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Abstract

In this article we prove the stability of mean field systems as the
Winfree model in the synchronized state. The model is governed by
the coupling strength parameter κ and the natural frequency of each
oscillator. The stability is proved independently of the number of os-
cillators and the distribution of the natural frequencies. In order to
prove the main result, we introduce the positive invariant cone and we
start by studying the linearized system. The method can be applied
to others mean field models as the Kuramoto model.

Keywords: Stability, coupled oscillators, mean field, interconnected sys-
tems, synchronization, Winfree model.

1 Introduction and Main result

In 1967 Winfree [8] proposed a mean field model describing the synchroniza-
tion of a population of organisms or oscillators that interact simultaneously
[1, 7]. The mean field models are used, for example, in the Neurosciences to
study of neuronal synchronization in the brain [2, 3]. The Winfree model is
given by the following differential equation

ẋi = ωi − κσ(x)R(xi), t ≥ 0, x = (x1, . . . , xn), (1)

1
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where n ≥ 1 is the number of oscillators, the mean field part σ is defined by

σ(z) :=
1

n

n
∑

j=1

P (zj), ∀z = (z1, . . . , zn) ∈ R
n,

P and R are C2 2π-periodic functions, xi(t) is the phase of the i-th oscillator,
and x(t) = (x1(t), . . . , xn(t)) is the global state of the system. The natural
frequencies ωi are chosen in (1 − γ, 1 + γ) with γ ∈ (0, 1). The coupling
strength κ is taken in the interval (0, 1). The stability studied in this article
takes the meaning of Lyapunov’s stability. In the second Section, we start
by introducing the ingredients to study the Winfree model’s stability. In the
last Section we prove the Main result. Now, we define the invariant set and
the positive stability. Let n ∈ N

∗ and let F : R
n → R

n be a C1 function and
denote dF its Jacobian such that

max{ sup
z∈Rn

∥

∥F (z)
∥

∥ , sup
z∈Rn

∥

∥dF (z)
∥

∥} = r < ∞.

where ‖.‖ is the usual matrix norm. Let φt : R
n → R

n be the flow of the
following autonomous system

ẋ = F (x), t ≥ 0. (2)

Definition 1. Consider the system (2) and let C ⊂ R
n be an open set. We

say that C is φt−positive invariant if φt(C) ⊂ C for all t ≥ 0.

Definition 2. [Stability] Consider the system (2) and let C ⊂ R
n be an

open set. We say that the system(2) is C−positive stable if C is φt−positive
invariant and

∃λ > 0, ∀x ∈ C, ∃δ > 0, ∀y ∈ C : ‖x− y‖ < δ

=⇒
∥

∥

∥
φt(x)− φt(y)

∥

∥

∥
≤ λ‖x− y‖ , ∀t ≥ 0.

Denote Φt the flow of the Winfree model (1). In [5] the existence of the
synchronization state of the Winfree model is proved independently of the
number n and the choice of natural frequencies. More precisely, if the Win-
free model (1) satisfies the synchronization hypothesis

H :

∫ 2π

0

P (s)R′(s)

1− κP (s)R(s)
ds > 0, ∀κ ∈ (0, κ∗),

where the locking bifurcation critical parameter κ∗ is defined by

κ∗ := sup
{

κ > 0 : 1− κP (z)R(z) > 0, ∀z ∈ R
}

,
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then there exists an open set U in the space of parameters
(γ, κ) ∈ (0, 1) × (0, κ∗), independent of n, containing in its closure
{0} × [0, κ∗], such that for every n ≥ 1 and every parameter (γ, κ) ∈ U
there exist D ∈ (0, 1) and a Φt−positive invariant open set Cn

γ,κ indepen-
dent of choice of natural frequencies (ωi)

n
i=1 and of the form,

Cn
γ,κ :=

{

X = (xi)
n
i=1 ∈ R

n : max
i,j

|xj − xi| < ∆γ,κ

( 1

n

n
∑

i=1

xi

)}

(3)

where ∆γ,κ : R → (0, 1) is C2 2π-periodic function and solution of

d

ds
∆γ,κ(s) = α(γ, κ,D) −

κP (s)R′(s)

