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NUMERICAL INVESTIGATION OF SHEAR
ZONES IN GRANULAR MATERIALS

J.J. MOREAU
Laboratoire de Mécanique et Génie Civil,
case 048, Université Montpellier 11,
34095 Montpellier Cedex 5, France

Abstract

The Contact Dynamics method is a numerical technique for computing
the dynamical motion of collections of bodies submitted to the unilateral
constraints of mutual non-interpenetrability, taking into account dry fric-
tion in the case of contact and also the velocity jumps which may arise
from collisions. The essential nonsmoothness of the problem is faced with-
out resorting to any regularizing approximation such as artificial repulsion
or artificial viscosity. The method is illustrated here by the simulation of
a rectilinear shear zone occurring in a slowly strained granulate. The con-
cept of Internal Moment is introduced in order to analyse the transmission
of forces.

1 Introduction

1.1 Computation in Multibody Dynamics

After the pioneering work of P.A. Cundall [1], a number of authors have de-
veloped codes for computing the motion or the equilibrium of collections of
bodies through the approximate replacement of the non-interpenetrability con-
straints by repulsion laws which enter into action when a pair of bodies come
sufficiently close to each other. This is the mechanical analogue of the penalty
methods commonly used in Constrained Optimization. Some of these codes are
directy inspired by the numerical techniques of Molecular Dynamics.

Significant simulations of geological structures, of masonery works or of gran-
ular materials have been obtained in this way. The main drawback is that the
need of precision calls for very stiff repulsion laws, so that the time-discretization
algorithms (usually of the explicit type), applied in integrating the equations
of Dynamics, have to resort to fine time-steps and possibly also to artificial
damping in order to secure numerical stability. In some instances the effects
of artificial elastic repulsion and of artificial damping may become difficult to
distinguish from those of the mechanically intentional elasticity or damping.

A different class of numerical methods are qualified as event-driven. They
consist in applying to the unilateral constraints of non-interpenetrability (usu-
ally subject to friction) the theoretical procedures of Rational Mechanics. The



second order differential equations of Dynamics are exploited with account of
the contact constraints, if some of them are effective during the concerned time
interval, and of the associated contact forces. Standard numerical techniques
are applied to these equations, allowing one to determine instants at which the
status of constraints changes. Such a change may arise from a collision sud-
denly introducing new constraints, in which case some empirical collision laws
are invoked in order to determine the new velocities from which the subsequent
motion have to be computed. The status of constraints may also change from
the cessation of contacts, at instants which have to be detected by calculating
the contact forces in every contact point. If at some instant a contact force
is found with a direction incompatible with unilaterality, one concludes that
the further motion has to be calculated by assuming a different set of effective
contacts. But it has long been known [2] that the contacts which cease at the
detected instant are not necessarily those for which an unfeasible reaction force
was calculated. The heart of the matter is a Complementarity Problem of the
sort commonly met in Convex Optimization [3].

For the application of the above approach to the Dynamics of Machines,
which involves a relatively small number of bodies, the reader may refer to
[4]. In what concerns Granular Materials, event-driven methods are primarily
applied to the dynamics of dilute states, so that the interaction of grains solely
rests on collisions. A trick to approximate durable contact by motions of this
sort comsists in introducing some auxiliary agitation. Anyway, event-driven
computation becomes unfeasible when the average time between collision is too
small.

1.2 The Contact Dynamics Method

This method, abbreviatively labelled as ‘the CD method’ originated in [5], a
text in which the unilateral mechanical constraint of (possibly frictional) non-
interpenetrability receives a formulation, resting on a theoretical background
of elementary Convex Analysis, which proves suitable for numerical computa-
tion. This formulation also applies to deformable bodies, spatially discretized
by Finite Elements [6], with applications in such domains as Geodynamics or
the industrial processes of metal forming.

