part of a complex number a.

II. PROBLEM STATEMENT

A. Derivation of the LR-ANMF

The stated problem is to infer if the received signal x €
cmx1 corrupted by an additive disturbance, also contains a
complex signal ad(®). One also has a set of K secondary
data {x}, } which are signal free realizations of the disturbance.
The two hypotheses are then:

Ho:x=c+n X = Ck + Ny,
Hi:x=ad(®)+c+n =xi=ck+ng,

ke[l,K]
kEe[l,K] °

M
where d is the steering vector, « is an unknown deterministic
parameter and ©® is an unknown deterministic vector (in
the following, ® will be omitted). n € C™*! (or ny) ~
CN(0,71,,) is the additive WGN complex vector. ¢ € C™*1
(or ¢x) ~ CN(0,C) is the Gaussian clutter. Consequently,
the covariance matrix of the secondary data can be written as
R = C +~1I,,, € C™*™, Moreover, the clutter is considered
low-rank r!. Hence, rank (C) = r < m and one could write
the eigendecomposition of C:

C=> ~vuul, )
=1

where v; and u;, i € [1; ] are respectively the non zero eigen-
values and the associated eigenvectors of C. We define the
projector onto the clutter subspace II. and the projector onto
the orthogonal of the clutter subspace l'Icl =1,, — II. [14],
[15]:

. = >, wuf

n: = L,-Y,_,wul’

Since IT is not known in practice, we have to estimate it from
the secondary data {xy}. The classical estimation is based on
the EVD of the SCM:

K r
R- ;’;xkxg - ;Xmiﬁf{ 4

where ); and 1i; are the estimated eigenvalues and eigenvec-
tors. Finally, the estimated projectors are:

Ml = I,->7 , aaf

)

3)

Em: N, @

i=r+1

IThe rank is assumed to be known in this paper such as STAP applications
according to Brennan’s formula [32], [33] r = N 4+ (M — 1) « 8 (N is
the number of sensors, M the number of pulses and 8 depends on radar
parameters). If not, it is possible to estimate it for example with new methods
based on Random Matrix Theory tools [34].



The conventional adaptive test to the problem of detection (1)
has been proposed in [13] and is called the LR-Adaptive NMF
(LR-ANMF):

R dHf[J_ 2 H,
fo = — I Hexl % (©)
(dHII ) (xHII x) o
Hl . .
where 2 7 means that the H; hypothesis (respectively Hg)
Ho

is decided if the test ALR is over (respectively under) the
threshold 7.

B. Previous result on theoretical LR-ANMF distribution

In [19], we have obtained the following resultAfor an
approximate distribution under the #, hypothesis of Arg.

Proposition IL1 The LR-ANMF of Eq. (6), Arr, can be
expressed as a function of 6 independent random variables:

2
. . @
ALr ~ALRr,, = u, @)
B
with
o = b1 — inX‘gSl
2 By T ;o (8)
s = |b1| + X2 — leng?(blsl + XQSQ)

where X1 ~ \/%XQ(ZT), Xo ~ \/%x2(2(m —r—1)), Xz~
\/ 3X2(2K), s1 ~ N(0,1), 53 ~ N(0,1) and by ~ N(0,1)
are independent random variables.

To derive this result, several assumptions have been used. First,
we assumed that the norm of steering vector d is equal to
1 and that the CNR is large which leads to: ~vi,...,7. >
~. This assumption is realistic in many applications such as
STAP. The last assumption is the most restrictive but it is
needed for the mathematical derivations: the projection of the
steering vector onto the theoretical interference subspace is
negligible, i.e. u’d ~ 0 for i = 1,...,r. This means that the
tested steering vector is not fully embedded in the clutter ridge.
This assumption is often needed when we derive theoretical
performance with projector [10], [14], [15], [20], [21].

The result of Prop. II.1 shows that the LR-ANMF is
Constant False Alarm Rate (CFAR) when the tested target is
far from the LR subspace. But in practice and by simulation,
it is well known that this property is not guaranteed when
the target is close to the LR subspace. Actually, the Pfa then
depends on the distance between the tested vector and the
clutter subspace. Therefore, we propose in this paper a new
approximation of the LR-ANMF distribution by relaxing the
last assumption about the orthogonality between the steering
vector and the theoretical interference subspace which allows
to obtain a valid result for any tested target. Moreover, this new
derivation will allow us to obtain an approximate distribution
(and not a function of several random variables) under
and H; hypothesis leading to obtain the approximations for
Pfa and Pd. The approach used in this paper is based on RMT
tools and in particular on the convergences of the three QFs
of Eq. (6).