1− κP (s)R(s)
∆γ,κ(s), (4)

α(γ, κ,D) :=
2γ + C̃κD2

1− κ/κ∗
+

(2γ + C̃κD2 + C̃κD)(γ + C̃κD)

(1− γ − C̃κD − κ/κ∗)(1− κ/κ∗)
,

C̃ := 2
∑

0≤i,j≤2

∥

∥

∥
P (i)

∥

∥

∥

∞

∥

∥

∥
R(j)

∥

∥

∥

∞
.

The periodic function ∆γ,κ satisfies max
s∈[0,2π]

∆γ,κ(s) < D. Further, for all

(γ, κ) ∈ U , x(0) ∈ Cn
γ,κ and t ≥ 0 we have

1−γ−C̃κD−κ/κ∗ > 0 and |1−κP (µx(t))R(µx(t))−µ̇x(t)| < γ+C̃κD, (5)

where µx(t) :=
1
n

∑n
j=1 xj(t). In the following Main result, we show that the

Winfree model is Cn
γ,κ−positive stable when the synchronization hypothesis

H is satisfied and when (γ, κ) ∈ U .

Main result. Consider the Winfree model (1) and assume that the hypoth-

esis H is satisfied. Then for every parameter (γ, κ) ∈ U , for every n ≥ 1
and every choice of natural frequencies (ωi)

n
i=1 the Winfree model (1) is

Cn
γ,κ−positive stable, where the open set Cn

γ,κ is defined by equation (3) .

Note that, the periodic system’s stability as Winfree model implies
φt(x) = ρt + px(t) where ρ ∈ R

n is the rotation vector and px(t) is an
almost periodic function; for more details, see [4, 6]. The existence of a
synchronized periodic orbit on the torus with initial condition in Cn

γ,κ of the
Winfree model is proved in [5].

2 Invariant cone and stability

In this Section we study the stability by introducing the positive invariant
cone. Under some hypothesis, we prove that the system (2) is stable if its lin-
earized admits such an invariant cone. The next independents Propositions
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are the main ingredients to study the linearized Winfree model’s stability.
In this Section we consider the linear system

ẏ = A(x, t)y, t ≥ t0, (6)

where t0 ∈ R and A(x, t) := {ai,j(x, t)}1≤i,j≤n is a continuous n× n matrix
function of x ∈ C ⊂ R

n and the time t ≥ t0. For all x ∈ C let Ψt
x the flow

of the system (6). Now, we define the positive invariant cone

Definition 3. Denote V+ := {(z1, . . . , zn) ∈ R
n : zi ≥ 0, ∀i = 1, . . . , n} and

consider the linear system (6). We say that the cone V+ is Ψt−t0
C −positive

invariant if there exists a control time δ ≥ 0 such that

∀x ∈ C, ∃tx ∈ [t0, t0 + δ] : Ψt−tx
x (V+) ⊂ V+, ∀t ≥ tx.

The stability of the linear system (6) in the following Definition is equivalent
to the stability of Definition (2); just the linear system is not autonomous.

Definition 4. Consider the linear system (6) and let Ψt
x be its flow. We

say that the system(2) is linearly C−positive stable if

∃λ > 0, ∀x ∈ C :
∥

∥

∥
Ψt

x(z)
∥

∥

∥
≤ λ‖z‖ , ∀z ∈ R

n, ∀t ≥ 0.

In the next proposition, we state the stability of class of nonlinear systems
using the invariant cone V+.

Proposition 5. Consider the system (2) and put F := (f1, . . . , fn). Suppose
that there exists a φt−positive invariant open set C ⊂ R and there exists

α > 0 such that

fi(φ
t(x)) ≥ α, ∀x ∈ C, ∀t ≥ 0, ∀i ∈ {1, ..., n}.