Only mechanical systems with finite number of degrees of freedom will be
considered in this lecture. An exposition of the method in this case may be
found in [21]. The possibility of collisions makes one expect velocities to be
discontinuous functions of time. Actually, in the Dynamics of systems affected
with dry friction, velocity jumps may even occur in the absence of any collision
as the result of some sort of dynamic locking [7].

The mathematical formulation of the corresponding evolution problems rests
on the assumption (for which some mechanical justification exists [8]) that ve-
locities are vector functions of time with locally bounded variation [9]. Then the
role of the accelerations is played by wvector measures on the considered time
interval. In the traditional smooth case, these measures happen to possess den-
sity functions relatively to the Lebesgue measure dt, which are nothing else than
the accelerations, as functions of time. Possible isolated velocity jumps mani-
fest themselves in this formalism by ‘atoms’ of the above measures, i.e. some
vector-valued Dirac measures localized at the corresponding instants. The sys-
tem dynamics is expressed in general as a measure differential inclusion instead



of the conventional differential equation of ‘smooth’ Dynamics.

The analysis of the solutions, i.e. the theoretical study of their existence
and of their approximations, is a rather technical matter. The interested reader
may refer to [10] for these mathematical aspects, but the principal merit of the
formulation lies in its ability to generate time-discretization algorithms which,
at every step, are ready to treat velocity jumps on the same footing as smooth
evolutions. The discretized equation merely expresses the balance of momentum
on the corresponding time-interval, should the involved mechanical actions be
ordinary forces or percussions. The nature of the calculations to be effected at
each time-step makes the resulting algorithms belong to the implicit type, so
that they are never hampered by numerical instability.

The physical information concerning the contact interactions is fed into the
calculation in a standardized form called a complete contact law, devised in order
to take care automatically of the geometric conditions of non-interpenetrability.
Of course, these contact laws have to encapsulate not only the description of
unilaterality and friction in persistent contacts but also the model accepted for
predicting the outcome of possible collisions.

At each time-step, an iterative procedure is applied in order to calculate si-
multaneously all contact impulsions, collisional or not, and the resulting changes
in velocities. The computation cost of this procedure naturally increases with
the number of contacts to be handled. Parallelisation is currently investigated
but, up to now, only microcomputers or workstations have been employed.
For a dense pack of 4000 round grains, the computation time is typically 15
s per step in two-dimensionsal situations, 30 s per step in three-dimensional
ones, on a Power Macintosh 8500 microcomputer. The detection of contacts
is implemented in such a way that it takes only a fraction of a second in the
above case. In near-equilibrium situations, computation becomes much quicker
because the iterative procedure uses as first guess the contact forces calculated
at the preceding step (in particular, if an equilibrium state is attained at a
specified precision level, each step only consists of a precision check). Of course,
in the collision-dominated dynamics of rapid granular flows, the latter trick has
no effect, but in this case speed is favoured by the reduced number of contacts.
The choice of the step-length, in order to reach a given precision depends, for
compact states on the magnitude of the acting forces and, in rapid flows, on
the magnitude of the collision velocities. Of course, quantitative rules could be
formulated in the framework of a dimensional inspection. For instance, reducing
the acting forces is equivalent to increasing the mass of each grain.

1.3 Collisions

Physically, a collision is a ‘short’ episode during which the contact forces be-
tween the involved bodies assume ‘large’ values. The phenomenon cannot be
properly analyzed without taking body deformations into account, not only in
what concerns the vicinity of the impact locus but also in discussing to what ex-
tent some wave-like propagation may transfer momentum to other parts of the
investigated system. However, from the beginnings of Mechanics, it has been
attempted to incorporate collisions into the dynamical study of bodies though
observed at such a scale that microscopic deformations are invisible. This is
called the theory of Rigid Body Collisions, a recent survey of which may be
found in [11]. The objective is to calculate the velocities of the system parts



after the collision from the values these velocities had before it. The ‘collision
operators’ commonly used to this end can only provide rather crude predictions,
as long as a detailed analysis of the collision process is not made, usually carried
out through multiple scaling techniques involving a ‘microtime’. Furthermore,
one should keep in mind that if a body engaged in a collision is part of cluster
of previously contacting objects, all contact points in the cluster are liable to
transmit percussions. In such cases of multiple collisions the traditional concept
of restitution coefficient may produce grossly incorrect results.