C. RMT model and convergence results

In this subsection, we present the standard convergence
results in a large dimension regime of the QFs.

1) Covariance matrix models: These convergence results
are based on the behavior of the eigenvalues of the SCM when
m, K — oo at the same rate, i.e. ¢,, = m/K — ¢ € ]0, +00).
The general assumptions that are useful to the different conver-
gences will be first presented. Next, the covariance model used
in this paper, the G-MUSIC model [22] [23], will be provided.
The studied data models are characterized by their formulation
and in a more important way by the asymptotic behavior of the
covariance matrix eigenvalues when m, K — oo at the same
rate. Then, to prove convergences, we make the following
standard assumptions:

(Asl) R has uniformly bounded spectral norm Vm € N¥,
ie. Vi € [1,m], |\j| < oo. More precisely, let R,
be the covariance matrix indexed by its size m and
A,ms ", Am,m its eigenvalues. Then, we assume that
SUp,,, MaX1 <i<m | Aim| < 00.

(As2) The vectors si, s € C™*! used in the QFs (here
d(®) or x/||x||2) have uniformly bounded Euclidean
norm Vm € N*.

(As3) The elements of the Random Matrix have to be Gaus-
sian’.

Under the previous assumptions, the behavior of the SCM
eigenvalues can be studied in a large dimension regime. By
building the matrix X = [x1,--- ,Xk], the SCM is rewritten
as R = %XXH . The matrix X is a function of the theoretical
covariance matrix:

X =RY?Y = (1,, + O)Y/?Y 9)

where R'/? is the m x m Hermitian positive definite square
root of the covariance matrix and the matrix Y € C™*¥ has
iid entries y;; ~ CN(0,1). Under the previous assumptions,
the following properties are satisfied for this matrix: the
probability law of Y is invariant by left multiplication with a
deterministic unitary matrix. The eigenvalues empirical PDF
of #YY*H as. converges to the Mar&enko-Pastur distribu-
tion [35] with support [(1—+/c)?, (14+/¢)?] and the maximum
(resp. minimum) eigenvalue of - Y'Y a.s. tends to (14/c)?
(resp. to (1 — \/c)?). From this last result, the convergence
of the eigenvalues of the SCM are addressed through the
convergence of the Stieltjes transform of the eigenvalues CDF
and are given for the G-MUSIC model in [36].

Finally, a final assumption for the G-MUSIC model is
needed to obtain the convergences of quadratic forms that
are functions of estimated projectors. This will provide the
value of ¢ which leads to separated clusters in f(x) for all
the theoretical eigenvalues of R. This will be referred as the
separation condition.

(As4) The ratio ¢ = m/K is chosen such that 1/c is strictly
greater than {¢(f;) : i € [1,¢]} which depends on m,

where v (f) is defined in [22].

2 Although the paper only considers Gaussian random variables, the results
are still valid with random variables which have finite eighth order moments.



Finally, the useful convergences of simple QFs (as S{I ﬂSQ)
will be given in the next subsection.

2) Convergence of simple QFs: Under (Asl-As4) and
when m, K — oo at the same rate (m/K — ¢ € R™),
then [22]:

s{fﬂjsgmﬁmsl s, (10)
m/K—c<oo
with, ITX = 37 ¢uul [22], and:
- T ) ifi>r
hi= mr— 12 (A =T Rapm ) . (1)
/\,-1—1 — AiM—TLm’ else

where @y > -+ > p,, are the eigenvalues of diag(A) —

LVAVA and A = [Ap, -, AT
In the following, we denote:

=Uvu?,
u,,] and ¥ = diag(vs)ie1,m

(12)
where U = [u

ITI. APPROXIMATE PFA AND PD OF THE LR-ANMF

In this section, we derive an approximate Pfa and Pd for
the LR-ANMEF. The derivation is decomposed in these steps:

o first, we compute the convergence of the LR-ANMF
in the large dimension regime in order to obtain an
equivalent detector without a random projector. After
some algebraic manipulations, we will obtain a ratio of
two QFs which are function of real Gaussian random
variables;

« from this ratio, we will compute an approximate distribu-
tion and we will present the algorithm to determine the
parameters of this new distribution;

« finally the Pfa and the Pd will be evaluated from this
approximate distribution.