Let x ∈ C and let Ψt
x be the flow of the linearized system

ẏ = dF (φt(x))y, t ≥ 0. (7)

Suppose that the cone V+ is Ψt
C−positive invariant, then the system (2) is

C−positive stable.

To prove the Proposition 5 we use the next Lemma which gives a suf-
ficient condition of the stability of the system (2) as defined in Definition
2.
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Lemma 6. We consider the system (2). Suppose that there exists an open

φt−positive invariant set C ⊂ R
n such that the linear system

ẏ = dF (φt(x))y, t ≥ 0, (8)

is linearly C-positive stable. Then the system (2) is C−positive stable.

Proof. The system (2) can be written as

d

dt
dφt(x) = dF (φt(x))dφt(x),

Since the linear system (8) is linearly C-positive stable. Then

∃λ > 0, ∀x ∈ C :
∥

∥

∥
dφt(x)

∥

∥

∥
≤ λ

∥

∥

∥
dφ0(x)

∥

∥

∥
= λ, ∀t ≥ 0. (9)

Let (z1, z2) ∈ C × C such that z(s) := (1− s)z2 + sz1 ∈ C for all s ∈ [0, 1].

=⇒
∥

∥

∥
φt(z1)− φt(z2)

∥

∥

∥
=

∥

∥

∥

∥

∥

∫ 1

0

d

ds
φt(z(s))ds

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∫ 1

0
dφt(z(s))

dz(s)

ds
ds

∥

∥

∥

∥

∥

,

=

∥

∥

∥

∥

∥

∫ 1

0
dφt(z(s))(z1 − z2)ds

∥

∥

∥

∥

∥

≤ sup
s∈[0,1]

∥

∥

∥
dφt(z(s))(z1 − z2)

∥

∥

∥
.

Finally, use the fact z(s) ∈ C and use equation (9) to obtain
∥

∥

∥
φt(z1)− φt(z2)

∥

∥

∥
≤ λ‖z1 − z2‖ , ∀t ≥ 0,

which implies that the system (2) is C−positive stable.

Proof of Proposition 5. By hypotheses V+ is Ψt
C−positive invariant. Then

there exists a control time δ ≥ 0 such that for all x ∈ C there exists tx ≥ [0, δ]
such that

z ∈ V+ =⇒ Ψt−tx
x (z) ∈ V+, ∀t ≥ tx.

Let α > 0 satisfying the hypotheses of the present Proposition and put
η := 1

α
. Let x ∈ C, y ∈ R

n and denote

z+ := η‖y‖F (φtx(x)) + y and z− := η‖y‖F (φtx(x))− y.

On the one hand, z+ := (z+1 , . . . , z
+
n ) ∈ V+ and z− := (z−1 , . . . , z

−
n ) ∈ V+. In

fact,

min
1≤i≤n

{z−i , z
+
i } ≥ η‖y‖ min

1≤i≤n
{ inf
x∈C

fi(φ
tx(x))} −‖y‖ ≥ (ηα− 1)‖y‖ = 0.
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On the other hand, d
dt
φt(x) is solution of the linearized

system (7) of initial condition d
dt
φtx(x) = F (φtx(x)) then

Ψt−tx
x (F (φtx(x))) = d

dt
φt(x) = F (φt(x)). Since V+ is Ψt

C−positive
invariant, we obtain

η‖y‖F (φt(x)) + Ψt−tx
x (y) = Ψt−tx

x (z+) ∈ V+, ∀t ≥ tx,

η‖y‖F (φt(x))−Ψt−tx
x (y) = Ψt−tx

x (z−) ∈ V+, ∀t ≥ tx.

Knowing that max{
∥

∥F (φt(x))
∥

∥ ,
∥

∥dF (φt(x))
∥

∥} ≤ r we obtain
∥

∥

∥
Ψt−tx

x (y)
∥

∥

∥
≤ ηr‖y‖ ,∀t ≥ δ and

∥

∥

∥
Ψt

x(y)
∥

∥

∥
≤ exp(rδ)‖y‖ ,∀t ∈ [0, δ].

