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NUMERICAL TREATMENT OF CONTACT AND FRICTION: THE CONTACT DYNAMICS METHOD

Difficulties occur in the numerical treatment of mechanical systems when the unilateral constraints of mutual impenetrability of members are taken into account. At every time-step, algorithms have to be ready to handle the possible break.ing of some contacts or, on the contrary, their sudden introduction by collisions. Furthermore, the modeling of dry friction, generally present in the case of contact, rests on mathematically irregular relationships. It is shown in this paper how the numerical approach named 'Contact Dynamics' allows one to calculate evolutions in dynamic or quasi static regimes and also to analyze the possible equilibria. This method faces the essential nonsmoothness of the concerned problems without ressorting to the regularizing approximations applied by other commonly used techniques. It rests on time-discre tization schemes of the implicit type, allowing for coarser time steps, at the price of applying nonsmooth iteration procedures.

INTRODUCTION

Various engineering situations cal! for the mechanical analysis of collections of bodies which, instead of the articulations considered in the traditional mechanics of systems, are only submitted to the unilateral constraints of not interpenetrating each other. At a priori unknown instants, such bodies may enter into contact or separate out, but they can never overlap.

For example, gra11ulatematerials, studied from the static or the dynamic standpoints, are systems of this sort. Problems raised by the behaviour of a work of maso11ry submitted to a11 earthquake let themselvcs be formulated in a similar way, as well as various othcrs in Gcomechanics [START_REF] Jean | Frictional contact in collections of rigid or de formable bodies: numerical simulation of geomaterials[END_REF]. In these instances, the concerned bodies are primarily treated as perfectly rigid, but the numerical in vestigation of the formi11g of mate rials (drawing, rolling, etc.) show the same type of constrainl imposed to portions of deformable me dia (see e.g. [START_REF] Jean | Numerical methods for three dimensional dy namical problems[END_REF], Raous et al., 1995). Also in Robotics, some authors are currently taking inlo accounl, for simulation or control, the unilatcral constraints of impenetrability [START_REF] Brogliato | On the transition phase in robotics. Part I: Impact models and dynamics. Part 11: Control[END_REF] (Pierrol el al., 1994).

In terms of the configuration parameters of the system (in numerical computation, there is always a finite number of them, even if the considered bodies are deformable), impenetrability constraints are expressed by inequality conditions. Furthermore, when contact occurs, solving statical or dynamical problems re quires some phenomenological information about the co11tact forces that the bodies exert on each other.

Even in the ideal case of frictionless contact, due to the w1i lateralcharacter of the impenetrability constraints, the appraisal of contact forces in Dynamics when several contacts are simul taneously effective has long been known to need careful discussion.

Additional difficulties corne fromjriction at the contact locus, which is rarely negligible. Tribology describes it as a complex phenomenon so that the data needed for a quite accurate prediction of its effects are, in most engineering situations, unavailable.

In practice the Coulomb law of dry frictio11 is very commonly invoked, for it retains the most salient features of frictional contact. But even this fairly simple law raises analytical and numerical difficulties, since the relationship it formulates between the contact forces and the relative velocities of the bodies at the respective contact points is mathematically irregular. In the event of zero relative velocity, the la"• only requires of the contact force to belong to a certain cone (the cone of static friction). For nonzero relative velocity, the law connects the tangential component of the contact force with its normal component and with the direction of the velocity vector. This direction may vary sharply when the Yelocity approaches zero, while the normal component itself is not usually given, but depends on the whole dynamical analysis. AL equilibrium, familiar examples show that situations involving dry friction are frequently hyperslatic. For evolution problems, one should no more expect the uniqueness of solution. Furthermore, in dynamical evolutions subject to impenetrability constraints, collisio11s implying velocity jumps are likely to occur.