A. Approximate distribution of the LR-ANMF

Let x be the signal under test. From Eq. (1), x ~
CN(pz, R) where g, = 0 under Hy and p, = ad under
H,.

Proposition II1.1 Equivalent detector LR-ANMF A LR In a
large dimension regime

Under (As1-As4) and when m, K — oo at the same rate
(m/K — ¢ € RT™), we have:

R as. - #TAZ
A | 2% A= 22 (13)
m/K—c<oo
with z € R2mx1 and Z ~
N (/l'i _ \/i[m(Afl/ZUHux)T, S(Afl/ZUHux)T]T’ I2m);
A= dlag([)‘la T 7)‘m]) and
A — §R(IA) _%(A) c RQmXQm
3(a) R(A) "
ﬁ — H O c R2mx2m
O, H

where A = H'/2fPHY2, H = diag([n, -
Yi)i and £ = 1/2UHQ/|| @20,

s Mml), M =

Proof: See appendix VI-A.e

The expression A is now a ratio of two simple QFs,
which are functions of real Gaussian random variables. The
approximation by polynomial adjustment given in [31] is then
fully adapted to this new form. The distribution of A under
hypothesis Hy, & € {0,1} and its approximation will be
respectively denoted f7(z|Hy) and f3 (z|Hy). Next, we have
the following proposition:

Proposition II1.2 Approximate distribution of Arp in a
large dimension regime
fa(z|Hy) is approximated by the following distribution:

LU|H]€ § Vz|7~lk 7

where @(x|Hy) is a basic distribution (for example the
exponential or the Beta distribution) of same support than
fa(x|Hy) and fx(x|Hy), Viin, are the coefficients of the
polynomial of adjustment and d its degree.

fa(@|He) = falzMe) = (15)

Proof: The proof is straightforward by following the result of
[31].

B. Evaluation of fx(x|Hy)

The choice of d is important and is linked to the quality
of the approximation but also to the computational cost (espe-
cially for H1). Next, the evaluation of f (x|Hy,) is performed
in several steps:

o computation of the moments of A;

 computation of the moments of ¢(z|Hy);

« equalization of the moments of A and ¢(x|H},) in order

to compute the elements {v;|Hy }(1,4)-
It is important to notice that the support of ¢(z|Hy) has to
match with that of fz(x|Hy) and f3(z|Hy).
Computation of the moments of A:

In this paragraph, we compute the moments u(ﬁ,,_)L of A. They

are determined by the followmg relation [31], [37] from the
ratio of Eq (13) in the proposition III.1:

A SII2 ;
Wi, = r(>eXP( Hu2|\2) oo yin1 0t {|12m_25A+2yH| 1/2
Xexp §N£(IQW_QSA+2:L/H) I-"i) 7Ody
- (16)

where I'(.) is the Gamma function.
Choice of the distribution of (x|Hy) and computation
of its moments:

Since the detector App takes values between [0,1], it
seems to be logical that its limit in the large dimension regime
A takes the same values. In this case, the choice for o(z|Hy)
of a Beta distribution is interesting because its support is also
[0,1] and the expressions of its moments are simple. The non
central moments linked to the Beta distribution are iteratively
computed:

(0 _ _arti—1

L= . 17
’ullﬂk Olk +,8k;+2_ I/J/Z*l‘Hk’ ( )



(v)  _ Ak
I\Hk -

parameters of the Beta dlstrlbutlon

(X) *x) 2
o = — (N) + ( 'u”Hk)( 1|7‘¢k)
= THim, u® @ \2
Hainy, (‘ 1Hy, )
(1-nt,) ®
Br = —1—ap + ~m—r=—=5.
3 @)
Pajay, — (/ 1"%)
Equalization of the moments of A and ¢(x|Hy):
This last step allows to compute the elements {v;|Hy}{0,a}-
For this computation, the non central moments of A are used

to obtain those of f (x|#y) from the following relation [31]:

with g and where «j and fBj are the

(18)

Vhel[o,d],  (19)

®)
ZVllHRM/L+7\Hk
=0

Mmm

A)

where p1y, 5, (resp. uth ), h € [1,d] are the non central
moments of order h of A (resp. associated to ¢(x|Hy)) and
A .
Mé”lk uéﬁ){k = 1. By setting v = [Voj3,, V134y - - - V) s
(A) @A) (CRRLy
My = (o, M, -+ Hajg, | 20d
M M i,
u(w) " () M(cp)
My = |1 207 d+.1mk
Mfif?){k “t(ii)uﬂk “(2::\)7-1,9
we have
ve =M Y. (20)

We give the summary of the different steps in the
following algorithm.