In CD algorithms, the following improvement on the restitution concept pro-
vides a treatment of multiple collisions which at least has the merit of consis-
tency. Contact laws, similar to those applied to persistent contacts, are invoked,
in order to connect the (unknown) contact percussions with some formal veloc-
ities. The latter are constructed from the (known) pre-collision velocities and
from the (unknown) post-collision ones, by a weighted averaging operation. If
all the weight is placed on post-collision velocities, the consequent prediction
turns out to be that of a collision of the fully inelastic sort. On the contrary,
by placing equal weights on both velocities, one generates a model of fully elas-
tic collision. At each contact point, different weights may be assigned to the
tangential and to the normal components of the relative velocities.

The invoked contact laws also include friction. In the simple case of a binary
collision, this approach results in a collision operator involving three parame-
ters, identifiable as the friction coefficient, the normal restitution coefficient and
the tangential restitution coefficient. For spherical bodies, the resulting formula
comes out identical to what has been proposed, from an entirely different back-
ground in [12][13], fairly agreeing with the experiments of [ [14]].

The computation of the shaking of dense granulates related in [22] provides
typical examples of multiple collisions. Physically, one expects that the trans-
mission of collisional impulses throughout a pack of contacting grains involve
the elastic deformation of these grains in a process quite similar to the prop-
agation of sound. Since it has been decided here to model grains as perfectly
undeformable, such propagative effects are ignored. The success of the method
in the investigated instances should be ascribed to the fact that, physically the
time taken by sound-like disturbances to travel the extent of the experimental
cell is definitely shorter than the period of shake.

In contrast, multiple collisions play a minor role in the dynamics of dilute
granulates. The greater efficiency of the CD method, if compared with event-
driven ones, mainly stems from that, once a time-discretization mesh has been
chosen, all the collisions which are detected as occurring on a given time-step
are treated together. This of course entails some trade-offs which have to be
assessed. It seems of little consequence that the ordering of the collisions, which
mechanically should be successive, is only internal to the algorithm. In fact,
the problems in view are physically undeterministic, since a slight change in
the initial conditions is enough to produce, after a short time, a completely
different sequence of positions and collisions. A more critical observation is
that each collision is treated as occuring only once between the involved bodies
in the considered time-step. An accumulation of bounces, such as those of a
ping-pong ball coming to rest, is thus viewed as a single collision as soon as
the expected successive bounces are all comprised in the same time-step. This
could result in underestimating the energy loss arising from inelastic collisions.
This source of error may be checked by repeating the computation with reduced



time step : if no change is found in the energy vs time curve, one may conclude
that no harm was done.

1.4 Previous Applications of the Method

Calculations of shaken granular materials, in two or three dimensions, have been
the first published illustrations of the CD method. They gave the occasion of
very convincing comparisons [21] with the physical experiments related in [23],
evidencing the effects of boundary friction : boundary vortices and heaping.

Concerning the popular phenomenon of size-segregation the role, in certain
settings, of the friction-induced boundary currents and the consequent convec-
tion effects has been revealed [20], independently of the experiments of [24].
Furthermore, CD simulation has disclosed how such boundary currents are
generated.[22]

Above applications pertained to the rapid dynamics of dense granular mate-
rials. Actually, some simulations of slow deformation have confirmed that, even
if the external driving which compels a granular sample to deform is so slow
that, at the level of the overall motion, acceleration effects seem negligible, this
is not usually the case microscopically.[25] It is well known (see, in particular
[19]) that the deformation involves a succession of crises which essentially are
dynamical processes. Consequently, in numerical simulations, the grain masses
must be entered with their true physical values, without attempting to improve
computation speed by artificially increasing them.