This constilules another sort of analytical irregularity white, from the phenomenological standpoint, collisions may be affected by many aspects of the material behaviour which make Lheir outcome dif f icult to predict with greal precision. ln Operation Research, when problems of Oplimization or Control in the presence of inequality conditions are treated, mathc-matical difficulties of the same nature are met, though somewhat milder. The analytical and numerical tools developed to solve the latter problems constitute the mathematical domain called No11smooth Analysis. By analogy, questions of the sort considered here, as well as various others arising from plasticity, shape optimi zation, etc. have been said to belong to No11smooth Mechanics (Moreau and Panagiotopoulos, 1988;Moreau, Panagiotopoulos and Strang, 1988).

A natural approximation procedure, for the numerical treatment of such problems consists in replacing the impenetrability constraints by some short range repulsion laws which enter into ac tion when two bodies corne close to each other. This is a me chanical analog to the penalization technique, classical in Constrained Optimization. The dynamics of the approximant mechanical system is governed by proper differential equations to which standard numerical schemes, usually of the explicit type, are applied. Similarly, the nonsmooth character of dry friction may be numerically overcome by replacing Coulomb Iaw by some regularized approximant.

After the pioneering work of P. [START_REF] Cundall | A computer mode) for simulating progressive large scale movements of blocky rock systems[END_REF],_many authors have developed numerical methods of this sort and used them to produce significant results. Depending on the respective authors environment and on technical specificities, such methods are named 'Distinct Element method', 'Discrete Element method' or 'Molecular Dynamics methods'. Sorne commercial programs rest on this numerical strategy. The main drawback is that the sake of precision in approximating impenetrability constraints requires of the repulsion laws to be stiff, so that the numerical integration of the corresponding differential equations needs fine time-steps. Furthermore, it may be difficult to distinguish the possible artefacts generated by such artificial elasticity from the effects of physical deformability. As a recent paper where these technical aspects are discussed, one may consult Drake and Walton (1995).

In contrast, the Colllacl Dynamics method, presented in this communication, faces nonsmoothness without resorting to any re gularizing approximation. The key feature is that the impenetrability inequalities are treated at the level of velocities. Clearly, if in some state of the system a certain contact is in effect, the corresponding impenetrability inequality requires of the consequent velocities (i. e. the time-derivatives of the configuration parameters on the right of the concerned instant) to verify a certain linear inequality. Thus, for each possible configuration of the system, the set V of the 'right admissible' velocity vectors is a convex polyhedral cone in R 0 . lt turns out that the information to be entered, conceming contact forces is also connected with the same cone. For instance, in the academic case of frictionless contact, the condition imposed to the element of R 0 which represents the contact forces is that of belon ging to the 'polar cone' of V. If friction is taken into account, contact forces have to be related to velocity by more complicated relationships but fitting very well into such a Convex Analysis fra mework. In Sec.3 below we introduce the concept of a complete contact lmv, a formalism which secures the mechanical and numeri cal consistency of the model while leaving widely open the possi bility of introducing phenomenological data.

The problem to be solved at each step of the time-discretization is to determine velocities and contact forces jointly, in order for the contact laws and the balance of mornenturn to be satistïed. The nurnerical schemes so constructed naturally turn out to be of the implicit type. This implicit character makes the algorithms ready, at each time-step, to face collisions, should one of them be detected as occurring during the time-interval of the step, a point developed in Sec.5 below.
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The paper ends with a few examples of applications developed by the authors.

ANALYTICAL $ETTING

Let the configurations• of the investigated system be parametrized, at least Iocally, through generalized coordinates, say q = (q 1 , q 2 , ... , qn). If the system consists only of perfectly rigid bodies, this reduction to finite freedom usually results from some (bilateral) ideal constraints, such as the possible action of internai or external frictionless linkages. Also when deformable continuous bodies are involved, the numerical treatment rests on finite freedom approximations (modal representation or use of finite elements) so that the formalism presented in what follows applies as well.

After constructing the parametrization, one takes into account the constraints of impenetrability; their geometric effect is assumed expressed by a fini te set of inequalities fa(q) :S O, aE{l, 2, ... , k}

where f1, f2, ... ,fk are given fonctions. Equality fa=Ü corresponds to the occurrence of a contact between two members of the system or between one of these members and some externat obstacle. For brevity, the latter will be assumed fixed in the reference frame in use. The case of obstacles with prescribed motion would cal! for the time t being also a variable in fa and bring only notational compli cations to the sequel (see [START_REF] Moreau | Sorne numerical methods in multibody dynamics : application to granular materials[END_REF].

