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Abstract

Laboratory study of slope stability remains a challenge for modeling, understanding and pre-

dicting natural hasards such as avalanches and landslides. We model these phenomena by slowly

and continuously tilting monodisperse dense packings of spherical beads. Three packings of glass

beads of 0.2, 0.5 and 0.75 mm diameter, and one packing of polystyrene beads of 0.14 mm diameter

have been inside an ambient relative humidity ranging between 40 and 94 %. The beads fully or

partially fill a transparent parallelepiped box: during tilting, displacements of the beads occur and

can be captured from above and on the side of the box by two cameras. By image processing,

we detect grain slides at the surface, which activity depends on humidity, bead size and material,

followed by avalanches that can occur inside the box or flow outside it, depending on the pile

height. These experimental results highlight that cohesive forces induced by ambient humidity

have a large impact on the stability of the grain pile. The role of the exposure time to the high

humidity rates is studied in order to observe the humidity diffusion process needed to reach the

hygroscopic equilibrium in the packing. This behavior difference is more pronounced before the

first avalanche. Indeed, the continuous tilting process avoids the observation of this effect between

the next consecutive avalanches.

PACS numbers: 45.70.Ht, 61.43.Gt, 83.80.Fg

Keywords: Avalanches, precursors of avalanches, sphere packings, humidity rates

∗Electronic address: luc.oger@univ-rennes1.fr
†Electronic address: claude-el-tannoury@univ-rennes1.fr
‡Electronic address: renaud.delannay@univ-rennes1.fr
§Electronic address: yves.legonidec@univ-rennes1.fr
¶Electronic address: iippoli@fi.uba.ar
∗∗Electronic address: lucreroht@gmail.com
††Electronic address: gomez.arriaran@ehu.eus

2



I. INTRODUCTION

Organized granular materials displacements occur in a large range of applications like

concrete, ceramic, pharmaceutical products, agricultural grains, soils and powder metallurgy.

In these cases, a large amount of grains are stored, pilled or displaced by moving unstable

assemblies of grains. On the other hand, grain displacements may also be observed in many

natural events like debris flows, snow avalanches, ice floes and flying ashes. Understanding

the physical mechanisms that control such granular structures and destabilizations is a great

subject of interest for numerous industrial and environmental topics and may improve to

prevent avalanches risks.

To that aim, laboratory experiments are performed with dense packings of spherical

grains. Before an avalanche occurs, a large number of simultaneous displacements of grains

uniformly distributed at the pile surface are the so- called precursors. Most of the experi-

ments are performed at the laboratory scale in dry atmosphere [1–4] The aim of the present

study is extending these experimental studies to wet atmospheres since moisture increases

grain interaction forces and thus alters the strength of the contacts between beads. These

behaviors are related to the appearance of capillary interaction which is due to the forma-

tion of liquid bridges between grains depending on the moisture content [5]. This is of first

importance when dealing with natural avalanches in ambient relative humidity up to 100 %,

that may exist in Argentina during several weeks. In section II, we synthesize both previous

precursor-avalanche studies and previous works on the effect of humidity on grain packings.

Then, we present the reproducible technique used to prepare a good homogeneous packing

(section III). In section IV, we describe the principal of the experiments used to perform

extensive analysis of our experiments. Then, in section V, we measure the different local or

global quantities linked to the structural evolution of the grains packings during the tilting

process depending on the different experimental conditions including grain properties and

box filling. In section VII we highlight the effect of the exposure time to the high humidity

rates on the avalanche and precursor evolutions, the so-called ”maximum stability time” or

”hygroscopic equilibrium time”.
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II. SOME KNOWLEDGES ON THE PRECURSORS AND AVALANCHES STUD-

IES AND HUMIDITY EFFECTS

When tilting a granular pile, the tangential component of its weight increases inducing

internal friction on its whole and leading to a superficial layer to a metastable state. When

the tilt angle becomes greater than the maximum stability angle θA of the pile, called angle

of maximum stability, the avalanche occurs. After then, the angle of the new arrangement

of the granular packing decreases to the angle of repose θR. Pile stability is controlled by

several factors, including the size of the system (height [3], length [6] width [7]), the pile

density or volume compaction [1, 3, 8] and the tilting regime [9].

The destabilization of a granular pile is characterized by the rearrangements of the grains

occurring at the surface of the pile. Bretz et al. [10] then Nerone et al. [4] were the first to

reproduce and to film these events in a slowly inclined box. Bretz et al. [10] were interested

in the presence of these events between two successive avalanches. They found that the

grains reorganization distribution follows a power law in function of their size. But they

didn’t indicate the presence of any large event occurring between two successive avalanches.