Provided dynamical effects are taken into account, the average stress due to
contact in a portion of deforming granulate remains a meaningful element of
the analysis. We therefore have to revisit this concept before finally presenting
in Sec.3 below a detailed example of shear.

2 The Definition of Stress

A number of authors have proposed definitions of the stress in a portion of
granular material in equilibrium or quasi-equilibrium, all essentially equivalent
[see, among others, [27] [28] [29]]. If dynamical effects are also to be taken into
account, one should first recall that the convection of momentum significantly
contributes to the transmission of macroscopic efforts in the standard kinetic
theory of fluids as well as in the modelling of dilute granular flows [see e.g. [30]].
But, in the evolution of dense granulates which is the subject of this lecture,
the mean free path appears negligible in regard to particle size. Consequently, a
concept pertaining only to contact interactions, possibly collisional, is all what
is needed. Anyway, the following [31] remains consistent in all situations.

By a fragmented system, we mean a collection of (deformable or rigid) bodies
which interact only through contact. Examples: a granular material, a piece
of masonry. In order to define, for such a system, some concept able to play,
as far as possible, the role that the Cauchy stress tensor holds in conventional
continuous media, we are to introduce the ‘internal moment tensor’ of an arbi-
trary material system. This does not require of the number of constituents to
be large and the concept makes sense even for a single granule. In particular,
when constructing averages over a granular sample, one may also investigate
the statistical dispersion of the individual terms involved.



2.1 The Virtual Power Formalism

According to this standard formalism of Classical Mechanics,[32] any effort (this
is not necessarily a force in the traditional sense) experienced by a material
system is defined by the expression of the power that this effort would develop
if the system elements were affected by a class of imagined velocity fields, called
virtual velocities or test fields. The rule of the game is that this class of vector
fields constitutes a linear space and that the functional ‘power’ is linear on this
space.

Let S be a material system occupying a bounded portion of space and let ¢
denote an affine test field, with Cartesian components

pi(r) = wi(0) + bijz;. (1)

Since the power Pt (S, ) of the internal efforts of S when ¢ is taken as test
field depends linearly on ¢, i.e. linearly on the parameters ¢;(o) and b;;, there
exist R; and M;; such that P (S, ) = Ripi(0) + M;;bj;.

The virtual power formalism generalizes Newton’s third law in the form:

The internal efforts of any material system have zero power whenever ¢ equals
the wvelocity field of a rigid motion, i.e. a field as in Eq.(1) with bj; = —b;;
(provided Cartesian coordinates are orthonormal).

This readily implies that R; vanishes and that M;; constitutes the com-
ponents of a symmetric tensor M of rank 2, independent of the choice of the
origin and of the (orthonormal) axes in use. Let us call this tensor the Internal
Moment of S.

Example. Let S consist of a portion of a classical continuous medium occupying
a bounded domain 2 of space, with ¢ as Cauchy stress field. Then classically,
for every continuously differentiable ¢,

P (S, ¢) = /Q S 2)

This actually constitutes the very definition of the Cauchy stress in a synthetic
construction of Continuum Mechanics [32].

Here we comply with the common usage in Geomechanics and Civil Engi-
neering of counting a stress as positive when it is directed as a pressure. In
Mechanical Engineering and in general Continuum Mechanics, the reverse con-
vention is applied, which would require a minus sign in the right-hand side of
Eq.(2).