=⇒
∥

∥

∥
Ψt

x(y)
∥

∥

∥
≤ λ‖y‖ , ∀x ∈ C, ∀t ≥ 0,

where λ := ηr exp(rδ). The linearized system (7) is linearly C−positive
stable. Lemma 6 implies that (2) is C−positive stable.

We have shown in the previous Proposition that the system is stable when
the cone V+ is invariant under the flow of its linearized. We show in the next
Proposition one case of a linear systems such that the cone V+ is invariant
under the flow. The linear systems in the next Proposition play the role of
the linear system (7) of Proposition 5.

Proposition 7. Consider the linear system (6). Suppose that there exist

a continuous 1-periodic functions p, β : R → R such that β is a positive

function and such that for all t ≥ t0

max
1≤i,j,l,k≤n

sup
x∈C

{

p(t)− ai,j(x, t),
∣

∣

∣
ai,j(x, t)− ak,l(x, t)

∣

∣

∣

}

< β(t). (10)

Suppose that there exist d > 0 and a positive 1−periodic function θ such that

θ̇ = −np(t)θ + 2ndβ(t) and θ(t) < d, ∀t ≥ t0. (11)

Then the cone V+ is Ψt−t0
C −positive invariant of control time δ = 1.

Proof. Let be θ be the positive 1−periodic solution of Equation (11). Let
be t∗ ∈ [t0, t0 + 1] such that

max
t∈[0,1]

θ(t) = θ(t∗). (12)

Let be x ∈ C and recall that Ψt
x = (Ψt

1,x, . . . ,Ψ
t
n,x) is the flow of the system

(6). Let V̊+ be the interior of the set V+ and let be y ∈ V̊+. Put µ̃(z) =
∑n

j zj
for all z = (z1, . . . , zn) ∈ R

n. By continuity,

∃t > t∗ : Ψs−t∗
x (y) ∈ V̊+, ∀s ∈ [t∗, t).
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Let define

T := sup
{

t > t∗,Ψ
s−t∗
x (y) ∈ V̊+, ∀s ∈ (t∗, t)

}

.

By uniqueness of solution µ̃(Ψs−t∗
x (y)) > 0 for all s ∈ [t∗, T ]. The propo-

sition is proved if we prove that T = +∞. By contradiction, suppose that
T < +∞, then

ΨT−t∗
x (y) /∈ V̊+. (13)

Use Equation (6), we obtain for all 1 ≤ i ≤ n and t ∈ [t∗, T ) the following
equations

d

dt
Ψt−t∗

i,x (y) = ai(t)µ̃(Ψ
t−t∗
x (y)), where ai(t) :=

∑n
j=1 ai,j(x, t)Ψ

t−t∗
j,x (y)

µ̃(Ψt−t∗
x (y))

.

d

dt
Ψt−t∗

i,x (y) = ai(t) exp
(

∫ t

t∗

a(s)ds
)

µ̃(y), where a :=
n
∑

j=1

aj .

By hypothesis (10), we have |nai(s)−a(s)| < nβ(s) and θ(t∗) < d, therefore

nθ(t∗)

µ̃(y)
exp

(

−

∫ T

t∗

a(ζ)dζ
)(

ΨT−t∗
i,x (y)− yi

)

(14)

= θ(t∗)

∫ T

t∗

[a(s) + (nai(s)− a(s))] exp
(

−

∫ T

s

a(ζ)dζ
)

ds > θ(t∗)− z(T )

z(t) := exp
(

−

∫ t

t∗

a(ζ)dζ
)

θ(t∗) +

∫ t

t∗

ndβ(s) exp
(

−

∫ t

s

a(ζ)dζ
)

ds, t ∈ [t∗, T ].

=⇒ ż(t) := −a(t)z(t) + ndβ(t), z(t∗) = θ(t∗), t ∈ [t∗, T ].