For every imagined motion t--+q(t) and for t such that the deriva tive q(t)ER" exists, the kinetic energy has a quadratic expression in q, say '.Eic( q, q) = t Aïj( q) qi qi

(2)

where A denotes a symmetric positive definite nxn-matrix.

As far as smooth, i.e. twice differentiable, motions are concer ned, the system Dynamics is governed by Lagrange's equations, written below as an equality in R" A( q) q = F(t, q. q) + L rU a (3)

The expression F comprises the q-dependent terms of Lagrange's equations and the covariant components, relative to the parametrization (q), of some applied forces supposed given as fonctions of time, position and velocity. The element rU of R 0 is made of the covariant components of the a priori unknown contact forces experienced by the system in case the contact fa = O holds. Their definition rests on the standard construction of the covariant components of forces located in physical space, connected as fol lows with the system kinematics.

Suppose that inequality fa:SÜ expresses the mutual impenetrabi lity of some pair of members of the system, say '.B and '.B', so that equality fa=O corresponds to these two bodies touching each other at some point of space denoted by Ma. One assumes it an isolated contact point, but other contacts, corresponding to different values of a, may also be in effect between the same bodies at the same instant. For every imagined motion t--+q(t) bringing the system through the considered contact position for some value of t, the ve locities 'V a and 'Il; of the respective partiel es of '.Band '.B' passing at point Ma let themselves be expressed as affine fonctions of the va-lue u of the derivative q. The same is thus true for the relative ve locity 'll a. ='ll a. -'11 � of '13 with respect to '13' at this point, say ( 4 ) where G a. : R n _...., R3 denotes a linear mapping, depending on t and q. No attention is paid al this stage to the imagined motion preserving contact or not.

Let !J?... O. denote the contact force that body '13 experiences at point Ma from body '13'; then '13' experiences from '13 the force -!f?...<X. Classically, the covariant components of this pair of forces are expressed by (5) with G�: R3--+R 0 denoting the transpose of G a. (the convention of implicit summation will never be applied to Greek indices).

Similar formulas hold if inequality f a. :S O represents the confinement of a part '13 of the system by some externat boundary. Then ra is made of the covariant components of !J?... a. alone. In both cases, the following relationship is found [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF] to hold between the gradient af taq in R" and the normal unit vecteur n o. at point M a. to the two co�tacting bodies, directed toward '13 3"1x<!:Ü such that (6)

In ail the sequel, we shall assume that the rnapping G a. is 01110 from R 0 to R3; equivalently, its transpose G� is 011e-to-011e from R3 i11to R n . Only some special positions of certain linkages may give rise to 'wedging' effects which break this assumption.

CONTACT LAWS

To E.qs. (1), ( 3), (4), ( 5) one necessarily has to adjoin some phenomenological information regarding the contact forces. For instance, the ideal situation of frictio11/ess co/llact is described by asserting that the contact force !J?...O. (vanishing if contact a is not effective, i.e. if f a. (q)<O ) is a vector belonging to the half-line generated in R3 by na..

As an elementary description of dry friction, the law of Coulomb will be invoked in the sequel. Generally, let us cal! a contact law a relationship of the form law a. (t, q, 'll a. , !J?...O.) = true (7) imposed to the elements defined in the preceding Section.

