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ABSTRACT 

Difficulties occur in the numerical treatment of mechanical 
systems when the unilateral constraints of mutual impenetrability of 
members are taken into account. At every time-step, algorithms 
have to be ready to handle the possible break.ing of some contacts 
or, on the contrary, their sudden introduction by collisions. 
Furthermore, the modeling of dry friction, generally present in the 
case of contact, rests on mathematically irregular relationships. It is 
shown in this paper how the numerical approach named 'Contact 
Dynamics' allows one to calculate evolutions in dynamic or quasi­
static regimes and also to analyze the possible equilibria. This 
method faces the essential nonsmoothness of the concerned 
problems without ressorting to the regularizing approximations 
applied by other commonly used techniques. It rests on time-discre­
tization schemes of the implicit type, allowing for coarser time 
steps, at the price of applying nonsmooth iteration procedures. 

1. INTRODUCTION

Various engineering situations cal! for the mechanical analysis
of collections of bodies which, instead of the articulations 
considered in the traditional mechanics of systems, are only 
submitted to the unilateral constraints of not interpenetrating each 
other. At a priori unknown instants, such bodies may enter into 
contact or separate out, but they can never overlap. 

For example, gra11ulatematerials, studied from the static or the 
dynamic standpoints, are systems of this sort. Problems raised by 
the behaviour of a work of maso11ry submitted to a11 earthquake let 
themselvcs be formulated in a similar way, as well as various othcrs 
in Gcomechanics (Jean, 1995). In these instances, the concerned 
bodies are primarily treated as perfectly rigid, but the numerical in­
vestigation of the formi11g of mate rials (drawing, rolling, etc.) show 
the same type of constrainl imposed to portions of deformable me­
dia (see e.g. Jean, 1993, Raous et al., 1995). Also in Robotics, 
some authors are currently taking inlo accounl, for simulation or 
control, the unilatcral constraints of impenetrability (Brogliato et 
al.,1994)(Pierrol el al., 1994). 

In terms of the configuration parameters of the system (in 
numerical computation, there is always a finite number of them, 
even if the considered bodies are deformable), impenetrability 
constraints are expressed by inequality conditions. Furthermore, 
when contact occurs, solving statical or dynamical problems re­
quires some phenomenological information about the co11tact forces 
that the bodies exert on each other. 

Even in the ideal case of frictionless contact, due to the w1i­
lateralcharacter of the impenetrability constraints, the appraisal of 
contact forces in Dynamics when several contacts are simul­
taneously effective has long been known to need careful discussion. 
Additional difficulties corne fromjriction at the contact locus, which 
is rarely negligible. Tribology describes it as a complex 
phenomenon so that the data needed for a quite accurate prediction 
of its effects are, in most engineering situations, unavailable. 

In practice the Coulomb law of dry frictio11 is very commonly 
invoked, for it retains the most salient features of frictional contact. 
But even this fairly simple law raises analytical and numerical 
difficulties, since the relationship it formulates between the contact 
forces and the relative velocities of the bodies at the respective 
contact points is mathematically irregular. In the event of zero 
relative velocity, the la"· only requires of the contact force to belong 
to a certain cone (the cone of static friction). For nonzero relative 
velocity, the law connects the tangential component of the contact 
force with its normal component and with the direction of the 
velocity vector. This direction may vary sharply when the Yelocity 
approaches zero, while the normal component itself is not usually 
given, but depends on the whole dynamical analysis. AL 
equilibrium, familiar examples show that situations involving dry 
friction are frequently hyperslatic. For evolution problems, one 
should no more expect the uniqueness of solution. 

Furthermore, in dynamical evolutions subject to impenetrability 
constraints, collisio11s implying velocity jumps are likely to occur. 
This constilules another sort of analytical irregularity white, from 
the phenomenological standpoint, collisions may be affected by 
many aspects of the material behaviour which make Lheir outcome 
dif
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icult to predict with greal precision. 
ln Operation Research, when problems of Oplimization or 

Control in the presence of inequality conditions are treated, mathc-



matical difficulties of the same nature are met, though somewhat 
milder. The analytical and numerical tools developed to solve the 
latter problems constitute the mathematical domain called 
No11smooth Analysis. By analogy, questions of the sort considered 
here, as well as various others arising from plasticity, shape optimi­
zation, etc. have been said to belong to No11smooth Mechanics
(Moreau and Panagiotopoulos, 1988; Moreau, Panagiotopoulos and 
Strang, 1988). 