Summary of the computation of the approximate
distribution

e Choice of initial parameters: d.

1. Preliminary calculus: f, A and H according to
Proposition II1.1.

2. Computation of the d non central moments M(W-)l of
A thanks to Eq (16).

3. Computation of the parameters of the base distribu-
tion, o, and B from Eq (18).

4. Computation of the 2d non central moments u%_)[k
from Eqgs. (17).

5. Computation of the vector of d + 1 coefficients vy
from Eq (20).

e Computation of the approximate density of proba-
bility f3 (z|Hy), its cumulative distribution function,
efc.

C. Approximate Pfa and Pd of the LR-ANMF

We now characterize the performance of the LR-ANMF
detector by deriving the relations Pfa-threshold and Pd-
threshold. This derivation is based on the approximate distri-
bution f (|#;) computed under H, and #;. These relations
are given in the following proposition.

Proposition III.3 Approximate relations Pfa-threshold and
Pd-threshold for the LR-ANMF detector

For a threshold denoted 7 € EO, 1] we have the following
theoretical relations Pfa-threshold and Pd-threshold:

d (a0 + Bo)T(i + o) ,
Pfa ~ ;}mno T(a0)T(i + a0 + Bo) (1 = I5(i + a0, Bo))

2N

- (a1 + )T + a1)

Pd ~ v,
; MU T (1)L (i + a1 + Br)

(I —=TI5(i+ a1,B1)), (22)

where ay, and By are obtained from Eq (18).

Proof: See appendix VI-B. e

Finally, we have the approximate relations Pfa-threshold
and Pd-threshold of the LR-ANMF as a function of the radar
parameters.

IV. VALIDATIONS

In this section, we validate the different propositions given
in this paper. Since these results of theoretical performance
are obtained whatever the tested target, we choose a steering
vector d close to the clutter subspace. Therefore, we do not
present the results of [19] to obtain the clearest figures because
they are not valid in this configuration.

A. Application presentation and parameters

Since the disturbance has to be composed of a LR sub-
space plus a WGN, the jamming application is chosen. Indeed,
the main purpose of this application is to detect a target with an
uniform linear antenna composed of m = 20 sensors despite
the presence of r jammers. Their response ¢ is composed of
r = 3 synthetic targets, similar to d (), of Angles of Arrival
(AoA) 6. equal to —20°, 0° and 20°. Therefore, the rank r
of the covariance matrix of the low rank contribution, C, is
equal to 3 and the eigenvalues are chosen equal to v; = 6,
v2 = 2 and 3 = 1. The covariance matrix of the total noise
is then defined as:

_ QJNR
(1)

with T' = diag([v1,72,73]), 7 = 1 and where ajyg is used
to set the Jamming to Noise Ratio (JNR). The JNR and the
SNR (signal d to noise ratio) are fixed to 10dB and 18dB
respectively, K = r+ 1 which results in ¢,, = 5 and the AoA
of the data x under test is 64 = 20.1°. We notice that the tested
data is very close to the jammer subspace. The wavelength is
fixed at 0.667m.

C+1L,, (23)

B. Validation of the approximate distribution of the LR-ANMF

In this subsection we validate the asymptotic equivalence
of the LR-ANMEF test given in the propositions III.1 and III.2.
The goal is first to measure the impact of the asymptotic
approximation in the large dimension regime on the distri-
bution and next to validate the approximation by polynomial
adjustment in particular with a small value of d.

We visualize in Fig. 1 the ECDF (Empirical Cumulative
Distribution Function) of A of Eq. (13) and the CDF of
the approximate distribution, f;\ of Eq. (15), with a minimal



approximation degree d = 2. We also compare them to the
ECDFs of the LR-ANME, Ay of Eq. (6), and the LR-NMF
detector (built with the theoretical projector and denoted A g).
All these quantities are first evaluated under the H( hypothesis
in Fig. 1(a) and under the #H; hypothesis in Fig. 1(b). To
quantify the distance between two ECDFs or one ECDF and
one CDF, we use the Cramer-Von Mises distance defined by:

deom = Ey [|F1(z) — Fa ()], (24)

where the expectation is taken over x and Fj(x) and Fy(x)
are two ECDF (or CDF). In the following, the Cramer-Von
Mises distances will be evaluated with 10° trials.