They showed that the destabilization of granular pile goes through two types of events before

the avalanche: (I) small rearrangements occurring at low tilting angles, with power law size

distribution function followed by (II) ”Precursors” that start to appear quasi periodically

when the tilt angle becomes larger than ≈ 15◦, with a non power law size distribution

function . Later, several studies [6, 11, 12] were oriented to identification of the precursor of

avalanches. We now go in more details in the analysis of the different criteria which control

the appearanaces of both precursors and avalanches.

A. Dry avalanches

At rest, granular packings can sustain normal loads and shear stresses, such as a jammed

structure, but if a threshold shear stress is exceeded, part of the material starts to flow.

The discrete nature of granular materials renders their behavior very complex. Due to

some external forces evolutions, the macroscopic behavior of granular media is related to

the evolving geometry of their contact network and, more specifically, to the nature of the

contacts themselves (frictional collisional, sliding, cohesive or not). So, for free surface flows
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of granular packings under the action of gravity, the ”jamming transition” above a critical

shear stress is simply evidenced by the existence of the angle of maximum stability of a

pile,θA, associated with internal friction [13]. After the flow starts, the angle of the pile

relaxes towards the angle of repose, θR, smaller than θA. Similar observations were made

for granular flows in a rotating drum as a function of the rotation rate [14]. Generally,

experiments were performed at a low rotating regime defined as the rolling or cascading

ones controlled through the Froude number ”0.05 < Fr < 0.4 with Fr = ω2D/(2 g) which

represents the ratio of centrifugal to gravitational acceleration with g is the gravitational

acceleration, ω the angular speed and D the diameter of a drum or the plate length [15].

As already mentioned, the behavior of inclined 3D granular media show that parameters

like humidity, system dimensions, friction between grains, bottom roughness, time between

avalanches or packing fraction can influence the value of the maximum angle of stability of a

packing [1, 3, 6–8]. For example, Aguirre et al [1] concluded that the number of grain layers

can influence the stability of a packing up to about ten layers, while it becomes independent

of it for larger numbers of layers. We will see our observation of this later on in this

article. Recently, few studies were developed in order to observe these phenomena. Bretz et

al. [10] used a digital imaging technique to analyze the avalanches occurring during the slow

inclination of a box. These large slides were separated by a sequence of rearrangements of

the surface grains which were recorded by a camera. By contrast, Nerone et al. [2, 16] showed

that the size of rearrangements at the surface of the packing increases with the inclination

angle for freshly prepared piles filling a box. A few degrees before the avalanche starts, quasi-

periodical large events are observed. Zaitsev et al [17] reported recently that the same kind of

events occur in the bulk of a slowly inclined granular packing. These events were interpreted

as quasi-periodic transient reorganizations of the weak-contact subnetwork occurring in the

bulk of the packings. We are also studying these behaviors in our experimental setup in

Rennes [18]. Staron et al. [19] investigated the evolution of the internal state of a 2D

granular slope driven towards its stability limit, θA. They related precursors of avalanches

to the intermittent mobilization of friction forces between the grains along some long-range

correlations of the structure. We can summarize that precursor appearances and avalanche

behaviors are mainly dependent to the grain and box sizes in one hand and to the mechanical

solicitations in another hand which are both .
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B. Humidity effect

In order to integrate the humidity effect in our experimental investigation, we are, firstly,

collecting information through previous similar studies. For example, Gómez-Arriaran et

al. [20] studied the evolution of maximum stability angles θA and repose angles θR of tilted

granular pile with glass grains of size 0.5mm, 1mm and 2mm under controlled relative

humidity Φ between 5 % and 97 %. They observed that these angles are invariant in pendular

state (Φ < 50 %) which corresponds to the pore space largely filled by the gas phase and

where the wetting liquid exists mainly in small isolated rings around grain contacts. Then

these angles increase with relative humidity in funicular and capillary state, where the

funicular state corresponds to the case where the liquid can be continuous from one area to

another one in the porous space and the capillary one where the pore space is completely

filled by the wetting fluid in the liquid phase.

The most important result shown in this study is that the maximum stability angle is

higher in capillary state for small grain diameter, and can reach 90◦. These results confirm

that the cohesion between grain is better for smaller grains [21].

Some authors [22, 23] have studied the relationship between cohesion and adhesion forces

between grains in a pile when an isolated ring is created between two grains contacts (I.e

the external form is defined as a meniscus). These studies have established that the θA

varies exponentially with the initial time before the experiments. Unfortunately they were

performing experiments only up to Φ = 45 % which is far from the range over which the

influence on the stability and cohesion of the granular medium is expected to be important.