A natural approximation procedure, for the numerical treatment 
of such problems consists in replacing the impenetrability 
constraints by some short range repulsion laws which enter into ac­
tion when two bodies corne close to each other. This is a me­
chanical analog to the penalization technique, classical in 
Constrained Optimization. The dynamics of the approximant 
mechanical system is governed by proper differential equations to 
which standard numerical schemes, usually of the explicit type, are 
applied. Similarly, the nonsmooth character of dry friction may be 
numerically overcome by replacing Coulomb Iaw by some 
regularized approximant. 

After the pioneering work of P. Cundall (1971),_many authors 
have developed numerical methods of this sort and used them to 
produce significant results. Depending on the respective authors 
environment and on technical specificities, such methods are named 
'Distinct Element method', 'Discrete Element method' or 
'Molecular Dynamics methods'. Sorne commercial programs rest 
on this numerical strategy. The main drawback is that the sake of 
precision in approximating impenetrability constraints requires of 
the repulsion laws to be stiff, so that the numerical integration of the 
corresponding differential equations needs fine time-steps. 
Furthermore, it may be difficult to distinguish the possible artefacts 
generated by such artificial elasticity from the effects of physical 
deformability. As a recent paper where these technical aspects are 
discussed, one may consult Drake and Walton (1995). 

In contrast, the Colllacl Dynamics method, presented in this 
communication, faces nonsmoothness without resorting to any re­
gularizing approximation. The key feature is that the impenetrability 
inequalities are treated at the level of velocities. Clearly, if in some 
state of the system a certain contact is in effect, the corresponding 
impenetrability inequality requires of the consequent velocities (i. e. 
the time-derivatives of the configuration parameters on the right of 
the concerned instant) to verify a certain linear inequality. Thus, for 
each possible configuration of the system, the set V of the 'right­
admissible' velocity vectors is a convex polyhedral cone in R0

. lt 
turns out that the information to be entered, conceming contact 
forces is also connected with the same cone. For instance, in the 
academic case of frictionless contact, the condition imposed to the 
element of R0 which represents the contact forces is that of belon­
ging to the 'polar cone' of V. If friction is taken into account, 
contact forces have to be related to velocity by more complicated 
relationships but fitting very well into such a Convex Analysis fra­
mework. In Sec.3 below we introduce the concept of a complete
contact lmv, a formalism which secures the mechanical and numeri­
cal consistency of the model while leaving widely open the possi­
bility of introducing phenomenological data. 

The problem to be solved at each step of the time-discretization 
is to determine velocities and contact forces jointly, in order for the 
contact laws and the balance of mornenturn to be satistïed. The 
nurnerical schemes so constructed naturally turn out to be of the 
implicit type. This implicit character makes the algorithms ready, at 
each time-step, to face collisions, should one of them be detected as 
occurring during the time-interval of the step, a point developed in 
Sec.5 below. 
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The paper ends with a few examples of applications developed 
by the authors. 

2. ANALYTICAL $ETTING

Let the configurations· of the investigated system be 
parametrized, at least Iocally, through generalized coordinates, say 
q = (q 1, q2, ... , qn). If the system consists only of perfectly rigid 
bodies, this reduction to finite freedom usually results from some 
(bilateral) ideal constraints, such as the possible action of internai or 
external frictionless linkages. Also when deformable continuous 
bodies are involved, the numerical treatment rests on finite freedom 
approximations (modal representation or use of finite elements) so 
that the formalism presented in what follows applies as well. 

After constructing the parametrization, one takes into account the 
constraints of impenetrability; their geometric effect is assumed 
expressed by a fini te set of inequalities 

fa(q) :S O, aE{l, 2, ... , k} ( 1) 

where f1, f2, ... ,fk are given fonctions. Equality fa=Ü corresponds 
to the occurrence of a contact between two members of the system 
or between one of these members and some externat obstacle. For 
brevity, the latter will be assumed fixed in the reference frame in 
use. The case of obstacles with prescribed motion would cal! for the 
time t being also a variable in fa and bring only notational compli­
cations to the sequel (see Moreau, 1994). 