By taking as ¢ the same affine vector field as before, one obtains

Mz‘j(s):/go'ij dw. 3)

2.2 The Static Case

Assume in this Subsec. that the considered system is in equilibrium. Then
the Principle of Virtual Power states that the total power of all the efforts it
experiences, namely the internal and the external ones, equals zero whatever is
©, 80 Py = —Pext. If, for instance, the external efforts experienced by S simply



consist of a finite collection of forces f¢ exerted at points z, one may take ¢
as in Eq.1 and find

M; == aiff (4)

i.e. in the event of equilibrium, the internal moment equals the opposite of the
moment tensor of the external forces. The latter is by itself independent of
the choice of the origin and symmetric because the equations of Statics make
the resultant of external forces vanish, as well as their skew moment. All the
above writing readily extends to continuously distributed external efforts, such
as gravity forces, and also to external efforts of higher order. The latter may in-
clude space distributions of magnetic actions or the boundary couples commonly
introduced in the phenomenological description of the resistance to rolling, but
this does not prevent M from being a symmetric tensor of rank 2.

2.3 Additivity

Suppose that S equals a collection of subsystems Si, So,... which interact only
through contact actions. The internal efforts of S consist of the respective in-
ternal efforts of the subsystems and of the mutual efforts that these subsystems
may exert upon each other. Since the efforts exerted, say by S; upon S, and
by So upon S; are contact actions (possibly involving couples of resistance to
rolling), they are located at the same points of space and, by Newton’s third law,
have opposite values. Therefore, the total contribution of these mutual efforts
in the internal moment of S vanish, so one has M (S) = M(S1) + M(S2) + ...

More generally, by assigning to every finite collection of subsystems of S
the corresponding internal moment, one defines a finitely additive tensor-valued
measure.

The occurence of an integral in Eq.(3) makes additivity evident in this special
case and shows that, in a classical continuous medium, the Cauchy stress field is
nothing else than the density function of the internal moment measure relatively
to the volume (i.e. Lebesgue) measure. The same equation expresses that the
volume average of the Cauchy stress field over Q equals M /vol(Q).

Therefore, if a portion S of granular material is viewed as ‘enveloped’ in a
bounded domain €2, it is natural to say that the tensor M(S)/vol(£) constitutes
the average stress of S. The uncertainty in defining such an enveloping domain
has little consequence if S is sufficiently dense and comprises sufficiently many
grains. It is only at this stage that some assumption of ‘large number’ has to
be made. It will be shown on the example of Sec.3 that the tensor calculated in
that way does possess the main property expected of the Cauchy stress, namely
it allows one to predict how the force transmitted across an ideal cut depends
on the direction of this cut.

The above construction, based on the Virtual Power formalism, has the
advantage of possible extension to many other models of continuous media. For
instance the internal moment measure of a string or a chain admits a density
function relatively to the arc-length measure. The visualisation of force chains
in the granular sample of Sec.3 through the internal moments of individual
grains suggests that the construction of models of granular media could rest on
formulations in which the internal moment measure would not be represented
by a density with respect to volume.



2.4 The Dynamical Terms

The existence of the tensor M(S) and its additivity property for a fragmented
material system are inherent in the principles of Classical Mechanics. There
only remains to know how to evaluate this tensor in specific situations.
Equation (4) pertains to the special case of equilibrium. If, more generally,
the motion of S relative to some inertial reference frame, under some specified
mechanical actions, has been calculated, one has to express that, for every test
field ¢, the virtual power of all the efforts experienced by the system equals
that of the vector measure a(x)du(x), where a denotes the acceleration field
and p the mass mesure. By using as ¢ the same affine vector field as before,
one obtains, for every fragment s of the system, in coordinate-free notation,

M (s) = —tens.mom(ext.efforts) + /w@a(x) dp(x). (5)

This applies, in particular, to each element of a granulate material. The total
expression on the right-hand side, like M (s) itself, does not depend on the
choice of the origin. When s is an indeformable grain, it proves convenient to
take as origin the center of mass of this rigid body, then express a(z) by the
standard formulas of rigid body kinematics and use the inertia tensor of s in
order to calculate the integral in closed form. The result involves in general the
acceleration of the center of mass of s, the spin vector w and its time-derivative
w’.