To obtain ΨT−t∗
x (y) ∈ V̊+ and get a contradiction with (13), it is sufficient

to prove that z(T ) ≤ θ(t∗), knowing that yi > 0. For that, we use the
comparison principle of differential equations. By Equation (12), the strat-
egy is to prove that z(T ) ≤ θ(T ). Since θ(t∗) is a maximum of θ then
θ̇(t∗) = 0. By definition of the function a(t) and by hypothesis (10), we
have −a(t) < −np(t) + nβ(t) for all [t∗, T ) and θ(t∗) < d, therefore

ż(t∗) := −a(t∗)z(t∗) + nβ(t∗) < −np(t∗)z(t∗) + nβ(t∗)z(t∗) + dnβ(t∗)

= −np(t∗)θ(t∗) + nβ(t∗)θ(t∗) + dnβ(t∗) < −np(t∗)θ(t∗) + 2dnβ(t∗)

= θ̇(t∗) = 0.

Then there exists ǫ > 0 such that z(t) < θ(t) for all t ∈ (t∗, t∗ + ǫ). Let
define

T̃ := sup
{

t > t∗, z(s) < θ(s), ∀s ∈ (t∗, t)
}

.
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Proving that T̃ ≥ T . By contradiction, if T̃ < T , then z(T̃ ) = θ(T̃ ). That
implies

ż(T̃ ) = −a(T̃ )z(T̃ ) + ndβ(T̃ ) = −a(T̃ )θ(T̃ ) + ndβ(T̃ )

< −np(T̃ )θ(T̃ ) + 2ndβ(T̃ ) = θ̇(T̃ ).

There exists t < T̃ close enough to T̃ such that z(t) > θ(t). We have obtained
a contradiction. Then T̃ ≥ T and z(T̃ ) < θ(T̃ ) ≤ θ(t∗). By Equation (14),
we deduce that ΨT−t∗

x (y) ∈ V̊+. Contradiction with the definition of the
point T . We have Ψt−t∗

x (y) ∈ V̊+ for all t ≥ t∗ and all x ∈ C. By continuity
of the flow, we have then proved that Ψt−t∗

x (y) ∈ V+ for all y ∈ V+ , all
t ≥ t∗. and all x ∈ C. In the other word, we have proved that the cone V+

is Ψt−t0
C −positive invariant.

3 Proof of the Main result

We prove in this Section the Main result of Section 1. For this, we consider
the Winfree model (1) and recall that Φt is its flow. Without loss of gen-
erality we put x = (x1, . . . , xn) := Φt(x). As is stated in the Main result,
we will focus on the case when the Winfree model satisfies the hypothesis
H . To prove the Main result, for (γ, κ) ∈ U and x ∈ Cn

γ,κ (as defined in
equation(3)) we consider the linearized Winfree model

d

dt
y(t) = dW(Φt(x))y(t), t ≥ 0, y = (y1, . . . , yn), (15)

where W(z) := −κσ(z)(R(z1), . . . , R(zn)) for all z = (z1, . . . , zn) ∈ R
n. The

next Lemma shows that the linearized Winfree model (15) can be written
as the linear system of Proposition 7. In the Lemma (9), we prove then the
cone V+ is positive invariant under the flow of the linearized Winfree model.
Finally, we use Proposition 5 to prove the Main result.

Lemma 8. Let n ∈ N
∗ and assume that the Winfree model (1) satisfies

the hypothesis H. Then for all (γ, κ) ∈ U and all x ∈ Cn
γ,κ there exist an

homeomorphism t → s := µx(t) and a change of variables of the form

ỹi(s) := exp
(

∫ s

s0

κP (ζ)R′(ζ)

1− κP (ζ)R(ζ)
dζ

)

yi(τx(s)), s ≥ s0 := µx(0),

where s → t := τx(s) is the inverse function of µx such that the linearized

Winfree model (15) is equivalent to

d

ds
ỹ(s) = Ã(x, s)ỹ(s), s ≥ s0, ỹ = (ỹ1, . . . , ỹn), (16)
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and such that the matrix function Ã(x, s) = {ãi,j(x, s)}1≤i,j≤n satisfies

max
1≤i,j,l,k≤n

sup
x∈C

{

p(s)− ãi,j(x, s),
∣

∣

∣
ãi,j(x, s)− ãk,l(x, s)