Other authors [24, 25] noted that the depth of the avalanche plane and the angle of repose

positively correlate with the moisture content up to a maximum saturation value, which

depends on the grain size only. Fraysse et al. [26] have carefully controlled Φ by injecting

water vapor in a rotating drum that contained the granular medium. Thus, the control

parameter to quantify the moisture content was the relative vapor pressure (Pv/Psat, where

Pv: vapor pressure and Psat: saturated pressure), i.e., the relative humidity. They stated

that θR slightly decreased and θA increased when moisture content increases.

In Mason et al. [27], a method of tilting a wet granular packing was used to determine

the relationship between the angle of maximum stability θA and moisture, which is referred

here to the volume fraction of liquid. Other authors [1, 3] also identified a relationship
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between the relative humidity and the characteristic angles of an inclining box filled with

2mm diameter glass beads.

One of the key question of these methods is that the water is not necessarily homoge-

neously distributed and it was difficult to check this fact. Indeed, the rigorous control of

Φ and hygroscopic equilibrium time is necessary to avoid this inhomogeneity and achieve a

uniform distribution of the moisture content in the granular medium at a given hygroscopic

and cohesive state. We will see this problem later on in this article.

The main difference between a dry and a wet granular medium lies in the cohesive force

between grains generated by the moisture. The cohesion between two spheres [28], i.e.,

the attraction force between two spheres due to a liquid bridge between them, is linked to

the surface tension which is the cause of the capillary pressure in the neck of the bridge.

Rumpf [29] proposed a model for determining the cohesion tension in a granular medium of

identical spherical grains from the force of cohesion per liquid bridge. Crassous et al. [21]

have shown the evolution of the adhesive force between two grains versus distance at a given

humidity rate through atomic force setup measurements.

In the continuum approach, the Mohr-Coulomb criterion describes the avalanche phe-

nomenon in terms of shear stress (τ) and normal stress (σ) modified by the capillary con-

densation, which creates additional cohesion between grains, resulting in a ”normal cohesive

stress” in the medium (σc) and in a new total normal stress. This cohesive stress leads to

increments in the angle of maximum stability θA for a wet granular packing. Indeed, as the

height of the packing ’H increases, the normal stress corresponding to the weight of the pile

also increases (ρgH), but the cohesive forces remain constant irrespective of the size of the

pile. As confirmed in Gómez-Arriaran et al. [20], if the packing depth does not influence the

cohesion, failure has to occur at the base of this packing (controlled by the Mohr-Coulomb

criteria) and the position will depend on the cohesion degree. In some cases, the cohesion

provided by liquid bridges in the capillary cohesive state is sufficiently strong to ensure that

the grains remain up to a high possible angle (θA ≈ 90◦) So, when the granular medium

is in funicular and pendular cohesive states, the granular medium is more appropriately

considered as discrete. In this condition, all surface grains attain new stable positions which

implies that the avalanche affects mainly the grains at the free surface of the packing.

According to both the continuum and discrete models, cohesive effect of liquid bridges

increases the stability of the granular packing. The continuum model predicts that the
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failure avalanche plan is at the bottom of the packing, and the angle of maximum stability

will depend on the size of the packing. For the discrete model, the noticeable part of the

failure occurs at the surface and the maximum stability angle is independent of the size of the

pile. Our results in section V will confirm these two possibilities according to the different

experimental conditions. Recent researches demonstrate the linear dependency between the

angle of maximum stability and the time of exposition to ambient relative humidity before

the avalanche [30]. Right now, we have all the elements needed to quantify the presence of

the water content inside porous media on the granular packing destabilization.

III. PACKING PREPARATION AND TILTING PROCESS

To accomplish the goals of this study, an experimental setup was mounted allowing (1) the

detection of the grains rearrangements at the free surface of granular pile, (2) the detection

of surface angle of granular pile and (3) the control of relative humidity. The experiments

consist in slowly and continuously inclining a box containing grains and following the dy-

namics of wet granular pile during the inclination. During this process, two independent

cameras are used to record top and lateral view of the granular packing (see information

below).

A. Geometrical piling

Our initial goal is the generation of dense homogeneous packings of spheres in a repro-

ducible manner. This is crucial for having the possibility of comparing results coming from

different experimental conditions. We have achieved this goal by using the so-called same

”history” of the packing fabrication [31].

We are using a Plexiglas box with 6.5 cm width, 11 cm length and 6 cm height. A grid

with a mesh size twice larger then the bead diameter is initially placed at the bottom of

the box. Then we fill the box with grains up to the desired height (between 2 cm up to

6 cm). We check horizontally the packing box in order to create a quasi flat surface. Then

we pull out vertically the grid to generate a homogeneous non-dense packing structure (i.e.

with a packing fraction close to 0.58). When the required height is chosen as a full fill

box solution, we pass a metallic bar to eliminate all the grains sitting at a position higher
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than the box height. In this condition, we can assume that all our packings are made with

the same history of procedure which means that they are reproducible as much as possible!