An adequately designed formulation of contact laws greatly helps to face the difficulties raised by the unilateral character of the impenetrability constraints. The event of collisions, i.e. the sudden occurence of new contacts, which is expected to generate velocity jumps, is left for Sec.5. At the present stage, where only smooth motions are considered, one still has to face the possibility of the breaki11g of some contacts. The traditional approach consists in tentatively calculating the motion under the assumption that ail contacts present at a considered instant remain effective in the sequel. If the evaluation of contact forces in the course of such a motion yields, at a further instant, an unfeasible direction for some of them, one concludes that some contacts should break at this instant, so the continued motion has to be calculated differently. But easy examples show that the contacts which break are not nccessarily those for which unfeasible contact forces were just 3 found. In the ideal case of frictionless contacts, [START_REF] Delassus | Mémoire sur la théorie des liaisons finies unilatérales[END_REF] has elucidated the determination of instant accelerations under such circumstances and the same question was more recently investigated in terms of Convex Analysis [START_REF] Moreau | Quadratic programming in mechanics: dynamics of one-sided constraints[END_REF].

Strictly speaking, the matrix G a. and the ,•ector na. defined in the preceding Section make sense only in the case of contact, i.e. for a configuration q satisfying f a. (q)=O. In computation, as well as in existential studies, the definition of these elements has to be extended, in a smooth arbitrary way, to configurations q laying in a neighbourhood of the hypersurface f a. =0 of R". In particular, one should be ready to face a certain amount of violation of the impenetrability inequalities (one manages to keep it smalt).

Put

Xa(q) = { {'l1ER3: n o. .'ll<!:0} if �(q)<!:O R3 if �(q)<O
which may be called the set of the right-admissible values for the relative velocity of the two concemed bodies at the contact point.

Let LLS agree to say that a contact /aw such as ( 7) is complete if it implies 'll a. E.Xrt.i11 al/ circumsta11ces and !l<a=O if 'UaEinterior 'Jiw.. Through E.q. (4), the fact that a contact Law is complete is translated into a property of the element u of R 0 .0ne source of interest of the concept lies in the following k.inematical result [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF].

If. at some initial i11sta11t, ail impe11etrability i11equalities fag)

are ful/filled and if ail co11tacts possibly occurrùzg i11 the sequel are govemed by complete contact laws, thefu11ctio11 t--+q(t) co11structed by i11tegratio11 of the velocity jwictio11 t--+u(t), jullfil/s the impenetrability i11eq1uzlities i11 ail the subsequellf motio11.

The Contact Dynarnics method rests on time-discretization. The essential stage is to compute a discrete approximant of the velocity fonction t--+u(t), to which the position fonction t--+q(t) is simply connected, step by step, through integration. Starting from the value obtained for u at the beginning of an interval of the discretization, one has to assess the value at the endpoint. Discretizing the dynamical equation (3) amounts to express the momentum balance of the system over the interval, without explicitely referring to accelerations. If the contact forces which appear in this balance of momentum verify complete contact laws, the abo,•e kinematical result makes that the impenetrability inequalities ( 1) are autornatically taken care of.

Furthermore, the use of complete contact laws secures the correct handling of the possibility of some contact to get loose. Such is in fact the case for contact a if computation yields 'UaEinterior 'liw_ (i.e. na. 'U>O) hence !T<a=O. Clearly also the complete contact Law assumption implies that !l<a=Ü when fa(q)<O, since 'liw_(q) equals the whole of R3 in that case.

BASIC CONTACT DYNAMICS ALGORITHM

Let [t 1 , tF], tF = t 1 +h, denote an interval of the time discretization. Starting ,,•ith q 1 , u 1 , the approximate values of q and u at time tr, the objective is to calculate qF, uF, the approximate Yalues at the end point lF of this interYal.

Identification of contacts

By using qM = q 1 + h u 1 /2 as test position, the set of the contacts to be treated as active in the considered step is estimated to be

Discretization of the equation of Dynamics

Equation (3) may be dÎscretized in the form where S 13ER3 denotes the impulsion at contact 13, i.e. the integral of 9(11 over the time interval. In short (8)

Contact laws

In contact laws such as (7), which are assumed satisfied all over the time interval, the time-dependent quantities 'U a , !}( a have to be replaced by some values estimated to be typical of the interval. We choose here to have (7) hold between the impulsion s a and the . final �oe .( 9) Such a choice makes the present time-discretization scheme belong to the implicit sort, at least in what concems the velocity function u.