For every imagined motion t--+q(t) and for t such that the deriva­
tive q(t)ER" exists, the kinetic energy has a quadratic expression 
in q ,  say 

'.Eic( q, q) = t Aïj( q) qi qi (2) 

where A denotes a symmetric positive definite nxn-matrix. 
As far as smooth, i.e. twice differentiable, motions are concer­

ned, the system Dynamics is governed by Lagrange's equations, 
written below as an equality in R" 

A( q) q = F(t, q. q) + L rU 
a 

(3) 

The expression F comprises the q-dependent terms of 
Lagrange's equations and the covariant components, relative to the 
parametrization (q), of some applied forces supposed given as 
fonctions of time, position and velocity. The element rU of R0 is 
made of the covariant components of the a priori unknown contact
forces experienced by the system in case the contact fa=O holds. 
Their definition rests on the standard construction of the covariant 
components of forces located in physical space, connected as fol­
lows with the system kinematics. 

Suppose that inequality fa:SÜ expresses the mutual impenetrabi­
lity of some pair of members of the system, say '.B and '.B', so that 
equality fa=O corresponds to these two bodies touching each other 
at some point of space denoted by Ma. One assumes it an isolated 
contact point, but other contacts, corresponding to different values 
of a, may also be in effect between the same bodies at the same 
instant. For every imagined motion t--+q(t) bringing the system 
through the considered contact position for some value of t, the ve­
locities 'V a and 'Il; of the respective partiel es of '.Band '.B' passing at 
point Ma let themselves be expressed as affine fonctions of the va-



lue u of the derivative q. The same is thus true for the relative ve­
locity 'lla.='lla.-'11 � of '13 with respect to '13' at this point, say 

(4)

where Ga. : Rn_...., R3 denotes a linear mapping, depending on t and q.
No attention is paid al this stage to the imagined motion preserving
contact or not. 

Let !J?...O. denote the contact force that body '13 experiences at point
Ma from body '13'; then '13' experiences from '13 the force -!f?...<X. 
Classically, the covariant components of this pair of forces are
expressed by 

(5) 

with G�: R3--+R0 denoting the transpose of Ga. (the convention of
implicit summation will never be applied to Greek indices). 

Similar formulas hold if inequality f
a.:S O represents the

confinement of a part '13 of the system by some externat boundary. 
Then ra is made of the covariant components of !J?... a. alone. In both
cases, the following relationship is found (Moreau, 1988) to hold
between the gradient af taq in R" and the normal unit vecteur no. at 
point M

a. 
to the two co�tacting bodies, directed toward '13 

3"1x<!:Ü such that (6) 

In ail the sequel, we shall assume that the rnapping Ga. is 01110
from R0 to R3; equivalently, its transpose G� is 011e-to-011e from
R3 i11to Rn. Only some special positions of certain linkages may
give rise to 'wedging' effects which break this assumption. 

3. CONTACT LAWS

To E.qs. (1), (3), (4), (5) one necessarily has to adjoin some
phenomenological information regarding the contact forces. For
instance, the ideal situation of frictio11/ess co/llact is described by
asserting that the contact force !J?...O. (vanishing if contact a is not
effective, i.e. if fa.(q)<O ) is a vector belonging to the half-line
generated in R3 by na.. 

As an elementary description of dry friction, the law of
Coulomb will be invoked in the sequel. Generally, let us cal! a
contact law a relationship of the form 

lawa.(t, q, 'lla. , !J?...O.) = true (7) 

imposed to the elements defined in the preceding Section. 
An adequately designed formulation of contact laws greatly

helps to face the difficulties raised by the unilateral character of the 
impenetrability constraints. The event of collisions, i.e. the sudden
occurence of new contacts, which is expected to generate velocity 
jumps, is left for Sec.5. At the present stage, where only smooth
motions are considered, one still has to face the possibility of the
breaki11g of some contacts. The traditional approach consists in
tentatively calculating the motion under the assumption that ail
contacts present at a considered instant remain effective in the 
sequel. If the evaluation of contact forces in the course of such a
motion yields, at a further instant, an unfeasible direction for some
of them, one concludes that some contacts should break at this 
instant, so the continued motion has to be calculated differently. But
easy examples show that the contacts which break are not
nccessarily those for which unfeasible contact forces were just
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found. In the ideal case of frictionless contacts, Delassus (1917) 
has elucidated the determination of instant accelerations under such
circumstances and the same question was more recently investigated
in terms of Convex Analysis (Moreau, 1966). 