When high humidity conditions are needed, all boxes were made in the same protocol then

conditioned to the desired relative humidity for a given number of days in order to ensure

that the liquid bridges are formed through all the granular pile (see III B). Then we place

this box on top of a rotating tray. The rotation of this tray is controlled by an electrical

linear actuator (Fig. 1). The inclining velocity is selected about 0.08◦/s. It is chosen after

verifying that the inclination is carried out in quasi-static regime which is confirmed by the

very small Froude number Fr = 1. 10−8 � 1.0. . Then we began to incline the box from

the horizontal position up to the maximal available angle of the setup (i.e. 75◦) which can

produce successive precursors or/and avalanches.

We performed our experiments by using glass grains with 0.2mm, 0.5mm and 0.75mm

diameters, and polystyrene grains with 0.14mm diameters.

B. Humidity control

As it was too complicate to manage a large box which can contains the packing box,

the tilting setup, the horizontal camera and the vertical camera on the L-shape bar, we

have decided to use the ambient conditions for low humidity rates (here up to 70%) and to

manage an humidity control chamber close to the experimental setup for higher values. We

can notice that we have performed our experiments in Argentina as it is sometime possible to

manage experiments in natural high humidity conditions up to 100 %. During our different

stays for these studies, we had only values up to 71 %. This is the reason why our tested

granular piles at high humidity rates were previously conditioned during time between three

weeks down to two days to desired relative humidity conditions. These conditions will allow

us to observe also the evolution of the possible hygroscopic equilibrium through all the

pile. This chamber is a Plexigla box which dimensions are 36 cm for the width and height

and 68 cm for the length. This solution allows storing in the same condition up to ten

packing boxes containing different experimental grain compositions (bead size or material

and filling rate, among others). At the bottom of this container box is positioned a large

flat plate on which is placed a saturated salt solution mixed with pure water on excess. In

this manner, we can control the relative humidity in this chamber by using adequate salts
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FIG. 1: Schematic view of the setup. A horizontal linear actuator is linked to a vertical bar glued

to the rotating plane in order to assure the right rotation rate. A camera shooting the top surface

of the packing is maintained with a L-shape bar and rotates with the rotating plane. Another

camera is placed horizontally at 1m away from the moving system to record the full lateral view

of the setup.

solutions with distilled water (RH for NaCl: ≈ 75 %, KCl: ≈ 84 %, KNO3: ≈ 94 %). The

relative humidity and the temperature inside the chambers were recorded every 5 min by

USB digital thermo-hygrometers. After the chosen ”conditioning” time, we can take one

box at a time and place it on the rotating tray for the experiment. The duration required

for both the transfer and the full tilting experiment remains under 10 minutes, and taking

in count the low velocity of the vapor diffusion process through the grain interstitials, we

assume that the quality of the cohesive contacts at the free surface of the packing (mainly

the top one) is not altered. This non-reversible of the humid contact breakages is one of the

key difference with the Gómez et al.’s experiments [20]: the duration time of a new contact

creation remains smaller than the time needed for the creation of a new capillary bridge.
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IV. OPTICAL TECHNIQUES MEASUREMENTS

In order to detect the displacement of the grains, we used two cameras to film the exper-

iment. One camera has been mounted above the free surface of the granular pile: it rotates

with the tray through a L-shape bar. The other camera is not fixed on the experimental

frame: it has been fixed on a tripod located one meter away from the lateral side of the

Plexiglas box (Fig. 1). These two optical measurements operate quasi-simultaneously and

both sets of images are processed by using the ImageJ software. In this example, the box is

tilted continuously at a rate of 0.08◦/s

Surface angles of the granular pile are measured through the lateral video recording.

Those images are registered at a frequency of 30 frames per second and a resolution of 640

by 480 pixels. The video record starts not perfectly synchronized with the surface acquisition

process but it will be possible to do it after (see below). As visible in Fig. 2(a), the surface

of the packing is easily detectable as having a higher grey level all along a fine visible thick

line. After thresholding this grey image to generate a white band and a thinning process to

create the line, a simple measurement of the mean angle of this XY pixel line can give us the

surface angle. By default, due to the packing construction, this surface angle is exactly the

tray angle during the initiation of the movement of the experiment (i.e. at least, up to the

first event: precursor or avalanche). This allows us determining the rotation speed (slope

and origin of the line) which can define the tray rotation angle during all the experiment.