As a justification of entering impulsions instead of forces in (7) one may observe that Coulomb law states a positive/y homogeneous relationship between its two vector arguments.

Final position qp=q M + lh up 2

Iterative procedure By combining Eqs. ( 7) and ( 9), one obtains 'v'aEJ: law a (q M ,G a uF,s a )=true (10)

Solving the system of conditions ( 8) to (10) constitutes the heaviest part of the computation. Here is a relaxation technique, amounting to treat a succession of single-contact problems.

Let an e � timated solution u e Fu, S e � t i , j3 running throu _ gh J, . be obtamed, w1th (8) satisfied (the startmg guess may cons1st m taking zero values for the sll or in using values found at the preceding step). One attempts to construct a corrected estimate, say uc;r.s!r, by al � ering onl � s a , i.e. s J!r = s titi for 13 '°. a. The new esttmate 1s astramed to sattsfy (8), i.e. smce ffie old esttmate sat1sfies the same, éO!T =U esti + A -'o* (S a -s a .)

F F a corr esll (11)
and to satisfy (10), hence, after applying Ga to both members of (11 ),

VaEJ: law (G u esti + H (S a -s a .) S a )=true ( 12) a a F a corr esll ' corr where can be proved to be a symmetric positive definite 3x3 matrix. Solving ( 12) with regard to the unknown S c &r may, in some usual cases, be reduced to finding the zeros of a piecewise affine mapping. The above computation will then be iterated, with a 4 ranging cyclically through J. The decision of stopping iterations may be taken on observing the magnitude of Sc&r-s e iti and this tums out to be equivalent to checking the precision at which each pair 'll a .S a satisfies the corresponding contact Iaw. Observe that, provided this precision check is made, the operator H a in ( 12) may be replaced by any other mapping with zero limit at the origin: this may be used in tricks for accelerating convergence.

Clearly, this algorithm tolerates a certain amount of violation of the impenetrability inequalities. By adjusting the step-length and the stopping criterium, one may keep these errors arbitrarily small and prevent their accumulation.

The iterated calculation is very simple, but needs to be repeated many times in case of numerous contacts. Since the balance of momentum ( 8) is only preserved from one iteration to the next through the conservation condition ( 11), one should think of the possible ac�umulation of arithmetic errors. For safety, one may refresh u e F t I from time to _ time, by returni � g to ( 8) while keeping the approximate values obtamed for sll. This proves useful only for motions involving thousands of contacts.

Technically, let us also observe that in many usual applications, the nxn matrix A is constant and diagonal. o a is a 3 xn matrix, but only the elements corresponding to the two bodies involved in contact a are nonzero. So the treatment of large collections of bodies does not require the handling of large matrices.

. The convergence of this algorithm and the existence of a solution to the problem it addresses has only been proved in special cases [START_REF] Monteiro Marques | Dijferential Inclusions in Nonsmooth Mechanical Problems: Shocks and Dry Friction[END_REF]. Uniqueness cannot be expected to hold in general, since the mechanical problem of determining the reactions in a closely packed collection of rigid bodies (for instance a wall made of rectangular blocks) is usually hyperstatic.

The algorithm still works in analysing equi � ibrizun � ituations.

The balance of applied forces and contact forces stmply y1elds up = u 1 = 0 in such a case.

COLLISIONS

The sudden occurrence of new contacts produces velocity changes in some parts. The Jess deformable the colliding bodies are, the more brutal the phenomenon should be, involving large values of the contact forces at the impact locus. If the deformability of the bodies is full y taken into account, the problem is however not fundamentally different from others in the Dynarnics of Continua.

But if it has been decided to treat bodies as perfectly rigid, one has to face strict discontinuities in velocities, so that the smooth dynamic framework of Sec.2 cannot apply. In the majority of the papers devoted to the topic of 'Rigid Body Collisions' [START_REF] Brach | Mec/zanicallmpactDynamics(Rigid Body Collisions)[END_REF], it is attempted to formulate some collisio11 equations, connecting the values of velocities after the collision to the values they had before it. Traditionally, the intense effects which take place during a collision are assumed Iocalized in the vicinity of the impact locus. Then, a multiple scaling analysis of what happens m an 'infinitely small' domain, during the 'infinitely short' collisional episode allows one to take into account in more or Jess detail the material behaviour of the involved bodies.