Strictly speaking, the matrix Ga. and the ,·ector na. defined in
the preceding Section make sense only in the case of contact, i.e.
for a configuration q satisfying fa.(q)=O. In computation, as well as
in existential studies, the definition of these elements has to be
extended, in a smooth arbitrary way, to configurations q laying in a
neighbourhood of the hypersurface f

a.=0 of R". In particular, one 
should be ready to face a certain amount of violation of the
impenetrability inequalities (one manages to keep it smalt). 

Put 

Xa(q) = {
{'l1ER3: no..'ll<!:0} i f  �(q)<!:O
R3 if �(q)<O

which may be called the set of the right-admissible values for the
relative velocity of the two concemed bodies at the contact point. 

Let LLS agree to say that a contact /aw such as (7) is complete if it
implies 'lla.E.Xrt.i11 al/ circumsta11ces and !l<a=O if 'UaEinterior 'Jiw.. 

Through E.q. (4), the fact that a contact Law is complete is
translated into a property of the element u of R0.0ne source of
interest of the concept lies in the following k.inematical result
(Moreau, 1988). 

If. at some initial i11sta11t, ail impe11etrability i11equalities fag)
are ful/filled and if ail co11tacts possibly occurrùzg i11 the sequel are 
govemed by complete contact laws, thefu11ctio11 t--+q(t) co11structed
by i11tegratio11 of the velocity jwictio11 t--+u(t), jullfil/s the
impenetrability i11eq1uzlities i11 ail the subsequellf motio11. 

The Contact Dynarnics method rests on time-discretization. The
essential stage is to compute a discrete approximant of the velocity 
fonction t--+u(t), to which the position fonction t--+q(t) is simply
connected, step by step, through integration. Starting from the
value obtained for u at the beginning of an interval of the
discretization, one has to assess the value at the endpoint.
Discretizing the dynamical equation (3) amounts to express the
momentum balance of the system over the interval, without
explicitely referring to accelerations. If the contact forces which
appear in this balance of momentum verify complete contact laws,
the abo,·e kinematical result makes that the impenetrability
inequalities ( 1) are autornatically taken care of. 

Furthermore, the use of complete contact laws secures the
correct handling of the possibility of some contact to get loose.
Such is in fact the case for contact a if computation yields
'UaEinterior 'liw_ (i.e. na. 'U>O) hence !T<a=O. Clearly also the
complete contact Law assumption implies that !l<a=Ü when fa(q)<O,
since 'liw_(q) equals the whole of R3 in that case. 

4. BASIC CONTACT DYNAMICS ALGORITHM 

Let [t1, tF], tF = t1+h, denote an interval of the time discretization. 
Starting ,,·ith q1, u1, the approximate values of q and u at time tr, the 
objective is to calculate qF, uF, the approximate Yalues at the end­
point lF of this interYal. 

Identification of contacts 
By using qM = q1 + h u1 /2 as test position, the set of the contacts

to be treated as active in the considered step is estimated to be 



Discretization of the equation of Dynamics
Equation (3) may be dÎscretized in the form 

where S 13ER3 denotes the impulsion at contact 13, i.e. the integral 
of 9(11 over the time interval. In short 

(8) 

Contact laws 
In contact laws such as (7), which are assumed satisfied all over 

the time interval, the time-dependent quantities 'Ua, !}(a have to be 
replaced by some values estimated to be typical of the interval. We 
choose here to have (7) hold between the impulsion sa and the.final
�œ 

.(9) 

Such a choice makes the present time-discretization scheme belong 
to the implicit sort, at least in what concems the velocity function u. 
As a justification of entering impulsions instead of forces in (7) one 
may observe that Coulomb law states a positive/y homogeneous
relationship between its two vector arguments. 

Final position 

qp=qM+lh up2 

Iterative procedure 
By combining Eqs. (7) and (9), one obtains 

'v'aEJ: lawa(qM,GauF,sa)=true (10) 

Solving the system of conditions (8) to (10) constitutes the 
heaviest part of the computation. Here is a relaxation technique, 
amounting to treat a succession of single-contact problems. 