Figure 2(b) shows the evolution of the surface angle obtained for a packing with a 5 cm

height, bead diameter of 0.2mm humidity rate of 43 % for a temperature of ”26◦. When the

packing reaches the first maximum stability angle, an avalanche occurs and a new surface

reorganization is obtained depending of the height of the packing inside the box, the bead

properties and the adhesion forces present in the experiments. In some conditions, we can

observe an immediate continuous flow of grains or a new stable surface. So, in the second

case, different ratchets observed here are the measurements of the successive reorganizations

of the surface. This can occur more naturally before grains went outside the packing box

but can also exist even when the grains exist the box (see for example Fig.4 in [20]).

Grain rearrangements at the surface that are observed at the free surface of the granular

pile are recorded through the upper camera (Fig. 1) every 0.45 s following the method

described previously [4, 6, 12]. Image processing is based on the subtraction of two successive
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FIG. 2: Lateral view and its evolution versus the tilting tray rotation for a packing with a 5 cm

height, bead diameter of 0.2mm humidity rate of 43 % for a temperature of ”26◦.

images thresholded higher than the image noise acquisition and produce the pixel map of

moved spheres on the surface. These pixels are, by default, a direct link to at least one

sphere move and allows us defining the surface S of rearranged grains. This surface can

be a patchwork of isolated slots of neighboring grains or, at the end, the full surface of

observation. This is the reason why we have looked a the normalization value : Indeed, this

moved grains surface S is normalized by the total surface of the observation zone S0 and

plotted as a function of tilting angle (Fig. 3).

In our experiment, the largest events can represent precursors of avalanche or one of

the successive avalanches. The first avalanche transition can be obtained by combining and

synchronizing the two views. In Fig. 4, the two optical measurements are then plotted at

the same tray inclination angle and we can easily identify avalanche events from precursor

ones.

So this full optical technique analysis allows us extracting all the possible information

concerning one experiment: precursor and avalanche position, interval inclination angle

between precursors before the first avalanche, existence or not of precursors during the

following avalanches, and so on.... The two next sections will show all the comparison

results; the section V will concern only glass beads of ’500µm and the two following ones

(section VI and VII) all the other conditions.
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FIG. 4: Evolution of the two views with synchronization.

V. ANALYSIS OF THE RESULTS FOR 500µm GLASS BEADS

Several physical parameters can control our experiments such as filling height, humidity

rates and conditioning times, bead sizes, bead properties, ...In the following subsections V A

and V B, we will look at the effect of the filling heights and the variation of the humidity

rates on the precursor and avalanche behaviors for monosize glass beads of 500µm diameter
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only. So we will start by the filling rate.

A. Filling height effect

By opposition of the rotating drum studies, where no lower bottom wall can limit the

initiation of the avalanche (i.e. only the local instability of the pile can generate the beginning

of the flow), the tilting box studies, by construction, imply that a bottom wall can avoid

some grain movements due to its long term geometrical influence.

1. Avalanche Analysis

According to Gómez-Arriaran et al.’s results [20], we can also observe that the successive

maximum stability angles decrease after the first one and finally reach a plateau (Fig. 5).

And, in the same figure, by comparison with Aguirre et al.’s observation [3], we can see the

influence of the bottom wall through its number of layers order propagation. The behavior

is quite different for a filling height of 2 cm which corresponds to around 40 layers from

higher values such as 3 or 4 cm (i.e. 60 or 80 layers). This behavior is quite far from the

Aguirre’s experiments [1] which located the transition around 16 layers only. This difference

is due to our filling process which implies a more homogeneous packing structure but with

a smaller packing fraction due to the pulling out of the grid (comparison with Fig.5 in [3]).

If we take into account the information from the Fig. 5 on the effective height effect on our

experiments,we will focue our results for a filling rate higher than 2 cm.

In this case, we can observe that the maximum stability angle θA is increasing with the

filling rate and the repose angle θR is also mainly decreasing with height, except for H = 2 cm

where the bottom filling organization can affect the local displacement of the beads. This

first behavior can be easily interpreted along the number of layers structural effect: higher

number of layers means higher packing fraction due to the increase of the amount of material

along the height (classically named as ρgH). This fact allows less possibility of shearing ofr

the lower layers.

Even if the angles θA is increasing and θR is decreasing with the filling heights, we can

observe that the difference remains quite constant (Fig. 7). This observation will allow us

to assume that, except for the smaller height of 2 cm, we can use all the results obtained
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with different filling levels for the global analysis of the other parameter evolution.
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2. Precursors Analysis

As already mentioned, the appearance of the first precursors and also the difference angle

between two successive precursors is crucial to understand the structural internal interaction

and to predict the following avalanche event. We can see these two informations in Fig. 8

We can see that higher the filling rate, higher the angle for the appearance of the first

precursor and also the inter-precursor angle. These results can be explained in the same

context of the previous observation for θA and θR: higher packing fraction for higher number

of layers so less possibilities of shearing. According to these series of results, we can manage

the analysis of the results for different humidities rates with the height dependency or not.