Under Hg, derm between the ecdfs of the LR-ANMF A LR
and that of the LR-NMF App is equal to 0.06 and d.yp,
between the ecdfs of the LR-ANMF A rr and that of A is
equal to 0.007: we first notice that the approximation in a large
dimension regime provides an ECDF much closer to the LR-
ANMF ecdf than the LR-NMF one. Moreover, d.,,, between
the ecdf of Ay r and the cdf derived from the distribution
f;\ is equal to around 4.1075: we conclude that even for a
small degree of approximation, the theoretical approximation
proposed in this paper is very accurate.

Under H1, deym between the ecdfs of the LR-ANMF A LR
and that of the LR-NMF Ay is equal to 0.224 and d.ym,
between the ecdfs of the LR-ANMF A » and that of A is equal
to 0.002: as for Hg, the approximation in a large dimension
regime provides an ECDF closer to the LR-ANMF ecdf than
the LR-NMF one. Under H1, deym between the ecdf of A LR
and the cdf derived from the distribution f3 is approximately
3.7.10~*: the approximation f’;\ is less accurate than under
Ho but the result allows to conclude that the theoretical result
proposed in this paper provides a good approximation of the
behavior of A.

CDF of fy(z|H,) // &l
SCDF of A(©) é
Air(©) y ¢
0.7HL= ~ ~ECDF of Aw(®) 1' I

02} / ;‘f

-15 -10 -5 0 =30 -25 -20 -15 -10 -5 0
10 log10(Detector value 10 log10(Detector value)

(a) Under Ho (b) Under H1

=30

Fig. 1. CDF of the approximate distribution f;\ with d = 2, ECDF of A,
of the LR-ANMF ALR and of the LR-NMF App. m =20, K =r+1 and
0 = 20, 1°. The JNR is fixed at 10dB. 10° trials have been used to evaluate
the ECDFs.

C. Validation of the approximate Pfa and Pd of the LR-ANMF

We are here interested in the validation of the Pfa-
threshold and Pd-threshold relations given in proposition II1.3.

First, Fig.2(a) compares the Pfa-threshold relations of the
LR-ANMEF, of the LR-NMF and of Eq. (21) derived from
the distribution f,@. Similarly to the previous subsection, we
conclude that the Pfa-threshold relation (21) is a correct
approximation in particular for small Pfa. Next, Fig.2(b) shows

the Pd-threshold relations of the LR-ANMEF, of the LR-NMF
and of Eq. (22) derived from the distribution f;\. Like for
the Pfa-threshold, we notice that the relation (22) is a good
approximation of the Pd of the LR-ANMF.

Ar(©)
Ar(©)
Approx. Py
o 20 -1

~10 ry 5 -10
10 log10(Threshold) 10 log10(Threshold)

(a) Pfa-threshold relations (b) Pd-threshold relations

Fig. 2. Pfa-threshold and Pd-threshold relations of LR-NMF Ap g, of LR-
ANMF AR and of Eq. (22) derived from the distribution fz. m = 20,
K =7+ 1 and 8 = 20, 1°. For the LR-NMF and LR-ANMF, 105 trials
have been used to evaluated the Pfa and the Pd. The JNR and the SNR are
fixed at 10dB and 18dB.

In Fig. 3, we show the Pd as a function of the SNR for
a fixed Pfa = 1072. We notice that the LR-NMF is not
able to predict the performance of the LR-ANMF. Even if we
have an error between the theoretical result and the Monte
Carlo simulations, we conclude that it provides a correct
approximation of the detection performance when the target
under test is near the LR subspace.

1

Ar(© T
0.9 ALr(6) o 1
-~ ~Ar(©) e
0.8f| —— Approx. P, L/ 1

0.7}
0.6}
A5 0.5)
0.4}
0.3}
0.2}

0.1

018 20 22 24 26 28 30 32

SNR (dB)

Fig. 3. Pd-SNR relations of LR-NMF Ay g, of LR-ANMF [\LR and of
Eq. (22) derived from the distribution fz. m = 20, K = r + 1 and
6 = 20,1°. For the LR-NMF and LR-ANMEF, 105 trials have been used
to evaluated the Pd. The JNR is fixed at 10dB and the Pfa is fixed at 1073,

Finally, the table I presents the average calculation time
for one point of the Pfa-threshold relation with 10? iterations
when the moments are already calculated®. We notice that the
approximation (21) given in this paper allows to strongly re-
duce the computational cost compared to a classic Monte Carlo
simulation. But, this equation requires computing the moment
generator function of Eq. (16). If this step has a computational
cost of one hour under , it becomes prohibitive under H;

3The computer used has an Intel(R) Core(TM) i7-3667U CPU @ 2,00GHz
processor and RAM memory of 8Go.