Let an e�timated solution ueFu, S 
e
�ti , j3 running throu_gh J,. be

obtamed, w1th (8) satisfied (the startmg guess may cons1st m taking 
zero values for the sll or in using values found at the preceding 
step). One attempts to construct a corrected estimate, say uc;r.s!r, 
by al�ering onl� sa , i.e. s J!r = s titi 

for 13 '°. a. The new esttmate 1s
astramed to sattsfy (8), i.e. smce ffie old esttmate sat1sfies the same, 

éO!T =Uesti+ A-'o* (S a -s a .) 
F F a corr esll 

(11) 

and to satisfy (10), hence, after applying Ga to both members of 
(11 ), 

VaEJ: law (G uesti +H (S a -s a .) S a )=true (12) 
a a F a corr esll ' corr 

where 

can be proved to be a symmetric positive definite 3x3 matrix. 
Solving (12) with regard to the unknown Sc&r may, in some 

usual cases, be reduced to finding the zeros of a piecewise affine 
mapping. The above computation will then be iterated, with a 
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ranging cyclically through J. The decision of stopping iterations 
may be taken on observing the magnitude of Sc&r-seiti and this 
tums out to be equivalent to checking the precision at which each 
pair 'lla .S a satisfies the corresponding contact Iaw. Observe that, 
provided this precision check is made, the operator Ha in (12) may 
be replaced by any other mapping with zero limit at the origin: this 
may be used in tricks for accelerating convergence. 

Clearly, this algorithm tolerates a certain amount of violation of 
the impenetrability inequalities. By adjusting the step-length and the 
stopping criterium, one may keep these errors arbitrarily small and 
prevent their accumulation. 

The iterated calculation is very simple, but needs to be repeated 
many times in case of numerous contacts. Since the balance of 
momentum (8) is only preserved from one iteration to the next 
through the conservation condition (11), one should think of the 
possible ac�umulation of arithmetic errors. For safety, one may 
refresh ueFtI from time to _time, by returni�g to (8) while keeping the
approximate values obtamed for sll. This proves useful only for 
motions involving thousands of contacts. 

Technically, let us also observe that in many usual applications, 
the nxn matrix A is constant and diagonal. oa is a 3 xn matrix, but 
only the elements corresponding to the two bodies involved in 
contact a are nonzero. So the treatment of large collections of 
bodies does not require the handling of large matrices. . The convergence of this algorithm and the existence of a solution 
to the problem it addresses has only been proved in special cases 
(Monteiro Marques, 1993). Uniqueness cannot be expected to hold 
in general, since the mechanical problem of determining the 
reactions in a closely packed collection of rigid bodies (for instance 
a wall made of rectangular blocks) is usually hyperstatic. 

The algorithm still works in analysing equi�ibrizun �ituations. 
The balance of applied forces and contact forces stmply y1elds up = 
u1 = 0 in such a case. 

5. COLLISIONS

The sudden occurrence of new contacts produces velocity 
changes in some parts. The Jess deformable the colliding bodies 
are, the more brutal the phenomenon should be, involving large 
values of the contact forces at the impact locus. If the deformability 
of the bodies is full y taken into account, the problem is however not 
fundamentally different from others in the Dynarnics of Continua. 

But if it has been decided to treat bodies as perfectly rigid, one 
has to face strict discontinuities in velocities, so that the smooth 
dynamic framework of Sec.2 cannot apply. In the majority of the 
papers devoted to the topic of 'Rigid Body Collisions' (Brach, 
1991), it is attempted to formulate some collisio11 equations,
connecting the values of velocities after the collision to the values 
they had before it. Traditionally, the intense effects which take place 
during a collision are assumed Iocalized in the vicinity of the impact 
locus. Then, a multiple scaling analysis of what happens m an 
'infinitely small' domain, during the 'infinitely short' collisional 
episode allows one to take into account in more or Jess detail the 
material behaviour of the involved bodies. 

Situations in which such a treatment is justified certainly exist, 
but in general the effect of a collision should not be local. For 
instance, material dissipation in the vicinity of the impact is not the 
only cause of the energy loss detected at the macroscopic level of 
observ ation. Even if the concemed b odies are assumed perfectly 
elastic, energy conservation cannot be expected. Disturbances are t.opropagate from the collision locus to the whole system and also. ,r 
the latter is linked \\'ith some extemal support, to the outside world. 



After contact recedes, vibrations are likely to persist somewhere. At 
the macroscopic observation level, this does not contradict the 
rigidity assertion, but the energy involved in microscopie agitation 
may not be negligible. 

Also as a consequence of global deformation, a collision may, 
at the microscopie time-scale, split into several separate contact 
episodes: an example of such a double bouiice is calculated in 
closed form in (Timoshenko, 1948, Chap. 12). Finite element 
computation of the collision of two elastic bodies performed in our 
laboratory has shown the same. So the conception of a collision as 
consisting of a compression phase followed by a so-called 
restitution phase cannot be considered as general. 