Indeed this possibility can allow us to improve the different statistical behavior analysis.

B. Humidity rate (RH) effect

These experiments are performed in two different humidity conditioning behaviors de-

pending of the range of humidities available naturally (up to 71 %) or the range of chosen

ones (in our experimental cases: higher than 70 %). The change of these conditions implies

automatically a change in the process before the real tilting experiments. Indeed, in the
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FIG. 8: Evolution of the appearance angle of the first precursor versus the filling height H (a).

Evolution of the inter-precursor angle versus the filling height H (b). Experimental conditions are

identical at the Fig. 6.

natural case, we can assume that all the beads are naturally immersed inside the ambient

humidity rate. So we don’t need to maintain these build packings immobile inside a chamber

before doing the experiments. By opposition, when the needed humidity rate is quite high,

only samples placed inside a confined chamber saturated at the desired humidity rate during

a given time can be used. In this second case, the creation of the capillary bridges inside

the porous structure is, by consequence, time dependent (diffusion process inside the porous

structure: see section VII).

1. Avalanche Analysis

Our first goal in this part is to reproduce as close as possible the behavior observed by

Gómez-Arriaran et al. [20]. We are using the same kinds of beads (500µm) and also the

same box dimensions (see in III) but our tilting process is quite different as it is continuous,

even after the first avalanche event, at a given inclination rate by opposition of a very slow

manual tilting one. The main difference is the possibility for the wet contacts to maintain a

longer and stronger contact in the their set of experiments and also the ability to wait some

time after a given avalanche event before performing again the tilting process. In our case,
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we have try to use the smallest available titling rate in order to be close as possible to Gómez-

Arriaran’s experiments. Figure 9 shows that the evolution of the angles(θA and θR) follow the

behavior of the Gómez-Arriaran’s ones [20] except for the order of magnitude. All our results

are quite smaller than their results. This fact can be easily explained by the continuous

tilting which can generate higher vibrations inside the grain structure. These vibrations can

more easily break some internal wet contacts and enhance the fracture propagation in our

packings.
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FIG. 9: Evolution of the maximum stability angle θA and the repose angle θR versus the humidity

rate for the different available filling heights. The results are shown separately for each set of height

H. The dashed lines are only guided lines for a better observation. For (a) it is an exponential

form.

More generally, we can see that the maximum stability angle θA is increasing significantly

with the humidity rate as described in previous studies [20]. By opposition, the repose angle

θR remains almost constant for the full range but for RH higher than 84 % an increment

and a high deviation on measurements is observed, due to the underling global network of

wet contacts which can play a role during the landing of the falling beads, fact which will

be confirmed in the following section. The difference of behaviors between the two angles

can be also seen in Fig. 10 which represents the difference between the maximum stability

angle θA and the repose angle θR for all the filling height range H.
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2. Precursors Analysis

As observed for the filling height effect, we can look at the influence of the humidity rate

on the first appearance of the precursor and also at mean angle difference between these

precursors which are present before the first avalanche (Fig. 11).
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FIG. 11: Evolution of the appearance angle for the first precursor versus the humidity rate RH

(a). Evolution of the inter-precursor angle versus the humidity rate RH (b).
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We have plotted the values for all the available filling heights used in our experiments

(H = 2 to 6 cm) in order to have enough statistical observations. We can see a linear

increase of the first precursor appearance with all the humidity rates even in the lower

range part in which no evolution is visible for the maximum stability angle θA. This very

interesting observation can allow us to qualify the precursor analysis as a more sensible tool

for the evolution of the local adhesion force between grains. Indeed this effect is visible

on the surface by the possible grain reorganization also during the precursor events. By

contrast, we cannot observe a clear evolution of the inter-precursor angle value which can

be explained as a phenomenon more controlled by the geometrical organization of the grain

than by the adhesion force difference with the humidity rates..

VI. EFFECT OF THE BEAD SIZES AND COMPOSITION

Up to now, we have only described results obtained with beads of diameter 500µm which

were the smallest size used by Gómez-Arriaran [20] to see the humidity influence. So to

increase our range of observations; we have performed also experiments under the same

mechanical and humidity conditions with glass beads of diameters 200µm and 750µm and

polystyrene beads of diameter 140µm. Firstly, we have measured for two new sets of beads

the adsorption isotherms in order to observe the evolution of the water content (Fig. 12).

We can see the large increase of the water content for both beads sizes around 70 % which

confirms previous results (Fig. 9). So, before this value, no big change for individual contact,

or adhesion force, is possible

A. 200 µm glass beads analysis

Firstly, for the 200µm glass beads, we want to recover the different evolutions observed

for the 500µm glass beads such as the angles of maximum stability θA and repose θR versus

the number of avalanches then these angles versus the humidity rate and finally the first

precursor appearance. For these studies, we have only performed experiments with packings

which fully filled the box (H = 6 cm). Indeed this filling rate was seen before in this paper

as the most easy to manage.