Situations in which such a treatment is justified certainly exist, but in general the effect of a collision should not be local. For instance, material dissipation in the vicinity of the impact is not the only cause of the energy loss detected at the macroscopic level of obser v ation. Even if the concemed bodies are assumed perfectly elastic, energy conser v ation cannot be expected. Disturbances are t . o propagate from the collision locus to the whole system and also. ,r the latter is linked \\'ith some extemal support, to the outside world.

After contact recedes, vibrations are likely to persist somewhere. At the macroscopic observation level, this does not contradict the rigidity assertion, but the energy involved in microscopie agitation may not be negligible.

Also as a consequence of global deformation, a collision may, at the microscopie time-scale, split into several separate contact episodes: an example of such a double bouiice is calculated in closed form in (Timoshenko, 1948, Chap. 12). Finite element computation of the collision of two elastic bodies performed in our laboratory has shown the same. So the conception of a collision as consisting of a compression phase followed by a so-called restitution phase cannot be considered as general.

Ail this makes the outcome of a collision depend on many factors, in particular on the shape of the concerned bodies.

Still more severe difficulties arise from collisions being fre quently multiple, i.e .. several contact loci are involved at the same time. Such is the case if a colliding body is part of a cluster of objects already in contact. The propagation of disturbances into a cluster is a problem similar to that of sound in granular media One thus has to accept that any given mode! of collision can only have a limited scope. Every occasion of compa• ring its results with calibrated experiments should be seized, in order to estimate this scope as precisely as possible.

The algorithm described in Sec.4 is found to work consistently in the face of collisions, i.e. when the test position qM reveals some contacts which were not in effect at the preceding step. There only happens that the impulsive term in Eq.( 8) is no more the same order of magnitude as h. The elements u 1 and uF of Rn in this case are naturally interpreted as representing u-and u + , the values of the system velocity before and after the collision. Now, the decision of constructing a time-discretization algorithm of the implicit type bas led us to connect by Eq.( 10) each contact impulsion S a with the fi-1,al value uF. Contact laws are assumed complete in the sense preci sed in Sec.3. Clearly then S a can be nonzero only if na. 'll a p=O. Since 'll a F represents the after-collision value of the relative velocity at contact a, this means that all the contacts which take an active part in the collision process satisfy the traditional condition of zero restitu1io11. Using standard vocabulary, one may say that the algo rithm, as we just described it, treat ail contacts as i11elastic.

There remains to explain how situations of nonzero restitution can be handled in this framework. As a pragmatic way of overcoming the difficulties mentioned in the foregoing, one may decide to admit that a contact law of the form (7) holds between the contact impulsion s a and some formai velocity 'llaa constructed as a weighted average of the (known) vector 'llar and the ( unknown) vector 'll a F• The averaging may be effected separately for normal and tangential components, using different weights, say The numbers p and i; , with values in the interval (0, l], may be interpreted as tf�e nornZ'al and the tangential restitution coefficie11ts.

It turns out that, in the special case of the collision of two spherical objects, the velocity jumps deduced from this averaging trick coïncides with what has been proposed by several authors on the basis of a microscopie analysis and found in fairly good agreement with experimental data [START_REF] Foerster | Measurements of the collision properties of small spheres[END_REF]. The case p a =c a = 1, 5 with friction made equal to zero corresponds to energy preserving collisio11s [START_REF] Moreau | Unilateral contact and dry friction in finite freedom dynamics[END_REF].