Let us only report the simplification which occurs in two-dimensional situa-
tions, when the rigid grain possesses rotational symmetry. Then Eq.(5) is found
to reduce to

1
M (s) = —sym.mom/(ext.efforts) — 3 W11 (6)

where I denotes the moment of inertia of s about its center and 1 the rank
2 unit tensor. The symmetric moment tensor of external efforts is evaluated
about the center of s. Interestingly, w’ does not appear in this special case.

What precedes readily adapts to instants at which efforts are of percussional
nature. Recall in this connection that CD computation consists in solving, on
each time-step, the balance of momentum of the system, in which forces manifest
themselves through impulsions. Proper forces are retrieved after division by the
step-length.

3 Slow Deformations of a Dense Granular Ma-
terial

Due to space limitation, we restrict ourselves in this paper to the description of
a single numerical experiment, concerning a compact two-dimensional assembly
of strictly indeformable circular objects. Of course, the CD method could as well
be applied to some models approaching natural grain shape more closely [16].
The choice of the circular shape is not uniquely motivated by computational
ease, but by the want of avoiding the mix of distinct effects. In [17] physical
experiments on the slow shear of assemblies of elongated particles are reported.
There is shown that shear may induce orientation effects, making of a ‘shear
band’ a structurally individualized part of the granulate, strongly affecting in



particular the pattern of force chains. Similarly in [18], the numerical simulation
of assemblies of elliptic particles (performed by a method of elastic repulsion)
reveals some structural effects of particle elongation during shear.

Let a two-dimensional pack of circular grains be squeezed between two par-
allel platens with locations y = ¥inf, ¥ = Ysup- In laboratory, the two lateral
free boundaries of such a pack would be sustained by the pressure of a liquid,
separated from the granulate by a membrane. We rather use here an ideal con-
taining action, easier to analyze. The grains are sorted according to y, so as
to divide the height ysup — ¥int into horizontal bands of uniform width w. In
each band the five ending grains on the left are submitted, in proportion to
their respective masses, to horizontal forces totalizing wP, where P denotes a
fixed pressure. The five ending grains on the right are similarly submitted to
horizontal forces totalizing —wP. The width w, i.e. the number of bands, is
adjusted in order that five grains make sufficient barriers at both ends of each
band.

Platen friction is chosen greater than interparticle friction. If platens were
forced to move vertically toward each other, this would generate the same clas-
sical X-shaped shear as in the simulations related in [26]. Here we instead
produce a single straight shear zone which proves more informative. This is
done by maintaining the lower platen fixed, while the upper one is given a 45°
downward motion. A short time after start, the velocity vectors of the grain
centers assume the distribution shown on Fig.1. Nearly undeforming packs look
attached to the respective platens, while an oblique shear zone lies in-between.

On Fig.2, a grid of 16 strips, parallel to the general direction of shear, has
been superimposed to the zone. For each strip, the average of the longitudinal
components of velocities is calculated. The result plotted in the histogram
reveals a rather smooth transition from the zero velocity of the lower part to
the constant value corresponding to the forced motion of the upper platen. This
takes place on a length approximately equal to 25 times the average diameter
of grains, but no clear limit can be ascribed to the shear zone.

Incidentally, one can also detect in all regions some grains with aberrant
velocities. Through zooming, these grains would be seen flying inside persistent
cavities. This is the very effect commonly observed when watching shear-box
experiments performed on Schneebeli materials, i.e. piles of cylindrical rods
stacked parallel. Such grains originate from a partial collapse of the cavity
boundary and their velocity of expulsion may be much larger than the velocity
of the overall motion. Of course, a free grain ends by hitting the cavity boundary,
possibly triggering some rearrangement in the granulate.

Rapidly changing ondulations affect the velocity pattern in the shear zone.
Sometimes, one may distinguish assemblies of a few grains whose velocity dis-
tribution is approximately that of a solid rotation. This reminds one of the
persistent rigid clusters observed in real sand experiments.[28] That the effect
here is much less pronounced and very fugacious probably comes from the grains
being circular. Anyway such swirles have nothing to do with the vortices gen-
erated when two fluid flows merge. In the latter case, vortices last sufficiently
long for their convection by the fluid to be observed. Furthermore, the velocity
distribution in a fluid vortex is quite different, since velocities become larger
toward the center.