K=r+1 K =2r
With Arr 3,0342 s 3,0188 s
With the theoretical relation (Eq.(21)) 0,0252 s 0,0240 s

TABLE I
AVERAGE CALCULATION TIME FOR ONE POINT OF THE PFA-THRESHOLD
RELATION WITH 104 ITERATIONS AND WHEN THE PFA IS SET AT 10~%.

(around 2 days). Therefore, the approximation (21) allows to
obtain a threshold for a given Pfa with a small computation
time. On the other hand, Monte Carlo trials are more suitable
to evaluate the Pd.

V. CONCLUSION

In this paper, we derived the approximate Pfa-threshold
and Pd-threshold relations of the LR-ANMF in a large di-
mension regime. Compared to the previous work [19], the
tested target is assumed to be close to the LR-subspace. In
this configuration, we showed that the LR-ANMF lost its
CFAR property and its performance depended on the distance
between the target and the LR subspace. More generally,
this paper illustrated that the tools of RMT are useful for
deriving an approximation of a complex statistic form like
the LR-ANMF under conditions where the classical tools of
asymptotic analysis are unable to provide an interesting result.

We validated this theoretical result in a jamming appli-
cation where the data under test is close to the LR subspace.
Finally, we illustrated that the computational cost is low under
Ho, which allows a threshold to be easily obtained for a chosen
Pfa without the use of Monte Carlo simulations. Unfortunately
the computational cost under H; is too high for a practical use.
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VI. APPENDIX

A. Proof of proposition III.1

From the convergence results for the QFs given in subsec-
tion II-C2 (under hypotheses (AS1-AS4)) and the continuous
mapping theorem we directly have:

" . di Il x|?
A 2 A= I (Shad I ) 25
LR K oo (dHTIL d)(xH Il x) @

m/K—c<oco

We notice that the LR-ANMEF test is not consistent in a large
dimension regime.

Next, we transform the previous equation in a ratio of
two QFs, which are functions of complex Gaussian random
variables:

|dF UPUH g|?

A = =
(dFUTUH ) (zHUTU )

le"y|?
(efle)(yHy)’

with e = ¥1/2Ufd, y = ©/2Ux ~ CN(py, =
12U H), H = A® and A = diag([\1, -, Am)).

(26)

Therefore,
|eHH1/2Z|2
(eHe)SzHHZ)
2T !/ 2ee" H'/ %7
(efle)(zHHz)
ZHHl/Qﬁ‘HHl/QZ
zHHz
z7 Az
zHHz’
with z = H 2y ~ CN(p, = AV?U p, 1), f =
e/|lel| and A = HY/2fFHH/2,
Finally, it is easy to transform the previous relation which
is in a complex form into an equivalent real form:

=1

H 5T A5
i_Z AZ:Z éz 27
z"Hz  7THz
with
7 = \/i[é}%(Z)T7 S(Z)T]T c R2mx1
A _ %(A) _(‘}(A) c RQmXZm
S(A)  R(A) .28
I‘_'I _ H (D2m c RmeQm
(D2m
B. Proof of proposition I1.1
We have by definition of the Pfa and the Pd:
Ppo, Py =~ f:oo fA(x|Hk)dac
= ) Sy vatda  29)
= Y ico Vil (M My )da
with Py(7[Hy) = [ aip(z|Hy)dz and k € {0,1}. Since

7
w(x|Hy) is a Beta distribution, then

oo ;T B -
e = fjr Iz%xak - fE)B’“ 11[0,1]dz
= M oo pitar—1(1 — )Bk—1
B F((ak)l"(ﬁk)) f ()1 ( x)) Ljo,1jdz
= Do + Br +o0 (i + ap)l(Bk )
N Eak)F(ﬁk Ff i+ o+ B )B(Z+ak76k)d$
_ Tlok +Bp)(+ ag f+°° (i 4 oo

I(ag + Bp)T (i + o

Eak)r(l + ap + Bk
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()T (i + o + Br

— [ Bli + ak, By)da )

I(

)

L(oy)T(i + oy, + 5k;
§ 1—In(i+ o, Br))

(30)

where Ij; (resp. B) is the regularized incomplete beta function

(resp. the beta function). Therefore, the proof is finished by

using the properties of Ij.
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