Figure 13 shows the same behavior as the one described in Fig. 5 and in the paper of
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FIG. 12: Influence of the humidity rates on the adsorption isotherms for the two other beads

diameters used in this study: 200µm and 750µm.
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FIG. 13: Evolution of the successive avalanche behaviors for glass beads of 200µm (RH between

43 % and 58 %) and 500µm (HR between 43 % and 66 %). We can recover the classical behavior

already seen before (Fig. 5) and visible in [20]. Each point is a mean value for at least 5 different

runs

Gómez-Arriaran [20]. We can notify that the evolution of the angle of repose θR is quite

similar for both diameter sizes which tends to demonstrate that the roughness of the surface
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structure is not playing a crucial role. Indeed, in our case θR(200µm) is equal to θR(500µm)

for all the diameter and humidity rates available.
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FIG. 14: (a) Evolution of the maximum stability angle θA versus the humidity rate for a filling

height H = 6 cm for glass beads of 200µm and 500µm. The two dashed lines are made with the

same exponential form equations. (b) Evolution of the first precursor angle versus the humidity

rate for a filling height H = 6 cm for glass beads of 200µm and 500µm.

Figure 14(a) shows that the behaviors of the maximum stability angles θA for the two

bead sizes follow the same profile within this range of humidity rates. As partially seen in

Fig. 13, we can also confirm that the two repose angles thetaR are identical for the full range

of humidity rates. In complement, the appearance angle of the first precursor is increasing

with the humidity rates which confirms that this evolution is similar to the one observed

for the beads of 500µm (fig. 11). These evolutions of the first precursor appearance in the

range of humidity where the maximum stability angle seem to be quite constant are also

dependent of the bead sizes which confirm us that this parameter can be a crucial indicator

of real ”quality” of the contacts.

B. 750 µm beads analysis

Consecutively, we have extended our studies to the 750µm glass beads such as the angles

of maximum stability θA versus the humidity rate and finally the first precursor appearance
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and the inter-precursor intervals. For these studies, we have also only observed experiments

with packings which fully filled the box (H = 6 cm). Figure 15 shows that the maximum
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FIG. 15: (a)Evolution of the maximum stability angles θA versus the humidity rate for a filling

height H = 6 cm for glass beads of 200µm, 500µm and 750µm. The dashed lines correspond to

the two fits shown in Fig. 9 for 200 and 500µm and a simple horizontal linear one for 750µm

stability angle for the 750µm beads is independent of the humidity rate which is quite

different to the results of Gómez-Arriaran [20]. The difference of behavior is still explained

by the ”large” inclination speed used in our automatic setup compared to the slow manual

motion used by them. Some global mechanical vibrations can strongly alter the quality of

the frictional adhesive contacts especially when the water content rings around the grain

contacts are weak compared to the grain weights.

Figure 16 shows that the first precursor appearance is still increasing with the humidity

rate but much smaller than the results for smaller glass beads. This small increase is also

a proof of the sensibility of the observation of the first precursor appearance compared to

the global behavior of the maximum stability angle θA. In the same manner, as pointed

out before, the inter-precursor interval remains constant in both cases but with different

amplitudes. This amplitude difference is normal as the precursor appearances are dependent

of the grain size local structure.

23



5

10

15

20

25

30

35

40

40 50 60 70 80 90 100

A
p
p
ea

n
ce
 a
n
gl
e 
(°
)

RH (%)

200 µm

500 µm

750µm

0

0.5

1

1.5

2

2.5

3

3.5

4

40 50 60 70 80 90 100

In
te
r 
p
re
cu
rs
o
r 
an

gl
e 
(°
)

RH (%)

750 µm

500 µm

(a) (b)

FIG. 16: (a)Evolution of the first precursor angle versus the humidity rate for a filling height

H = 6 cm for glass beads of 200µm, 500µm, and 750µm. (b) Evolution of the inter precursor

angle versus the humidity rate for a filling height H = 6 cm for glass beads of 200µm, 500µm,

and 750µm.

C. Polystyrene bead composition analysis

Finally, we have extended our studies to the 140µm polystyrene beads. These beads have

a quite different water contact angle 87.4◦ and the critical surface tension is 40mN.m−1

(see in https://www.accudynetest.com) compared to 22◦ and 70mN.m−1 for glass beads

respectively

We can see in Fig. 17 that the maximum stability angle of the polystyrene beads is not

changing with the evolution of the humidity rate which is consistent with our expectation.