In the case of a two-body collision, p coïncides with the traditional restitution coefficient of Newto:r. But it should be stressed that the above formalism still yields plausible results in multiple collisions for which the Newton rule fails. For instance, what precedes applies to the problem, familiar in earthquake engineering literature, of the rocki11g of a slender rectangular block supported by a fixed horizontal plane. For simplicity, assume the lower edge slightly concave, so that contact can only occur through corners. Let the left corner remain in contact during an episode where the block rotates to the right, until the right corner collides. If at this time Newton's rule was applied to both contact points, this would yield zero normal velocity for the left corner, so no rocking could be found. On the contrary, our assumption of complete contact laws leaves the possibility for this normal velocity to be nonzero while the normal contact impulsion vanishes. The result of the calculation depends on the aspect ratio. of the block, in conformance with common observation.

For large collections of bodies such as samples of granular materials, one may have to handle many collisions in a single interval of the time-discretization even though they theorically are not simultaneous. This is the key of the efficiency of the method in the simulation of granular materials. Comparison with physical experiments on convection currents and size-segregation in shaken granulates have produced quite satisfactory results [START_REF] Moreau | Numerical experiments in granular dynamics: vibration-induced size segregation[END_REF]. By disclosing the values of experimentally inaccessible variables, the numerical simulation has perrnitted to understand the undelying mechanisms. 

EXAMPLES OF APPLICATION

Ancient column submitted to ground shake

Force transmission in a sand pile

Sorne experimentalists have found that the pressure exerted upon the ground by a sand pile may present a local minimum near the center of the pile [START_REF] Smid | Pressure distribution under heaped bulk solids[END_REF]. The explanation of this effect is currently a malter of discussion among theoreticians. Figure 2 was produced by a numerical simulation intended, as part of these investigations, to explore the transmission of forces inside a pile. For clarity, the mode! is two-dimensional (corresponding to experiments on a pile of 'Schneebeli material', i.e. a collection of cylindrical objects). The pile construction has been computed as the successive addition of 3000 circular grains of dispersed sizes, falling down at a velocity of 25 cm/s, with slight lateral random dispersion. After that, the pile has been left to relax under gravity (actually, the observation described below is practically the same if made during the pile construction).

Two vertical rectilinear cuts are shown. For each of them, one draws the resultant of the contact forces exerted by the grains with centers on one side upon those with centers on the other side. This demonstrates that the section comprised between the two cuts has part of its weight counter-balanced by the action of the rest of the pile. However, with the present data, the effect is not large enough to produce a visible local minimum of ground pressure.

Two-dimensional stress-strain experiment

A two-dimensional mode! of granulate (or Schneebeli material), composed of 1024 randomly located disks as shown in Fig. 3, is being deformed between four walls. Horizontal walls are vertically loaded with opposite constant forces (average pressure o2=100 K.Pa). Vertical walls are moved inward with constant horizontal velocity v=5 cm/s. The granulate reacts on them by a pressure ol . Gravity is neglected in the computation.

The evolution investigated here makes the deformation E of the sample, with regard to its initial configuration, go from 2.625% to 5.250% .

On Fig. 3 are shown the displacement fields of the disk centers during two subintervals. The field on the left corresponds to some initial episode, E going from 2.625% to 3.280%, ahd the field on the right to a final episode, E going from 4.595% to 5:250%. In the initial episode, a band of quasi-stagnation in the 45 ° directio, n is visible, while in the final episode a similar feature appears with -45 ° direction. So a significant change in the de formation pattern occurs in the course of the investigated experiment. Such crises affecting the slow deformation of compact granular materials have been reported by experimentalists [START_REF] Meftah | Evidence of local 'seisms' of microscopie and 6 macroscopic stress fluctuations during the deformation of packings of grains[END_REF] and make laboratory tests harder to interpret.

The subsequent figures show how the crisis, which takes place near the middle of the evolution, reflects in various parameters. 

Figure 1

 1 Figure 1 is part of a feasibility test of the Contact Dynarnics method in the simulation of the behaviour of a11cie11t momu11e111s under earthquakes. The column is made of 10 cylindrical blocks superimposed without mortar an of a cylindrical capitel. Instead of a proper earthquake, the ground is only affected by an oblique elliptic oscillation. (Development supported by the Commission of the European Communities, Environment programme, Contract N ° EV5V CT93 0300)

  Figure 4: 01/02 versus defonnation