Ail this makes the outcome of a collision depend on many 
factors, in particular on the shape of the concerned bodies. 

Still more severe difficulties arise from collisions being fre­
quently multiple, i.e .. several contact loci are involved at the same 
time. Such is the case if a colliding body is part of a cluster of 
objects already in contact. The propagation of disturbances into a 
cluster is a problem similar to that of sound in granular media 

One thus has to accept that any given mode! of collision can 
only have a limited scope. Every occasion of compa·ring its results 
with calibrated experiments should be seized, in order to estimate 
this scope as precisely as possible. 

The algorithm described in Sec.4 is found to work consistently 
in the face of collisions, i.e. when the test position qM reveals some 
contacts which were not in effect at the preceding step. There only 
happens that the impulsive term in Eq.(8) is no more the same order 
of magnitude as h. The elements u1 and uF of Rn in this case are 
naturally interpreted as representing u- and u+, the values of the 
system velocity before and after the collision. Now, the decision of 
constructing a time-discretization algorithm of the implicit type bas 
led us to connect by Eq.(10) each contact impulsion S a with the fi-
1,al value uF. Contact laws are assumed complete in the sense preci­
sed in Sec.3. Clearly then S a can be nonzero only if na. 'llap=O. 
Since 'llaF represents the after-collision value of the relative velocity 
at contact a, this means that all the contacts which take an active 
part in the collision process satisfy the traditional condition of zero
restitu1io11. Using standard vocabulary, one may say that the algo­
rithm, as we just described it, treat ail contacts as i11elastic.

There remains to explain how situations of nonzero restitution 
can be handled in this framework. As a pragmatic way of 
overcoming the difficulties mentioned in the foregoing, one may 
decide to admit that a contact law of the form (7) holds between the 
contact impulsion sa and some formai velocity 'llaa constructed as
a weighted average of the (known) vector 'llar and the ( unknown) 
vector 'llaF· The averaging may be effected separately for normal 
and tangential components, using different weights, say 

'UN = _ig__ 'l1 N + _l_ 'l1 N ERaa l+p al l+p aF 
a a 

'l1 T = -3L 'l1 T + _l _ 'l1 T ETaa l+i; al l+i; aF 
a a 

The numbers p and i; , with values in the interval (0, l], may be 
interpreted as tf�e nornZ'al and the tangential restitution coefficie11ts.
It turns out that, in the special case of the collision of two spherical 
objects, the velocity jumps deduced from this averaging trick 
coïncides with what has been proposed by several authors on the 
basis of a microscopie analysis and found in fairly good agreement 
with experimental data (Foerster et al., 1994). The case p a=ca= 1,  
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with friction made equal to zero corresponds to energy preserving
collisio11s (Moreau, 1988). 

In the case of a two-body collision, p coïncides with the 
traditional restitution coefficient of Newto:r. But it should be 
stressed that the above formalism still yields plausible results in 
multiple collisions for which the Newton rule fails. For instance, 
what precedes applies to the problem, familiar in earthquake 
engineering literature, of the rocki11g of a slender rectangular block 
supported by a fixed horizontal plane. For simplicity, assume the 
lower edge slightly concave, so that contact can only occur through 
corners. Let the left corner remain in contact during an episode 
where the block rotates to the right, until the right corner collides. If 
at this time Newton's rule was applied to both contact points, this 
would yield zero normal velocity for the left corner, so no rocking 
could be found. On the contrary, our assumption of complete 
contact laws leaves the possibility for this normal velocity to be 
nonzero while the normal contact impulsion vanishes. The result of 
the calculation depends on the aspect ratio. of the block, in 
conformance with common observation. 

For large collections of bodies such as samples of granular 
materials, one may have to handle many collisions in a single 
interval of the time-discretization even though they theorically are 
not simultaneous. This is the key of the efficiency of the method in 
the simulation of granular materials. Comparison with physical 
experiments on convection currents and size-segregation in shaken 
granulates have produced quite satisfactory results (Moreau, 1995). 
By disclosing the values of experimentally inaccessible variables, 
the numerical simulation has perrnitted to understand the undelying 
mechanisms. 