Indeed, these beads are hydrophobic which means that the water meniscus at the contact

point remains very small whatever the humidity rates are. So, by consequence, no increase of

the adhesion forces is present and can be observed in our experiments. The linear horizontal

fits for the glass beads 750µm and polystyrene beads of 140µm are identical which confirms

this fact. This similarity confirms also that these maximum stability angles are almost only

dependent of the disordered structure of the packing and not of the individual diameter

sizes.

Figure 18 shows that the evolution of the first precursor appearance for this new set of
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FIG. 17: Evolution of the maximum stability angles θA versus the humidity rate for a filling height

H = 6 cm for glass beads of 200µm, 500µm and 750µm and polystyrene beads of 140µm. The

dashed lines correspond to the fits shown in Fig. 9 for the glass beads of 200 and 500µm and a

simple horizontal line one for 750µm and also for the polystyrene beads of 140µm.
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FIG. 18: (a)Evolution of the first precursor angle versus the humidity rate for a filling height

H = 6 cm for glass beads of 200µm, 500µm, and 750µm and polystyrene beads of 140µm..

beads is not following the same behavior as for the previously observed glass bead ones.

This is a combination of the geometrical effect (comparison with the 200µm glass beads),

the non wetting contact effect (comparison with the 750µm glass beads) and finally the

different friction coefficient and mechanical properties of the two materials. These facts

place the curve between the three other ones and finally confirms the quality of this ”stability
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indicator”.

VII. EFFECT OF THE DURATION OF HUMIDITY SUBMISSION

Finally, we are dealing with a crucial parameter for our studies of the humidity effects: the

quality of the humidity distribution inside the full packing. Indeed, as we are dealing with

relative small beads (140 to 750µm) the permeability of these packings are quite small which

can slow down the water vapor diffusion through our static packings. As already well-known

for sphere packings [32], the permeability k can be evaluated on the basis of the porosity φ,

tortuosity factor F and mean pore size linked to the grain size D for unconsolidated beads

packings (k ∝ F−2 φ3/2D2) i.e. it scales with the square of the sphere diameter.

When we have deal with natural humidity rate (i.e. up to 71% in our case), before the

experiments, all the beads are lying in a dilute manner on a flat surface, so we can assume

that the water is surrounding uniformly every beads according to the environmental humidity

rate. So we can pack the beads inside the experimental box and start the experiment right

away.

By opposition, for higher humidity rates, the packing is done previously and stored inside

a given humidity rate environment. Two fans are used to ventilate the moisture inside these

container boxes. This method necessitates some times to propagate the water vapor content

down to the bottom of the packings. Indeed, by construction our packings have only one free

accessible upper surface in contact with the moisture. As demonstrated by Gómez-Arriaran

et al. [20] this waiting time is crucial for getting a perfect homogeneous adhesive structure

so we are looking at our results following this particular point view. Figure 19(a) shows

the evolution of the means values of the the maximum stability angles for three different

samples during the avalanche processes submitted to an humidity of 94 % during either one

week of or only two days.

Figure 19(b) is the representation of the angle difference of the figure(a) and the possible

fit obtained from these points. So we can see a significant difference between these two

behaviors which confirms that two days is largely not enough to generate an homogeneous

cohesive packing. In complement, we can also mention that one week is still too small

especially for small beads packings (i.e. low permeability) and high humidity rate such in

this case.
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FIG. 19: The maximum stability angles for two sets of packings submitted to the same humidity

rate (93 %) but during two different durations (one week versus two days) (a). Difference between

these two results (b)

To confirm this fact, we have also performed two sets of experiments in which the packings

were immersed during four weeks or one week at an humidity rate of 82 %. In this case we

have observed a relative diminution of the maximum stability angle of 17 % to be compared

to the 10 % observed in the Fig. 19(b). These results are in good agreement with the two

papers of Gómez-Arriaran et al. [20, 30] showing that a minimal duration of two weeks is

needed in order to propagate through all the samples the moisture in order to generate

uniform adhesion forces for all the contacts available inside the packings.

VIII. CONCLUSION

So in conclusion, we have presented here a study to characterize the influence of the hu-

midity rates on the rearrangement events (precursors and avalanches) inside sphere packings

when they are inclined slowly and continuously up to the final granular avalanche.

Studies reported before have shown the evolution of the successive avalanches which

occurred during these tilting processes. In complement, other studies have demonstrated

the existence of precursor events such surface rearrangements of grains before an avalanche:

small (few individual grains in movement) and large rearrangements or precursors (number
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of displaced grains of the order of one or more packing layers). We have confirmed all these

previous results, but here we have also demonstrated that these precursors (first appearance

and periodicities) are depending to the grain size, grain properties and, more important, of

the inner humidity rates. Indeed, the precursor observations have a more precise fluctuation

according to the humidity rates changes than the other classical avalanche parameters.
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