∣

∣

∣

}

< β(s), s ≥ s0,

p(s) := −
1

n

κP ′(s)R(s)

1− κP (s)R(s)
, β(s) :=

1− κ/κ∗
1− κP (s)R(s)

α(γ, κ,D)

2nD

where D and α(γ, κ,D) are defined in Equation (4).

Proof. Let (γ, κ) ∈ U , x ∈ Cn
γ,κ and consider the linearized Winfree model

(15). Let A(z) := {ai,j(z)}1≤i,j≤n be the matrix function defined by

ai,j(z) := −
1

n
κP ′(zj)R(zi), ∀z = (z1, . . . , zn) ∈ R

n.

The Jacobian dW(z) = {wi,j(z)}≤i,j≤n, z ∈ R
n, of the field W is defined by

wii(z) := −κσ(z)R′(zi) + ai,i(z) and wij(z) := ai,j(z), i 6= j.

Denote µx(t) :=
1
n

∑n
j=1 xj(t). Since (γ, κ) ∈ U and by equation (5)

0 < 1− γ − C̃κD − κ/κ∗ < µ̇x(t), ∀t ≥ 0.

Consider the change of variable t → s := µx(t) and put w(s) := y(τx(s))
where τx is the inverse function of µx. We have d

dt
y(t) = d

ds
w(s)µ̇x . Put

1 := (1, . . . , 1) ∈ R
n. In terms of the new variables the linearized Winfree

model (15) becomes

d

ds
w(s) =

[ dW(s1)

1− κP (s)R(s)
+H(x, s)

]

w(s), s ≥ s0 := µx(0), (17)

where the matrix function H(x, s) = {hi,j(x, s)}1≤i,j≤n is defined by

H(x, s) :=
dW(Φτx(s)(x))− dW(s1)

1− κP (s)R(s)
−

dW(Φτx(s)(x))

µ̇x

(
µ̇x

1− κP (s)R(s)
− 1).

Now consider the change of variables

ỹi(s) := exp
(

∫ s

s0

κP (ζ)R′(ζ)

1− κP (ζ)R(ζ)
dζ

)

wi(s), s ≥ s0.

In terms of the new variables the linear system (17) and so the linearized
Winfree model (15) are equivalent to the linear system (16) where the matrix
function Ã(x, s) = {ãi,j(x, s)}1≤i,j≤n is defined by

Ã(x, s) :=
A(s1)

1− κP (s)R(s)
+H(x, s), s ≥ s0, 1 ≤ i, j ≤ n.
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Recall that max
1≤i≤N

|xi−µx| ≤ ∆γ,κ(µx) < D. Use Equation (5) and the Mean

Value Theorem to get for all 1 ≤ i, j, k, l ≤ n the following inequality

|ãi,j(x, s)− ãk,l(x, s)| <
1

n

C̃
2 κD

1− κP (s)R(s)
+

1

n

C̃
2 κ(γ + 1

2C̃κD)

µ̇x(1− κP (s)R(s))
< β(s),

|hi,j(x, s)| <
1

n

C̃
2 κD

1− κP (s)R(s)
+

1

n

C̃
2 κ(γ + 1

2 C̃κD)

µ̇x(1− κP (s)R(s))
< β(s).

where

β(s) :=
1− κ/κ∗

1− κP (s)R(s)

α(γ, κ,D)

2nD
.

Lemma 9. Let n ∈ N
∗ and assume that the Winfree model (1) satisfies the

hypothesis H. Let (γ, κ) ∈ U , x ∈ Cn
γ,κ and let Ψt

x be the flow of the linearized

Winfree model (15). Then the cone V+ is Ψt
Cn

γ,κ

−positive invariant.