6. EXAMPLES OF APPLICATION

Ancient column submitted to ground shake 
Figure 1 is part of a feasibility test of the Contact Dynarnics 

method in the simulation of the behaviour of a11cie11t momu11e111s
under earthquakes. The column is made of 10 cylindrical blocks 
superimposed without mortar an of a cylindrical capitel. Instead of a 
proper earthquake, the ground is only affected by an oblique elliptic 
oscillation. (Development supported by the Commission of the 
European Communities, Environment programme, Contract N° 

EV5V CT93 0300) 

Force transmission in a sand pile 
Sorne experimentalists have found that the pressure exerted 

upon the ground by a sand pile may present a local minimum near 
the center of the pile (Smid and Novosad, 1981). The explanation 
of this effect is currently a malter of discussion among 
theoreticians. Figure 2 was produced by a numerical simulation 
intended, as part of these investigations, to explore the transmission 
of forces inside a pile. For clarity, the mode! is two-dimensional 
(corresponding to experiments on a pile of 'Schneebeli material', 
i.e. a collection of cylindrical objects). The pile construction has
been computed as the successive addition of 3000 circular grains of
dispersed sizes, falling down at a velocity of 25 cm/s, with slight
lateral random dispersion. After that, the pile has been left to relax
under gravity (actually, the observation described below is
practically the same if made during the pile construction).

Two vertical rectilinear cuts are shown. For each of them, one 
draws the resultant of the contact forces exerted by the grains with 
centers on one side upon those with centers on the other side. This 



demonstrates that the section comprised between the two cuts has 
part of its weight counter-balanced by the action of the rest of the 
pile. However, with the present data, the effect is not large enough 
to produce a visible local minimum of ground pressure. 

Two-dimensional stress-strain experiment 
A two-dimensional mode! of granulate (or Schneebeli material), 

composed of 1024 randomly located disks as shown in Fig.3, is 
being deformed between four walls. Horizontal walls are vertically 
loaded with opposite constant forces (average pressure o2=100 
K.Pa). Vertical walls are moved inward with constant horizontal 
velocity v=5 cm/s. The granulate reacts on them by a pressure ol . 
Gravity is neglected in the computation. 

The evolution investigated here makes the deformation E of the 
sample, with regard to its initial configuration, go from 2.625% to 
5.250% . 

On Fig.3 are shown the displacement fields of the disk centers 
during two subintervals. The field on the left corresponds to some 
initial episode, E going from 2.625% to 3.280%, ahd the field on 
the right to a final episode, E going from 4.595% to 5:250%. In the 
initial episode, a band of quasi-stagnation in the 45° directio,n is 
visible, while in the final episode a similar feature appears with -45° 

direction. So a significant change in the de formation pattern occurs 
in the course of the investigated experiment. Such crises affecting 
the slow deformation of compact granular materials have been 
reported by experimentalists (Meftah et al., 1993) and make 
laboratory tests harder to interpret. 

The subsequent figures show how the crisis, which takes place 
near the middle of the evolution, reflects in various parameters. 
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Time : Os 1,5s 

Grain diameters: uniformly distributed between 0.1 and 0.2 cm 

2.6 s 

7 

Column : 10 drums with diameter 2 m, height 1 m Capitel: diameter 2.6 m, height 0.8 m 
Friction between blocs : 0.4 Friction with ground : 0.7 Restitutions : 0 
Ground shake : elliptic motion, period 1 s Amplitude in x : 0.5 m (phase 60°) in y : 0.15 m (phase 90°) in z : 0.1 m (phase 0°) 

View from above. Time: 5 s 
Figure l: Column on shaken ground 

Friction: 0.4 Normal restitution: 0.2 Tangential restitution: 0. 1 

Pile relaxed under gravity, after the fall of3000 grains al 25 cm/s 
Figure 2: Internai forces in sand pile 

+ F=6600N
192 disks, radius 1.60 mm 
320 disks, radius 1.05 mm 
512 disks, radius 0.65 mm 

v=5cm/s v=5 cm/s 
Coulomb friction between disks: 0.5 between disks and walls: 0 Restitutions: 0 

F=6600 N 

Displacement of grains: 

from E=2.625% to 3.280 % 
Figure 3: Stress-strain experiment 
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Figure 4: 01/02 versus defonnation 
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Figure 6: Frictional dissipation versus defonnation 
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Figure 5: Void ratio versus defonnation 
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sliding contacts 
Figure 7: Ratio versus defonnation 
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