In Fig.1, three rectangular probing areas have been placed on the field. At
the center of each one, a cross represents the principal directions and principal



values of the average stress tensor, as defined in Sec.2. For each area, the
histogram of contact normals is drawn, constructed by dividing the plane into
24 sectors. Each sector is filled in gray up to a radius proportional to the
number of the contact points at which the normal n to the contacting grains
(in either direction, so that the histogram is symmetric) belongs to the sector.
The elongated shapes of these histograms reveal a strong anisotropy in the
distribution of contact orientations. The dominant direction may be estimated
by constructing the fabric tensor relative to the probing area, i.e. the symmetric
tensor whose components equal the averages of n;n; and determining the major
principal direction of this tensor. The table at the top shows that this major
principal direction is, in each of the three cases, close to that of the average
stress tensor.

The dynamical terms, as expressed in Subsec.2.4, have been taken into ac-
count when computing the components of average stress tensors. Actually, they
have been found to contribute by less that 0.1 % in the result. The point is
that the reported numerical experiment exhibits little dynamical effects. This
should be ascribed in part to the relative magnitudes of the upper plate veloc-
ity, of the lateral pressure and of the grain masses. The present setting also
differs from that of a shear-box by the presence of the lateral free boundaries.
Exerting a distributed contention pressure upon these boundaries generates less
frustration than acting on the granulate by means of a rigid wall. The global
effect of dynamical crises may be assessed by calculating the normal components
of the resultant forces exerted by the grains upon the two platens. Since the
lateral contention forces are horizontal a difference between these two compo-
nents purely reflects dynamical effects. In the present experiment the difference
remains inferior to 1%, while in the analogous setting of a granulate confined
between parallel platens under periodic lateral conditions (which are more frus-
trating than a pressure) the difference may sometimes attain 50%.

The main observation to be made here is that the central oblique probing
area, which covers the shear zone and the two other ones covering the vicinity
of the platens do not reveal significant differences in average stress and in fabric
anisotropy.

On Fig.2, the force chains are visualized by drawing the crosses representing
the internal moments of all grains individually. Another visualisation of these
chains is provided on Fig.3 by representing each pair of intergranular forces by
a line segment centered at the contact point. Both representations make clear
that the pattern of force chains is completely indifferent to the presence of the
shear zone.

A circular probing area has been placed in the upper part of the sample
on Fig.3. The program has calculated, for a series of diameters, the resultant
force exerted by the grains with centers on one side upon those on the other
side. The corresponding plot allows one to compare the values with the result
of a calculation based on the average stress tensor of the area. In spite of
the relatively small number of grains involved for each diameter and of the
inhomogeneity due to force chains, the two plots are remarkably concordant.
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Granular sample obliquely squeezed between parallel platens

Forced velocity of upper platen : (cm/s) u=0.2, v=-0.2. Lower platen fixed.

Number of grains : 4025. Diameters : uniformly distributed between 0.75 mm and 1.50 mm
Current height of the sample : 9.34 ¢cm. Grain density : 1 g/cm2,

Intergranular friction : 0.5. Platen friction : 1. Restitution coefficients : 0 everywhere.
Lateral pressure: 1070 Pa. Gravity neglected.

Major principal direction

Principal stresses (degrees from horiz. axis)
(Pascal) Stress Fabric
Upper area (1549 points of contact) | 2345 117z +89.6 -88.2
Shear area (2207 points of contact) | 2502 1044 -88.6 +89.6
Lower area (1578 points of contact) | 2336 1141 +89.2 +88.2
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Intergranular forces and average stress tensor

Average stress tensor in circular area.  Principal stresses : 2600 Pa, 1156 Pa
Direction of major stress : 89°.5 from horizontal axis
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