Proof. The strategy is to use Proposition 7. Let (γ, κ) ∈ U and x ∈ Cn
γ,κ.

Lemma 8 implies that the linearized Winfree model (15) is equivalent to the
linear system (16) such that the matrix function Ã(x, s) = {ãi,j(x, s)}1≤i,j≤n

satisfies

max
1≤i,j,l,k≤n

sup
x∈C

{

p(t)− ãi,j(x, s),
∣

∣

∣
ãi,j(x, s)− ãk,l(x, s)

∣

∣

∣

}

< β(s), s ≥ s0,

p(s) := −
1

n

κP ′(s)R(s)

1− κP (s)R(s)
, β(s) :=

1− κ/κ∗
1− κP (s)R(s)

α(γ, κ,D)

2nD
.

Let ∆γ,κ(s) the positive 2π−periodic function as defined in Equation (4).
By definition of the locking bifurcation critical parameter κ∗, we have

min
s∈[0,2π]

1− κP (s)R(s) = 1− κ/κ∗. (18)

Let θ be the positive 2π−periodic function defined by

θ(s) :=
1− κ/κ∗

1− κP (s)R(s)
∆γ,κ(s).

Knowing that ‖θ‖∞ ≤
∥

∥∆γ,κ

∥

∥

∞
< D, by Equations (4) and (18), we find

θ̇ = −np(s)θ +
1− κ/κ∗

1− κP (s)R(s)
α(γ, κ,D) = −np(s)θ + 2nDβ(s).
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Since θ is a positive 2π−periodic function ans satisfies‖θ‖∞ < D, by Propo-
sition 7 the cone V+ is Ψ̃s−s0

Cn
γ,κ

-positive invariant, where Ψ̃s
x is the flow of the

linear system (16) and where s0 = µx(0). Further, the control time satisfies
δ = 2π. In the other word

∀x ∈ Cn
γ,κ, ∃sx ∈ [s0, s0 + 2π] : z ∈ V+, =⇒ Ψ̃s−sx

x (z) ∈ V+, ∀s ≥ sx.

Recall that τx is the inverse function of µx. We deduce that for all x ∈ Cn
γ,κ

there exists τx(sx) ∈ [0, τx(2π)] such that the flows family {Ψt
x}x∈Cn

γ,κ
of the

linearized Winfree model (15) satisfies

z ∈ V+, =⇒ Ψt−τx(sx)
x (z) ∈ V+, ∀t ≥ τx(sx).

Finally, we have

τx(2π)(1−γ−C̃κD−κ/κ∗) <

∫ τx(2π)

0
µ̇x(t)dt = 2π =⇒ sup

x∈Cn
γ,κ

τx(2π) < +∞.

Now, we prove the Main result of Section 1.

Proof of the Main result. We use in this proof the Proposition 5. On the
one hand, by definition of the Winfree model (1)

ẋi = ωi − κσ(x)R(xi) = ωi − κP (xi)R(xi) +
κ

n

n
∑

j=1

(P (xi)− P (xj))R(xi).

Using the Mean Value Theorem, we obtain for all (γ, κ) ∈ U and 1 ≤ i ≤ n,

0 < 1−γ− C̃κD−κ/κ∗ < ωi−κσ(x)R(xi) < 1+γ+κC̃, ∀x ∈ Cn
γ,κ, ∀t ≥ 0.

On the other hand, by Lemma 9, for all (γ, κ) ∈ U the cone V+ is
Ψt

Cn
γ,κ

−positive invariant. Proposition 5 implies that the Winfree model

(1) is Cn
γ,κ−positive stable for all (γ, κ) ∈ U .

4 Conclusion

We have studied the stability of the Winfree model in its synchronized state.
The method based on the study of the linearized system’s stability. We
have introduced the V+ invariant cone. The invariance of the cone V+ is a
sufficient condition of the stability of the linear system (Proposition 5). To
obtain the stability of the Winfree model we have proved that V+ is invariant
under the flow of its linearized system.
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